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Abstract

Open Set Domain Adaptation (OSDA) aims to adapt
a model trained on a source domain to a target do-
main that undergoes distribution shift and contains sam-
ples from novel classes outside the source domain. Test-
time or source-free OSDA (SF-OSDA) techniques eliminate
the need to access source domain samples, but current SF-
OSDA methods utilize only the known classes in the tar-
get domain for adaptation, and require access to the en-
tire target domain even during inference after adaptation,
to distinguish between known and unknown samples. In this
paper, we introduce Unknown Sample Discovery (USD) as
an SF-OSDA method that utilizes a temporally ensembled
teacher model to conduct known-unknown target sample
separation and adapts the student model to the target do-
main over all classes using co-training and temporal con-
sistency between the teacher and the student. USD pro-
motes Jensen-Shannon distance (JSD) as an effective mea-
sure for known-unknown sample separation. Our teacher-
student framework significantly reduces error accumulation
resulting from imperfect known-unknown sample separa-
tion, while curriculum guidance helps to reliably learn the
distinction between target known and target unknown sub-
spaces. USD appends the target model with an unknown
class node, thus readily classifying a target sample into
any of the known or unknown classes in subsequent post-
adaptation inference stages. Empirical results show that
USD is superior to existing SF-OSDA methods and is com-
petitive with current OSDA models that require both source
and target domains during adaptation.

1. Introduction
The domain gap manifests when a model, trained on a
source domain with annotated samples, is deployed in a
target domain that has a distribution shift compared to the
source domain. Unsupervised domain adaptation (UDA)
considers a target domain with unlabeled data and aims to

mitigate the domain gap by aligning the source and tar-
get domain distributions. Most of the current UDA meth-
ods conduct domain adaptation by either minimizing the
source-target distribution discrepancy [40, 48], or by adver-
sarially aligning the feature spaces of the source and tar-
get data [7, 9]. However, such models need access to the
source data during adaptation, and therefore cannot be ap-
plied to cases where the source domain is not available or
when the source data is sensitive or confidential. To address
these concerns, test-time or source-free domain adaptation
(SFDA) [21, 46] was proposed, where domain adaptation to
the target distribution takes place with a source-pretrained
model using only the unlabelled target data.

While the vast majority of existing UDA literature deals
with closed-set domain adaptation, where the target do-
main and source domain share the same classes, a more
realistic scenario is open-set domain adaptation (OSDA)
[23, 31] where the target domain contains samples belong-
ing to novel classes that are absent in the source domain.
In the OSDA setting, closed-set UDA would enforce align-
ment with unknown category mismatch, leading to negative
transfer [6] and deteriorating performance. The majority of
the existing OSDA methods [23, 31] utilize domain adver-
sarial learning techniques to align the source domain with
only the known classes in the target domain, leaving out
the target-unknown classes. Such methods fail to properly
learn the features for the unknown classes, and hence no
clear decision boundary between the known classes and the
unknown class in the target domain is realized. Some uni-
versal domain adaptation methods, i.e. UDA methods de-
signed to work in both closed and open-set settings [16, 32],
have attempted to conduct self-supervised learning (SSL)
to discover latent target domain features without explicit
distribution matching. However, such methods fail under
large domain gaps. More recently, [13] proposed a three-
way domain adversarial feature space alignment between
the source domain and the known and the unknown tar-
get subdomains, thus segregating the known and unknown
classes in the target domain.
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In this work, we introduce Unknown Sample Discovery
(USD) as a source-free OSDA (SF-OSDA) method that uti-
lizes an ensemble-based pseudolabeling strategy for the tar-
get data, and generates known and unknown target sub-
sets based on Jensen-Shannon distance (JSD) between the
pseudolabels and the predictions from a teacher model.
USD uses 2-component Gaussian Mixture Model (GMM)
to model the target domain JSD, where the distribution with
the lower mean JSD is considered to be of the known class
samples and that with the greater mean JSD is taken as that
consisting of unknown class samples. The known-unknown
target subsets are used to adapt the student model. The
student model is updated with gradient descent, while the
teacher model is updated by exponential moving averages
(EMA) of the teacher and student models. The teacher-
student framework in USD helps to mitigate error accu-
mulation induced from any possibly faulty known-unknown
sample separation.

USD introduces an unknown class output node in the tar-
get model. The adapted target model infers new target sam-
ples in one one of the known classes or the unknown class,
without operating on the entire target dataset first to iden-
tify known and unknown samples. The main contributions
of this work are as follows.

• We introduce USD as an SF-OSDA model that co-trains a
dual-branch teacher-student framework to split the target
domain into known and unknown class subsets.

• USD proposes the Jensen-Shannon distance between the
target pseudolabels and teacher model predictions as an
effective criterion for separating target samples in known
and unknown classes.

• Co-training in USD, aided by weak-strong consistency
between the teacher and student outputs, significantly
mitigates error accumulation due to imperfect known-
unknown separation and improves performance.

• USD generates reliable pseudolabels from the student
model outputs on an ensemble of weak and strong target
data augmentations.

• USD utilizes curriculum adaptation to progressively learn
the known class feature space first, and the unknown class
feature space later, thus enabling robust alignment of the
entire target space with the source domain.

• Extensive experiments on 3 UDA datasets demonstrate
the superiority of USD over existing SF-OSDA methods.

2. Related Works

2.1. Unsupervised domain adaptation

Domain gap originates from the distribution shift between
the source domain where a deep network model is trained,
and the target domain where the model is deployed [40].
This domain gap may be reduced by minimizing the maxi-
mum mean discrepancy (MMD) [24, 41], or the central mo-

ment discrepancy (CMD) [48] between the distributions in
the source and target domains. Deep CORAL [36] miti-
gated domain shift by matching second-order distribution
statistics. [7] introduced the Gradient Reversal Layer and
made use of a domain discriminator to adversarially align
the source and target distributions in a common feature
space using a common feature encoder. [42] decoupled the
feature extraction process by learning separate feature en-
coders for the two domains and aligned them adversarially
to perform classification with a common classifier.

Generative adversarial networks (GANs) have been uti-
lized to produce images in an intermediate domain be-
tween the source and target to facilitate easier and smoother
adaptation [9]. Domain-wise global adversarial alignment
in the absence of target annotations may lead to loss of
class discrimination in the target embeddings. To align the
domain-wise and class-wise distributions across the source
and target data while maintaining target class feature dis-
crimination, [18] simultaneously solved two complemen-
tary domain-specific and class-specific minimax objectives.
[28] imposed a consistency constraint to non-adversarially
align the labeled source prototypes and the pseudo-labeled
target prototypes in the feature space.

2.2. Source free domain adaptation

UDA methods that adversarially align the embedding space
[7, 9, 42] or minimize the source-target domain divergence
[24, 41, 48] require access to both the source and target
data during adaptation, rendering them unusable in situa-
tions where the source data is private or restricted. A semi-
supervised UDA method involving a few source representa-
tives or prototypes instead of the full source data was pro-
posed in [4]. Distant supervision for SFDA [20] iteratively
assigned pseudo-labels to the target data and used them to
learn a domain invariant feature space and obtain the tar-
get class centroids. Liang et al. [21] introduced SHOT
which adapts the source-pretrained feature encoder to the
target domain via self-training with information maximiza-
tion [14, 35] and self-supervised clustering for pseudola-
beling, while transferring the source hypothesis (classifier
model) to the target. To further refine the pseudolabels, [46]
proposed to enforce neighborhood consistency regulariza-
tion among the target samples. To generate compact target
clusters, [47] considered minimizing the distance among K-
nearest neighbors for each target sample and dispersing the
rest by retrieving target features stored in a memory bank.

2.3. Open set domain adaptation

In addition to aligning the source and target subspaces, a
critical step in OSDA is detecting target samples from novel
or unknown categories that are absent in the source do-
main. [12] applied a simple class-wise confidence thresh-
old to reject those samples with lower confidence as un-
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known. [31] adversarially aligned the source domain and
known target subdomain, where the unknown target sam-
ples were identified based on a preset threshold. Align-
ment for only the known classes however results in subpar
performance in identifying the unknown samples. The ad-
versarial alignment objective was modified in [23] with an
instance weighting procedure, where higher weights were
given to known target samples and lower weight to un-
known samples. This somewhat smoothened the known-
unknown distinction, but lower weights produced less con-
tributions in the objective loss from the unknown samples,
leading to suboptimal performance. A 3-way domain ad-
versarial alignment between source, known target, and un-
known target in the feature space was proposed in [13]
such that the source and known target are aligned while
the target-unknown gets segregated. [21] and [47] are SF-
UDA methods that also conduct SF-OSDA by separating
the known and unknown samples based on clustering the
sample entropies into two clusters, and taking the cluster
with lower mean entropy as the known subset.

3. Method

For unsupervised OSDA, we have ns labeled samples
{xi

s, y
i
s}

ns

i=1 ∈ Xs,Ys belonging to the source domain Ds,
and nt unlabeled samples {xi

t}
nt

i=1 ∈ Xt belonging to the
target domain Dt. The task of SF-OSDA is to take the
source model fs(θs) : Xs → Ys with model parameters
θs trained on the Cs-multiclass source data {xi

s, y
i
s}

ns

i=1 ∈
Xs,Ys, and adapt it to ft(θt) : Xt → Yt with model param-
eters θt that can map the {xi

t}
nt

i=1 ∈ Xt to the Ct classes,
where Ct = Cs + 1. The additional class in the target do-
main is a catch-all class for all samples in the target domain
that do not belong to any of the classes in the source domain.

We follow [21] for Source model training follows [21]
to ensure fair comparison with other source-free UDA mod-
els. The source model is trained by minimizing the standard
cross entropy loss with label smoothing [27] as follows.

Ls(fs;Xs,Ys) = −Exs∈Xs,ys∈Ys

Cs∑
k=1

qlsk log(σk(fs(xs)))

(1)
where σk(a) =

exp(ak)∑
i exp(ai)

is the k-th element in its softmax

output of a Cs-dimensional vector a, and qls is the one-hot
encoded and smoothed Cs-dimensional vector for sample
label yis, such that qlsk = (1 − α)qk + α/Cs, where qk is 1
for the correct class and 0 for all other classes, and α is the
smoothing factor set at 0.1.

The source model fs consists of a feature extractor gs :
Xs → Rd and a Cs-class classifier hs : Rd → RCs , such
that fs(x) = hs(gs(x)). USD consists of a student target
model fS

t (θ
S
t ) and a teacher target model fT

t (θTt ). The fea-
ture extractors gSt and gTt , in the student and teacher net-

Figure 1. Pseudolabel generation for the target samples and
known-unknown sample separation based on JSD

Figure 2. Adaptation process for USD using co-training. The stu-
dent model receives pseudolabels for the target samples (see Fig-
ure 1) and is optimized using a combination of triplet, weak-strong
consistency, information maximization (IM) and cross-entropy
losses. The teacher model is updated via exponential moving av-
erages (EMA) at the end of each epoch.

works respectively, are initialized with the source model
feature extractor, i.e., gSt = gTt = gs. To account for the
novel class samples in the target domain, the source classi-
fier hs is expanded in the student and teacher models to in-
clude an additional trainable output node for the unknown
class. The known class nodes in the target classifiers hS

t

and hT
t , for the student and teacher respectively, are ini-

tialized with hs, and remain frozen during adaptation. The
unknown class nodes in hS

t , hT
t and the feature extractors

gSt , gTt are adapted using only the unlabeled target samples.

3.1. Known-unknown sample separation

The first step for target adaptation is to reliably separate the
known class samples and the novel class samples in the tar-
get data. This step is visually depicted in Figure 1. In or-
der to generate pseudolabels ŷt, the target data undergoes
M = 6 number of weak and strong augmentations (1 weak
and 5 strong) based on AutoAugment [5] policy for Ima-
geNet. The softmax output over Cs classes for each aug-
mented view xiM

t is taken from the student model fS
t , and

then averaged over the augmentations, as follows.

ŷit = argmax
1

M

M∑
1

fS
t (x

iM
t ) (2)

The index corresponding to the maximum averaged soft-
max output is taken as the hard pseudolabel ŷit for each tar-
get sample xi

t. These pseudolabels are however only over
the Cs known classes, and therefore the samples need to be
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split into known class subset XK
t and unknown class sub-

set XU
t . Existing SF-OSDA methods [21, 47] identify un-

known class samples by utilizing the output entropy of the
target data. Entropies for all samples are calculated at the
beginning of each epoch and then normalized in the range
of [0, 1] by dividing each sample entropy by logCs. The
normalized entropies are then clustered by 2-class k-means
clustering. The cluster with the higher mean entropy or un-
certainty is considered to be the one containing unknown
samples, while the other cluster with lower mean entropy is
taken as containing known class samples.

Sample separation is a critical component for noisy la-
bel learning (NLL) algorithms where clean and noisy sam-
ples are separated for robust supervised training of a model.
Traditionally, NLL calculates the cross-entropy loss on the
whole dataset and then uses low cross-entropy loss as the
criterion to identify clean samples [1, 17, 19]. In USD, we
conduct known-unknown sample separation for SF-OSDA
based on JSD between the network outputs and their corre-
sponding pseudolabels, which is calculated as follows.

JSD(ŷit, p
i
t) =

1

2
KL

(
ŷit,

ŷit + pit
2

)
+
1

2
KL

(
pit,

pit + ŷit
2

)
(3)

where, KL(a, b) is the Kullback-Leibler divergence be-
tween a and b, and pit = σ(fT

t (xi
t)) is the output softmax

probability for target sample xi
t from the teacher model fT

t .
We consider the unknown class samples in the target do-

main as noisy samples [11] when predictions are made over
only the known Cs classes. In comparison to entropy or
cross-entropy loss, JSD is symmetric by design and ranges
between 0 and 1.As shown in Figure 1, when plotted against
the number of samples, JSD produces a bimodal histogram.
A threshold could be applied directly on the JSD histogram
for known-unknown separation, but such a threshold would
depend on the location of the modes in the histogram, and
hence inapplicable across all source-target pairs. We there-
fore model the JSD distribution with 2-component Gaus-
sian Mixture Model (GMM) with equal priors, resulting in
probabilities [wi

tL , w
i
tH ] for each target sample xi

t to belong
to either of the two components. We consider the samples
belonging to the distribution with the lower-mean Gaussian
(wi

tL > wi
tH ) as samples from one of the known classes,

and consider those samples on the higher-mean Gaussian
(wi

tL < wi
tH ) as coming from the unknown target class.

Practically, we take the probability wi
tL and in order

to be conservative in our sample splitting, set a lower-
bound/threshold δt to select the known sample subset XK

t .
The remaining target samples are included in the unknown
subset XU

t . The pseudolabels ŷit are updated accordingly,
where the known subset retain their earlier assigned pseu-
dolabel from among the Cs classes, and the unknown subset
of target samples get the new unknown class pseudolabel
|Ct|. It has to be noted that during adaptation, the teacher

network conducts the known-unknown sample separation
at the beginning of each epoch, and the student network is
adapted over the Ct classes with the target data.

3.2. Teacher-student co-training and regularization

USD simultaneously adapts the student and teacher tar-
get models, such that the student model parameters θSt are
updated based on the minibatch gradient descent, and the
teacher network parameters θTt are updated as temporally
ensembled version of the student network [37] at the end of
each epoch as follows.

θTtN = mθTtN−1
+ (1−m)θStN (4)

where, m is the momentum parameter for weight ensem-
bling, and N = 2, 3, .., E is the epoch number. Such co-
training and cross-network sample splitting by the teacher
for the student work to lessen error accumulation from im-
perfect known-unknown sample separation and stabilizes
the adaptation process. As a means of training regulariza-
tion, USD further maintains weak-strong temporal consis-
tency between the teacher outputs and the student outputs
by minimizing the following consistency loss.

Lcon
t (fS

t , f
T
t ;Xt) = KL

(
piSt , piTt

)
=

Ct∑
k=1

piTt log

(
piTt
piSt

)
(5)

where, piSt = σ(fS
t (x

iS
t )) is the softmax output from the

student on an strongly augmented target sample xiS
t , and

piTt = σ(fT
t (xiW

t )) is the softmax output from the teacher
on the weakly augmented version xiW

t of the same target
instance. The strong and weak augmentations are done fol-
lowing the AutoAugment [5] ImageNet policy.

For contrastive learning in a label-free setting, it is
exceedingly difficult to identify positive and negative in-
stances for a target anchor. USD deftly utilizes the teacher-
student framework and weak-strong augmentations, and ap-
plies a triplet loss [34] to effectively learn the decision
boundary between known and unknown classes. The out-
put ziaT = [fT

t (xiW
t )]a of the teacher model on an weakly

augmented known class sample is taken as the anchor, and
the corresponding output zi+S = [fS

t (x
iS
t )]+ on the strongly

augmented version of the same sample from the student
model is taken as the positive instance. The negative in-
stance is the student model output zi−S = [fS

t (x
iS
t )]− on a

randomly chosen unknown class sample. Cosine distance is
taken as the distance metric, and is calculated as follows.

D(z1, z2) = 1− z1.z2
||z1||2||z2||2

(6)

where z1 and z2 are any two network outputs. Triplet loss
is in turn calculated as follows.

Ltrip
t (fS

t , f
T
t ;Xt) = max(D(ziaT , zi+S )−D(ziaT , zi−S )+1, 0)

(7)
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In addition, the student network is trained with the
instance-weighted standard cross-entropy loss with label
smoothing [27], as follows.

Lce
t (fS

t ;Xt) = −Exi
t∈Xt

ωi
Ct∑
k=1

ŷitk log(σk(f
S
t (x

iS
t ))) (8)

The instance weights ωi are the probability wi
tL for

known target samples of belonging to the lower-mean JSD
distribution, and wi

tH for unknown target samples of be-
longing to the higher-mean JSD distribution, during the
known-unknown sample separation. In order to promote
adaptation to the known samples first and to progressively
learn the unknown class feature space, USD utilizes cross-
entropy loss under curriculum guidance, dictated by the cur-
riculum factor γr as follows.

Lce
t (fS

t ;XK
t ,XU

t ) =

γrLce
tK(fS

t ;XK
t ) + (1− γr)Lce

tU (f
S
t ;XU

t ) (9)

where γr = max(0.5, γr−1(1 − βϵ
−Lce

tKr
/Lce

tKr−1 )) such
that, β is a hyperparameter and r is the current itera-
tion number. The ratio Lce

tKr
/Lce

tKr−1
dictates the degree

by which the curriculum factor decreases from the earlier
(r − 1)-th iteration to the current r-th iteration. When loss
Lce
tK on the known sample subset increases, γ marginally

decreases to accommodate further adaptation on the known
samples in the subsequent iterations. But if Lce

tK decreases
by a large margin, γ decreases accordingly to progressively
adapt to the unknown samples in the following iterations.
Curriculum guidance balances the adaptation of the target
model to the known and unknown subsets.

To encourage individually precise and globally diverse
predictions, USD further minimizes the information maxi-
mization (IM) [21] loss as formulated in [38, 39].

Lent
t (fS

t ;XK
t )

= −Exi
t∈XK

t

Ct∑
k=1

σk(f
S
t (x

iS
t ))log(σk(f

S
t (x

iS
t ))) (10)

Leqdiv
t (fS

t ;XK
t ) =

Ct∑
k=1

piSt log

(
piSt

piSt

)
(11)

LIM
t (fS

t ;XK
t ) = Lent

t (fS
t ;XK

t )+Leqdiv
t (fS

t ;XK
t ) (12)

where piSt = Exi
t∈XK

t
[σ(fS

t (x
iS
t ))] is the mean softmax

output vector over known target samples in a minibatch.
The overall objective function is therefore,

Ltot
t = Lce

t + LIM
t + ζ1Ltrip

t + ζ2Lcon
t (13)

where ζ1 and ζ2 are two hyperparameters.
A brief demonstration of the USD domain adaptation

pipeline is presented in Algorithm 1.

Algorithm 1: Pseudocode for USD
Input: Source trained model fs and nt unlabled

target data samples xi
t ∈ Xt

Output: Target adapted student model fS
t

Initialization: Teacher target model fT
t and student

target model fS
t , are both initialized

with parameters θs from fs
1 for epoch = 1 to E do
2 Conduct M = 6 weak-strong augmentations

and assign ensemble averaged pseudolabels ŷit
using eq. (2)

3 Conduct known (XK
t ) - unknown (XU

t ) target
sample separation using JSD between ŷit and
teacher softmax output pit = σ(fT

t (xi
t))

4 for i = 1 to nt do
5 Optimize, for each minibatch, student model

fS
t with loss Ltot using eq. (13) and get

new student model parameters θSt
6 end
7 Update teacher model fT

t using new student
model weights θSt and current teacher model
weights θTt using eq. (4)

8 end

4. Experimental Setup

4.1. Datasets

We evaluate USD on three popular UDA benchmarks:
Office-31 [30], Office-Home [43], and VisDA-C [29].
Office-31 is a small-scale DA dataset with 3 distinct do-
mains, Amazon (A), Webcam (W), and DSLR (D), contain-
ing images from 31 classes found in an office setting. Di-
vided into 4 distinct domains Art (A), Clipart (C), Product
(P), and Real-World (R), Office-Home is a medium-sized
DA dataset which has images of 65 classes of objects found
in contemporary office and home settings. The large-scale
VisDA-C dataset contains images of 12 classes of itemss
over 2 domains: Synthetic (S) and Real (R). Its source do-
main is composed of 152K synthetically rendered 3D im-
ages. The target domain consists of 55K real images taken
from MS COCO dataset [22]. For OSDA, we follow the
shared and target-private dataset splits done in [31].

4.2. Implementation details

For source training, we follow [21, 47] for fair comparison
against existing SF-OSDA methods. The basic structure of
the teacher and student models also follow that of [21, 47],
that is, the feature extractor is a ResNet-50 [8], followed by
a fully-connected (FC) bottleneck layer, a batch normaliza-
tion layer [10], an FC classifier layer, and a weight normal-
ization layer [33], respectively. The student target model is

1071



trained with an SGD optimizer with momentum of 0.9 and
weight decay of 10−3. Due to the difference in the number
of samples in each dataset, USD is adapted for 40 epochs
on Office and for 20 epochs on Office-Home at β = 0.01,
and for 5 epochs on VisDA-C at β = 0.001, at minibatch
size of 64 samples in all cases. The threshold δt for known-
unknown sample separation is set at 0.8, and the momen-
tum parameter m for temporal ensembling is set according
to the schedule in [45] with a maximum at 0.9995. Further,
ζ1 = 0.01 and ζ2 is gradually increased to 0.5 following
[15]. All experiments were done on n A100 NVIDIA GPU.

4.3. Evaluation metrics

The mean-per-class accuracy OS over all known classes
and the unified unknown class for all the target data may
be considered as a metric for evaluating OSDA. However,
such a metric is dominated by the accuracy on the known
classes, as all the unknown samples are lumped into 1 un-
known class [2]. A better metric is therefore to calculate the
mean-per-class accuracy OS* over only the known classes,
and the accuracy UNK for the unknown class, and then take
the harmonic mean HOS of the two for fair evaluation over
the known and the unknown classes. Mathematically, the
metrics are formulated as follows.

OS∗ =
1

|Cs|

|Cs|∑
i=1

|xt : xt ∈ Di
t ∩ ỹit = i|

|xt : xt ∈ Di
t|

(14)

UNK =
|xt : xt ∈ D|Ct|

t ∩ ỹit = |Ct||
|xt : xt ∈ D|Ct|

t |
(15)

HOS =
2×OS∗ × UNK

OS∗ + UNK
(16)

Here, ỹit = argmax(σ(fS
t (x

i
t))) is the prediction from the

student model fS
t and Di

t is the target domain data belong-
ing to class i. In this work, we report OS*, UNK, and HOS
for the evaluated adaptation tasks.

5. Results
5.1. Overall results

We compare USD to a number of existing UDA methods:
closed-set UDA methods (1) DANN [7], (2) CDAN [25],
open-set UDA methods (3) STA [23], (4) OSBP [31], (5)
PGL [26], (6) OSLPP [44], and (7) UADAL [13]. These
methods however are not source-free. We compare USD to
open-set versions of SF-UDA methods SHOT [21] and AaD
[47]. The open-set results for SHOT and AaD on Office-
Home are provided in their respective publications. We gen-
erate results for Office-31 and VisDA-C using their publicly
released code.

The results on Office-31 over all 6 domain pairs are pre-
sented in Table 1. USD outperforms SHOT and AaD by

∼ 16% and ∼ 3%, respectively in terms of mean HOS. Dis-
tinguishing between known and unknown class samples is
crucial in OSDA, and USD strikes the best balance among
the other SF-OSDA methods. SHOT clearly adapts pri-
marily to the known classes without good adaptation on
the unknown samples. AaD overcompensates in identify-
ing unknown samples at the expense of correctly adapting
to the known classes. USD performs equally well over both
known and unknown classes, leading to higher HOS. USD
also outperforms non-source-free methods STA and PGL,
while being comparable to OSBP.

A comparative evaluation for USD against existing UDA
methods on Office-Home is given in Table 2. USD outper-
forms SHOT and AaD by ∼ 20% and ∼ 2%, respectively in
terms of the average HOS over the 12 domain pairs. Similar
to Office-31, SHOT adapts better to the known classes, but
fails to competently identify unknown samples, while AaD
performs worse on the known classes and better on the un-
known samples. USD is more balanced across the known
and unknown classes and also outperforms non-SF OSDA
methods STA, OSBP and PGL.

Results on VisDA-C are given in the bottom right section
in Table 2. SHOT severely suffers from negative transfer
in the unknown class, while AaD fails to learn the target-
known feature space. USD greatly outperforms SHOT and
AaD, as well as the non-SF method OSBP, while being
comparable to STA in terms of mean HOS.

5.2. Ablation study

A detailed ablation study was performed on the known-
unknown sample selection criterion and on the modeling
of the criterion distribution. The results of the ablation
study on both Office-31 and VisDA-C are given in Table
3. USD uses JSD as the known-unknown sample splitting
criterion, while entropy has been extensively used in exist-
ing OSDA methods (SHOT, AaD, UADAL etc.) for this
purpose. In addition, cross-entropy (CE) loss is a popular
criterion for separating clean-noisy samples for noisy label
learning (NLL) algorithms [1, 17, 19]. We evaluate all three
criteria to find the best performing one. The criterion distri-
bution can be modelled by either Gaussian Mixture Model
(GMM) or a Beta Mixture Model (BMM). UADAL mod-
els sample entropy distribution using BMM to distinguish
between known and unknown samples. Our results in Ta-
ble 3 show that modeling the distribution of the JSD with
a GMM outperforms all of the other combinations for un-
known sample discovery.

The effect of the JSD threshold δt for known-unknown
separation on the final HOS is shown in Figure 3. The per-
formance is relatively uniform, which suggests robustness
of adaptation to the hyperparameter δt. Nonetheless, if the
threshold is set too high (eg. 0.9), too few samples may be
denoted as known samples, leading to inferior performance.
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Method SF A → D A → W D → A D → W W → A W → D Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

DANN[7] 90.8 59.2 71.5 87.4 55.7 68.1 72.9 74.5 73.7 99.3 77.0 86.7 72.1 73.1 72.6 100.0 70.2 82.5 87.1 68.3 75.9
CDAN[25] 92.2 52.4 66.8 90.3 50.7 64.9 74.9 70.6 72.7 99.6 73.2 84.3 72.8 69.3 71.0 100.0 67.3 80.5 88.3 63.9 73.4
STA[23] 91.0 63.9 75.0 86.7 67.6 75.9 83.1 65.9 73.2 94.1 55.5 69.8 66.2 68.0 66.1 84.9 67.8 75.2 84.3 64.8 72.5

OSBP[31] 90.5 75.5 82.4 86.8 79.2 82.7 76.1 72.3 75.1 97.7 96.7 97.2 73.0 74.4 73.7 99.1 84.2 91.1 87.2 80.4 83.7
PGL[26] 82.1 65.4 72.8 82.7 67.9 74.6 80.6 61.2 69.5 87.5 68.1 76.5 80.8 61.8 70.1 82.8 64.0 72.2 82.7 64.7 72.6

OSLPP[44] 92.6 90.4 91.5 89.5 88.4 89.0 82.1 76.6 79.3 96.9 88.0 92.3 78.9 78.5 78.7 95.8 91.5 93.6 89.3 85.6 87.4
UADAL[13] 85.1 87.0 86.0 84.3 94.5 89.1 73.3 87.3 79.7 99.3 96.3 97.8 67.4 88.4 76.5 99.5 99.4 99.5 84.8 92.1 88.1

SHOT*[21] 94.0 46.3 62.0 95.6 42.3 58.7 83.3 39.1 53.3 100.0 75.7 86.1 82.7 46.6 59.6 100.0 69.7 82.1 92.6 53.3 67.0
AaD*[47] 73.0 84.6 78.3 63.5 89.5 74.3 63.6 88.9 74.2 78.0 98.5 87.0 61.9 88.9 73.0 94.6 96.8 95.7 72.4 91.2 80.4

USD (Ours) 90.7 73.4 81.2 82.8 72.7 77.9 65.7 84.4 73.9 97.9 96.6 97.3 64.6 86.7 74.0 98.0 92.6 95.2 83.3 84.4 83.3

Table 1. Evaluation of USD on Office-31 dataset. * are results computed for the methods using publicly released code.

Method SF
Office-Home

A → C A → P A → R C → A C → P C → R P → A
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

DANN[7] 37.1 82.7 51.2 60.0 71.3 65.2 75.1 67.3 71.0 43.8 84.3 57.6 50.1 77.6 60.9 61.1 73.5 66.7 42.4 83.9 56.3
CDAN[25] 39.7 78.9 52.9 61.7 68.8 65.1 75.2 66.7 70.7 44.9 82.8 58.2 51.6 76.8 61.7 61.5 73.7 67.1 45.8 81.2 58.6
STA[23] 46.0 72.3 55.8 68.0 48.4 54.0 78.6 60.4 68.3 51.4 65.0 57.4 61.8 59.1 60.4 67.0 66.7 66.8 54.2 72.4 61.9

OSBP[31] 50.2 61.1 55.1 71.8 59.8 65.2 79.3 67.5 72.9 59.4 70.3 64.3 67.0 62.7 64.7 72.0 69.2 70.6 59.1 68.1 63.2
PGL[26] 63.3 19.1 29.3 78.9 32.1 45.6 87.7 40.9 55.8 85.9 5.3 10.0 73.9 24.5 36.8 70.2 33.8 45.6 73.7 34.7 47.2

OSLPP[44] 55.9 67.1 61.0 72.5 73.1 72.8 80.1 69.4 74.3 49.6 79.0 60.9 61.6 73.3 66.9 67.2 73.9 70.4 54.6 76.2 63.6
UADAL[13] 54.9 74.7 63.2 69.1 72.5 70.8 81.3 73.7 77.4 53.5 80.5 64.2 62.1 78.8 69.5 69.1 78.3 73.4 50.5 83.7 63.0

SHOT[21] 67.0 28.0 39.5 81.8 26.3 39.8 87.5 32.1 47.0 66.8 46.2 54.6 77.5 27.2 40.2 80.0 25.9 39.1 66.3 51.1 57.7
AaD[47] 50.7 66.4 57.6 64.6 69.4 66.9 73.1 66.9 69.9 48.2 81.1 60.5 59.5 63.5 61.4 67.4 68.3 67.8 47.3 82.4 60.1

USD (Ours) 53.3 71.5 61.1 65.7 74.9 70 73.3 79.5 76.3 52.2 70.8 60.1 62.4 68.4 65.2 69.3 68.6 68.9 54.3 73.8 62.6

Method SF
Office-Home VisDA-CP → C P → R R → A R → C R → P Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

DANN[7] 30.1 86.3 44.6 67.7 72.0 69.8 56.8 77.1 65.4 37.1 80.9 50.9 69.6 67.2 68.4 52.6 77.1 60.7 52.1 - -
CDAN[25] 33.1 82.4 47.2 69.8 69.7 69.7 59.8 73.6 66.0 40.3 75.8 52.7 70.9 64.6 67.6 54.5 74.6 61.4 - - -
STA[23] 44.2 67.1 53.2 76.2 64.3 69.5 67.5 66.7 67.1 49.9 61.1 54.5 77.1 55.4 64.5 61.8 63.3 61.1 62.4 82.4 71.0

OSBP[31] 44.5 66.3 53.2 76.2 71,7 73.9 66.1 67.3 66.7 48.0 63.0 54.5 76.3 68.6 72.3 64.1 66.3 64.7 50.9 81.7 62.7
PGL[26] 59.2 38.4 46.6 84.8 27.6 41.6 81.5 6.1 11.4 68.8 0.0 0.0 84.8 38.0 52.5 76.1 25.0 35.2 - - -

OSLPP[44] 53.1 67.1 59.3 77.0 71.2 74.0 60.8 75.0 67.2 54.4 64.3 59.0 78.4 70.8 74.4 63.8 71.7 67.0 - - -
UADAL[13] 43.4 81.5 56.6 71.6 83.1 76.9 66.7 78.6 72.1 51.1 74.5 60.6 77.4 76.2 76.8 62.6 78.0 68.7 - - -

SHOT[21] 59.3 31.0 40.8 85.8 31.6 46.2 73.5 50.6 59.9 65.3 28.9 40.1 84.4 28.2 42.3 74.6 33.9 45.6 57.5* 12.1* 20.1*
AaD[47] 45.4 72.8 55.9 68.4 72.8 70.6 54.5 79.0 64.6 49.0 69.6 57.5 69.7 70.6 70.1 58.2 71.9 63.6 32.0* 62.9* 42.4*

USD (Ours) 47.3 69.6 56.3 70 74.5 72.2 64.6 71.3 67.8 53.8 65.5 59.1 73.3 69.1 71.1 61.6 71.5 65.9 57.8 86.7 69.4

Table 2. Evaluation of USD on Office-Home and VisDA-C datasets. * are results computed for the methods using publicly released code.

Table 4 shows the impact of different components of
our objective function and the effects of our teacher-student
co-training scheme on the final adaptation performance
for Office-Home. It is evident that each of our losses
(Ltrip

t ,Lcon
t ,LIM

t ) contributes to the adaptation, and leav-
ing out any one of them hurts performance. We observe that
curriculum guidance considerably benefits adaptation and
the final average HOS increases by > 1.5% (from 64.2%
to 65.9%) when such guidance is included. Notably, with-
out curriculum, adaptation to the known classes is impacted
drastically (OS* falls by ∼ 6%), signalling that progres-
sively learning the known class subspace first and then the
unknown class subspace later is the superior strategy.

The final row in Table 4 presents results in the absence
of the teacher network, where the student network conducts
the known-unknown sample separation for itself. Both the
weakly and strongly augmented samples are fed through the
student network, and losses Ltrip

t , Lcon
t are calculated over

the student model outputs between the weak and strong aug-

mentations. Empirical results clearly show that co-training
in a teacher-student framework is pivotal for mitigating the
effect of any imperfect known-unknown separation and av-
erage HOS over the 12 domain pairs in Office-Home de-
creases by ∼ 5% when the teacher network is removed. As
seen in Figure 4, in the absence of co-training, the student
model adapts faster, but its performance drops from its peak
during the course of adaptation due to error accumulation.
In contrast, adaptation with co-training is slightly slower but
maintains its peak performance.

The effect of the pseudolabeling scheme on the adap-
tation performance for Office-Home is shown in Table 5.
SHOT and AaD use a self-supervised clustering process
built on DeepCluster [3] to get pseudolabels for the known
samples. But in open set settings, the unknown samples
can drift the known class centroids, leading to faulty clus-
ters. Our multi-view augmentation ensembled pseudolabel-
ing strategy outperforms both pseudolabeling from cluster-
ing or direct student predictions.
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Separation
criterion

Distribution
modeling

Office VisDA-CA → D A → W D → A D → W W → A W → D Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

JSD GMM 89.4 70.2 78.6 82.7 73.0 77.6 66.4 85.2 74.6 97.5 97.0 97.2 68.3 85.4 75.9 98.0 93.6 95.8 83.7 84.1 83.3 57.8 86.7 69.4
Entropy GMM 88.9 70.2 78.4 83.3 74.5 78.6 65.3 90.5 75.9 97.9 93.3 95.5 60.2 88.5 71.7 98.0 93.1 95.5 82.3 85.0 82.6 57.1 85.4 68.4

CE GMM 90.7 68.6 78.1 90.0 61.8 73.3 69.6 81.0 74.9 98.2 93.3 95.6 68.5 86.0 76.2 98.0 90.4 94.1 85.8 80.2 82.0 67.3 45.5 54.3
JSD BMM 91.4 53.7 67.7 93.6 53.2 67.8 77.7 72.3 74.9 100.0 82.4 90.3 77.1 72.5 74.8 100.0 71.3 83.2 90.0 67.6 76.5 67.6 58.3 62.6

Entropy BMM 90.2 60.1 72.1 87.2 78.3 82.5 66.3 88.5 75.8 89.5 92.1 90.8 60.8 87.1 71.6 100.0 88.8 94.1 82.3 82.5 81.2 42.3 83.4 56.1
CE BMM 96.0 25.0 39.7 93.6 37.8 53.9 81.0 61.2 69.7 100.0 63.3 77.5 78.4 68.0 72.8 100.0 71.3 83.2 91.5 54.4 66.1 68.6 24.0 35.5

Table 3. Evaluation of separation criterion and distribution modeling for known-unknown sample separation in USD on Office dataset.

Method A → C A → P A → R C → A C → P C → R
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

USD (full) 53.3 71.5 61.1 65.7 74.9 70.0 73.3 79.5 76.3 52.2 70.8 60.1 62.4 68.4 65.2 69.3 68.6 68.9
USD w/o Ltrip

t 52.9 69.9 60.2 66.4 75.1 70.4 73.6 78.9 76.2 52.0 70.0 59.3 62.3 68.5 65.2 68.0 67.8 67.9
USD w/o Lcon

t 50.5 75.6 60.6 63.3 77.7 69.8 69.6 83.1 75.8 49.4 74.4 59.3 57.9 73.8 64.9 64.3 72.9 68.3
USD w/o LIM

t 50.1 74.7 59.9 64.6 73.5 68.7 73.5 77.7 75.5 51.2 67.9 58.4 60.2 68.3 64.0 66.7 69.0 67.9
USD w/o curriculum 47.5 77.1 58.8 60.8 79.4 68.9 69.3 82.5 75.3 44.7 79.1 57.1 57.8 74.6 65.2 62.2 73.8 67.5
USD w/o co-training 44.0 80.4 56.8 58.5 78.4 67.0 64.1 78.2 70.5 43.4 72.3 54.3 50.5 71.0 59.0 51.4 76.1 61.4

Method P → A P → C P → R R → A R → C R → P Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

USD (full) 54.3 73.8 62.6 47.3 69.6 56.3 70 74.5 72.2 64.6 71.3 67.8 53.8 65.5 59.1 73.3 69.1 71.1 61.6 71.5 65.9
USD w/o Ltrip

t 51.2 75.9 61.1 47.6 70.4 56.8 69.5 74.2 71.8 63.9 69.9 66.8 51.4 66.9 58.2 73.5 67.6 70.4 61.0 71.3 65.4
USD w/o Lcon

t 49.4 78.0 60.5 44.9 71.8 55.3 66.0 78.4 71.7 60.3 75.3 67.0 50.1 70.1 58.4 70.6 73.9 72.2 58.0 75.4 65.3
USD w/o LIM

t 50.6 75.4 60.6 45.5 68.1 54.5 68.7 74.1 71.3 63.2 72.8 67.7 49.7 66.5 56.9 73.1 67.3 70.1 59.8 71.3 64.6
USD w/o curriculum 46.1 80.7 58.6 40.4 74.5 52.4 64.7 78.3 70.9 57.9 77.7 66.4 48.0 73.3 58.0 69.0 73.4 71.1 55.7 77.0 64.2
USD w/o co-training 48.3 78.9 59.9 38.5 71.8 50.1 51.6 79.2 62.5 53.9 76.5 63.2 46.6 77.6 58.2 60.7 80.5 69.2 51.0 76.7 61.0

Table 4. Ablation study on the objective function, and co-training for USD on Office-Home dataset.

Pseudolabel A → C A → P A → R C → A C → P C → R
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

Ensemble 53.3 71.5 61.1 65.7 74.9 70.0 73.3 79.5 76.3 52.2 70.8 60.1 62.4 68.4 65.2 69.3 68.6 68.9
Clustering 50.8 73.5 60.1 67.0 73.2 69.9 74.8 75.8 75.3 54.3 67.0 60.0 61.5 66.9 64.1 67.2 66.1 66.7

Student Predictions 50.7 74.1 60.2 65.9 73.6 69.5 74.7 78.5 76.5 51.3 68.2 58.6 61.7 67.3 64.4 67.2 69.5 68.3

Pseudolabel P → A P → C P → R R → A R → C R → P Avg.
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

Ensemble 54.3 73.8 62.6 47.3 69.6 56.3 70.0 74.5 72.2 64.6 71.3 67.8 53.8 65.5 59.1 73.3 69.1 71.1 61.6 71.5 65.9
Clustering 53.4 73.6 61.9 48.6 69.0 57.1 71.0 71.8 71.4 63.4 72.2 67.5 52.2 68.1 59.1 70.0 68.3 69.2 61.2 70.5 65.2

Student Predictions 53.0 73.2 61.5 46.6 71.3 56.4 68.9 73.8 71.3 61.8 73.0 66.9 53.3 65.8 58.9 72.7 70.6 71.6 60.6 71.6 65.3

Table 5. Ablation study on the pseudolabeling scheme for USD on Office-Home dataset.

Figure 3. Impact of JSD threshold δt on HOS for Office dataset.

6. Conclusion

We present Unknown Sample Discovery as a teacher-
student co-training framework that conducts SF-OSDA by
splitting the target data into known and unknown subsets
based on the JSD criterion modeled with a 2-component
Gaussian mixture model. Co-training regularization greatly
mitigates error accumulation, while curriculum guidance
progressively adapts the target model to effectively learn
both the known and unknown target feature spaces. Empir-
ically, USD outperforms existing SF-OSDA methods and is
comparable to non-source-free OSDA techniques.

Figure 4. Impact of co-training on reducing error accumulation
during adaptation on Office-Home dataset.
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Thomas Natschläger, and Susanne Saminger-Platz. Central
moment discrepancy (CMD) for domain-invariant represen-
tation learning. In International Conference on Learning
Representations, 2017. 1, 2

1076


	. Introduction
	. Related Works
	. Unsupervised domain adaptation
	. Source free domain adaptation
	. Open set domain adaptation

	. Method
	. Known-unknown sample separation
	. Teacher-student co-training and regularization

	. Experimental Setup
	. Datasets
	. Implementation details
	. Evaluation metrics

	. Results
	. Overall results
	. Ablation study

	. Conclusion

