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Abstract

Though the object detection performance on standard
benchmarks has been improved drastically in the last
decade, current object detectors are often vulnerable to
domain shift between the training data and testing im-
ages. Domain adaptation techniques have been developed
to adapt an object detector trained in a source domain to
a target domain. However, they assume that the target do-
main is known and fixed and that a target dataset is avail-
able for training, which cannot be satisfied in many real-
world applications. To close this gap, this paper inves-
tigates fully test-time adaptation for object detection. It
means to update a trained object detector on a single test-
ing image before making a prediction, without access to
the training data. Through a diagnostic study of a baseline
self-training framework, we show that a great challenge of
this task is the unreliability of pseudo labels caused by do-
main shift. We then propose a simple yet effective method,
termed the IoU Filter, to address this challenge. It consists
of two new IoU-based indicators, both of which are com-
plementary to the detection confidence. Experimental re-
sults on five datasets demonstrate that our approach could
effectively adapt a trained detector to various kinds of do-
main shifts at test time and bring substantial performance
gains. Code is available at https://github.com/
XiaoqianRuan1/IoU-filter.

1. Introduction
Object detection is a fundamental task in computer vision
that deals with recognizing and locating objects in an image.
Though deep learning approaches [9, 21, 27, 32] have dras-
tically pushed forward the state-of-the-art object detection
performance on standard benchmarks, current object detec-
tors are often vulnerable to domain shifts between the train-
ing data and testing images, e.g., unseen styles, weather,
lighting conditions, and noise.

Domain adaptation techniques have been developed to
adapt an object detector trained in a source domain to
a target domain so that it will be robust to the domain

Figure 1. The task of fully test-time adaptation for object detection
means to update a trained object detector on a single testing image
before making a prediction, without access to the training data.

shift. Unsupervised domain adaptation (UDA) methods
[5, 20, 23, 25] require both labeled source data and unla-
beled target data. This is undesirable as the source data are
often unavailable for privacy and profit concerns. Source-
free domain adaptation (SFDA) methods [1, 6, 10, 16, 31]
have been developed to overcome this limitation: a detector
trained on the source data is adapted to the target domain
without access to the source data.

Both UDA and SFDA assume that the target domain is
known and fixed and that a target dataset sampled from this
domain is available for training. However, the real world is
complex and non-stationary, which is unlikely to be covered
by any fixed dataset. The detector must adapt itself on the fly
to the unknown and varying domain shift at test time. This
is desired in many real-world applications, from intelligent
assistants that help visually impaired people read images
and social media that automatically tag photos uploaded by
users, to autonomous vehicles that drive safely as the place,
weather, and pedestrian density change.

Test-time adaptation [4, 13, 26] has been developed to
address this challenging but important problem. It does not
anticipate the distribution shift, but instead learns from it at
test time: the trained model is updated based on a single
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test sample before making a prediction. However, this line
of work focuses on image classification and requires access
to the source data. Recently, TENT [29] addresses fully
test-time adaptation, which is source-free, but it relies on a
batch of test samples to estimate the normalization statistics
and still focuses on image classification.

To close this gap, this paper investigates fully test-time
adaptation for object detection. As illustrated in Fig. 1,
it means to update a trained object detector, e.g., Faster-
RCNN [21], on a single testing image before making a pre-
diction, without access to the training data. Compared with
UDA and SFDA, we neither assume a stationary and known
target domain nor have a target dataset. It will facilitate
many applications, e.g., image understanding systems for
social media and visually impaired people, where the target
domain differs from image to image, hence adaptation can
be learned only from one sample.

We first introduce a baseline approach for this task, built
on the classical self-training framework. It iteratively ob-
tains pseudo labels on the testing image based on the de-
tection confidence and uses pseudo labels to update the de-
tector. Finally, the detector from the last iteration makes
a prediction on the testing image. Our diagnostic study
shows that this framework is promising, but its performance
is largely bottlenecked by the low-quality pseudo labels,
caused by the domain shift. The pseudo labels are very
noisy even at a high confidence threshold.

We propose a new method, termed the IoU (Intersection
over Union) Filter, to obtain higher-quality pseudo labels in
the presence of domain shift. It consists of two new IoU-
based indicators, both of which are complementary to the
detection confidence. The first indicator, IoU between Con-
secutive Iterations (IoU-CI), matches object detections at
the current self-training iteration with those at the previous
iteration based on their classes and locations. Then, the IoU
between these matched detections is used to select pseudo
labels. The second indicator, IoU between Overlapped De-
tections (IoU-OD), removes the duplicate detections of the
same instance as different classes, which is caused by the
classification ambiguity under domain shift. Our statistical
results indicate that both indicators increase the percentage
of correct pseudo labels and thus significantly improve the
object detection performance at test time.

It is worth noting that our task setting is different from
the one-shot unsupervised cross-domain detection (OS-
HOT) [2] and the online domain adaptive object detection
(ODA) [28].

OSHOT [2] performs unsupervised adaptation across do-
mains by solving a self-supervised auxiliary task (i.e., rota-
tion classification) on only one target sample seen at test
time. However, it needs to add an auxiliary prediction head
to the detection model and learn the self-supervised task on
the training data. Thus, it is not source-free. Nevertheless,

we show that our proposed approach is also effective under
this setting, which demonstrates its versatility.

ODA [28] adapts a detector to a target dataset in an
online manner. Each sample arrives sequentially and up-
dates the model continuously. Testing and evaluation are
performed after the source model has been trained on all
samples in the target dataset. In addition, the core of
their approach is a novel memory module (MemXformer)
that stores prototypical patterns of the target distribution to
avoid forgetting. This added MemXformer is pretrained on
the source data and thus is not source-free.

The contribution of this paper is summarized as follows.
• To our knowledge, this is the first work on fully test-

time adaptation for object detection. Compared with the
popular UDA and SFDA, it neither assumes a stationary
and known target domain nor requires access to a target
dataset. This is desired in many image understanding ap-
plications, where the target domain is unknown a prior
and differs from image to image.

• Through a diagnostic study of a baseline self-training
framework, we show that a great challenge of this task is
the unreliability of pseudo labels caused by domain shift.
We propose a simple yet effective method, i.e., IoU Filter,
to address this challenge. It includes two new IoU-based
indicators and selects higher-quality pseudo labels in the
presence of domain shift.

• Experimental results on five datasets demonstrate that our
approach could effectively adapt a trained detector to var-
ious kinds of domain shifts at test time and bring substan-
tial performance gains.

2. Related Work

2.1. Test-time Adaptation

Test-time adaptation or training [26] aims at updating a
trained model on a single unlabeled test sample before mak-
ing a prediction to increase its robustness to distribution
shift. Sun et al. [26] create a self-supervised auxiliary task
(rotation classification) to train the model on this single test
sample. Chen et al. [4] propose AdaContrast, based on
self-supervised contrastive learning and an online pseudo-
labeling scheme. Kim et al. [13] focus on the test-time
adaptation of event-based object recognition, by leveraging
the temporal structure of events. However, these methods
require access to the training data. To address this lim-
itation, TENT [29] introduces fully test-time adaptation,
which directly minimizes the entropy of a model’s predic-
tions at test time. Recently, Wang et al. [30] extend TENT
to continually changing environments. They apply weight-
averaged and augmentation-averaged predictions to reduce
the error accumulation and stochastically restore weights to
avoid catastrophic forgetting. All these test-time adaptation
methods focus on classification tasks.
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2.2. Domain-adaptive Object Detection

A variety of methods have been developed to adapt an ob-
ject detector trained in a source domain to a target domain
[20], based on adversarial feature learning [5, 23, 25], self-
training [11, 12, 22], image-to-image translation [3, 34],
and domain randomization [14]. However, they gener-
ally require the source data, which are unavailable in some
practical scenarios. This limitation motivates the work on
source-free unsupervised domain-adaptive object detection.
Some methods are built on the self-training framework. Li
et al. [18] treat the prediction uncertainty as self-entropy
and propose a new metric called self-entropy descent (SED)
to search the optimal confidence threshold. Ahmed et al. [1]
introduce a Negative Ensemble Learning (NEL) technique
for noise filtering and pseudo label refinement, which tack-
les noisy pseudo labels by enhancing the diversity in ensem-
ble members. Lee et al. [17] propose the Joint Model-Data
Structure (JMDS) score, including a Log Probability Gap
(LPG) and a Model Probability of Pseudo-Label (MPPL)
score, to measure the importance of samples. However, this
line of work assumes that the target domain is known and
fixed and that a target dataset sampled from this domain is
available for training.

Different from this line of existing work, we neither as-
sume a stationary and known target domain nor require ac-
cess to a target dataset. Instead, we aim to update a trained
object detector on a single testing image before making a
prediction, without access to the training data. In addition,
we propose a new method, i.e., the IoU Filter, to effectively
address this challenging but important task.

3. Method

3.1. Problem Setting

We formally introduce fully test-time adaptation for object
detection. At test time, we are provided with a trained ob-
ject detector, e.g., Faster RCNN, with parameters θ0 and
a single testing image I . There is no access to the source
data where the detector was originally trained nor a target
dataset sampled from a known target domain. Then, we
will adapt the detector on I and obtain updated parameters
θT . Following the setting of test-time adaptation for clas-
sification [29], we allow the model to be updated multiple
iterations on this single testing image. Finally, we will use
the updated detector θT to make a prediction on I .

3.2. Self-training Baseline: A Diagnostic Study

We will first introduce a baseline approach built on the clas-
sical self-training framework [15, 19, 22], as it has been
shown to be effective in learning from unlabeled data. Then,
we will present an empirical study on its effectiveness in our
task.

Iteration Method Comic Clipart Watercolor
t = 0 18.45 28.01 43.83

t = 1
All detections 19.83 28.65 45.42

Detection confidence 18.58 28.42 45.23

t = 5
All detections 20.17 29.57 35.79

Detection confidence 19.11 30.49 46.21

Table 1. Performance of fully test-time adaptation obtained by the
self-training baseline on three datasets. t = 0 means the original
Faster RCNN detector trained on the Pascal VOC dataset. The
pseudo labels are simply all object detections or filtered by the
detection confidence.

Figure 2. The numbers of correct predictions and wrong predic-
tions at different detection confidence intervals, obtained on the
Comic2k dataset.

Figure 3. Illustration of consistent and inconsistent object detec-
tions between two consecutive self-training iterations. The IoU
threshold is set to 0.9. Green boxes are consistent and correct
detections. Red boxes are consistent but wrong detections. Yel-
low boxes are inconsistent and wrong detections. Blue boxes are
inconsistent but correct detections. Green and yellow boxes are
desired but red and blue boxes are not.
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(a) Without the IoU-OD filter (b) With the IoU-OD filter

Figure 4. In each table, the first row is the probabilities of correct pseudo labels conditioned on different detection confidence intervals. The
second to last rows are the probabilities of correct pseudo labels conditioned on both different detection confidence intervals and different
IoU-CI thresholds. The pseudo labels have been filtered by the IoU-OD filter in (b). In both grids, highlighted cells (light/dark brown)
in the second to last rows mean their values are higher than the corresponding values in the first row. Dark brown means a higher value
between two corresponding cells in (a) and (b).

3.2.1 Self-training Baseline

It is an iterative algorithm. At the tth iteration (t ∈
{1, . . . , T}), the current detector θt−1 makes a prediction
Dt = {(bt,i,pt,i) : ∀i} on I , where bt,i is the bound-
ing box of the ith object instance and pt,i ∈ [0, 1]K is
the probability distribution of the K classes. The maxi-
mum probability within pt,i and its index respectively de-
fine the detection confidence ct,i ∈ [0, 1] and the object
class yt,i ∈ {1, . . . ,K}. We then collect confident detec-
tions as pseudo labels: Pt = {(bt,i, yt,i) : ct,i > λconf},
where λconf is the confidence threshold. Finally, we tune the
current detector θt−1 on the pseudo labels via a gradient
descent step and obtain the updated model θt.

At the first iteration, i.e., t = 1, the current detector θt−1

is initialized as the model θ0 trained on the source data. Af-
ter the last iteration, i.e., t = T , the model θT will be used
to make a final prediction on I . Obviously, this self-training
framework does not modify the network architecture and is
source-free.

3.2.2 Diagnostic Study

We validate the effectiveness of this baseline in our task.
The source-detector is a Faster RCNN trained on the Pascal
VOC dataset [8]. It performs fully test-time adaptation on
each individual testing image from three datasets of differ-
ent domains. The RoI classification loss is not used, which
leads to better performance. Tab. 1 shows the results ob-
tained using the optimal confidence threshold.

We have two observations. First, the baseline consis-
tently improves the performance of the original detector.
This demonstrates the potential of the self-training frame-
work in our task. Second, in most scenarios, using detec-
tion confidence to select pseudo labels leads to similar per-

formance as using all detections as pseudo labels. Mean-
while, Fig. 2 shows that the pseudo labels are noisy even
at a high confidence threshold. These observations moti-
vate us to hypothesize that the low quality of pseudo labels
caused by domain shift is the main challenge faced by the
self-training framework in our task.

3.3. IoU Filter

We introduce a new method, termed the IoU Filter, to ob-
tain higher-quality pseudo labels in the presence of domain
shift. As will be described below, it consists of two new
IoU-based indicators that are complementary to the detec-
tion confidence.

3.3.1 IoU between Consecutive Iterations (IoU-CI)

This indicator stems from our observation that object de-
tections which are consistent over two consecutive self-
training iterations are more likely to be correct than those
that are inconsistent, as illustrated in Fig. 3.

Formally, at the tth iteration (t ∈ {2, . . . , T}), Dt =
{(bt,i,pt,i) : ∀i} denotes the prediction made by the cur-
rent detector θt−1 on I . For every object instance in Dt,
we match it to an instance in Dt−1 with the same class and
minimum IoU. Dt−1 is the prediction made in the previous
iteration. Then, the IoU-CI score of an instance in Dt is de-
fined as the IoU between itself and its matched instance in
Dt−1. For instances without a match in the previous itera-
tion, their IoU-CI scores are zero.

Fig. 4a compares the percentages of correct pseudo la-
bels at different detection confidence intervals and different
IoU-CI score intervals. We can see that when the IoU-CI
score is higher than 0.7, it improves the quality of pseudo
labels at most detection confidence intervals. Thus, we filter
pseudo labels with an IoU-CI threshold λIoU-CI.
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Figure 5. Illustration of repeated detections of the same instance
as different object classes in the presence of domain shift. The
detection with the highest confidence is most likely to be correct.

3.3.2 IoU between Overlapped Detections (IoU-OD)

We find that the detector tends to repeatedly detect the same
instance as different object classes in the presence of do-
main shift, as illustrated in Fig. 5. In this scenario, the
detection with the highest confidence is most likely to be
correct, while the others are false positives. This observa-
tion motivates us to define an IoU-OD filter.

At the tth iteration (t ∈ {1, . . . , T}), we have the col-
lection of all object detections Dt. For an object instance
i in Dt, we compare its detection confidence ci with those
of instances whose IoU w.r.t. instance i are higher than a
threshold λIoU-OD. If ci is the highest among them, instance
i passes the IoU-OD filter, otherwise, it is excluded from
the pseudo labels. The IoU-OD filter is like class-agnostic
non-maximum suppression (NMS). It is designed to handle
ambiguous object classification caused by domain shift. In
contrast, current object detectors apply NMS to the detec-
tions of each class separately because they usually classify
objects unambiguously when there is no domain shift.

Fig. 4b compares the percentages of correct pseudo la-
bels in different confidence and IoU-CI intervals after ap-
plying the IoU-OD filter. We can see that it further improves
the quality of pseudo labels.

4. Experiments
4.1. Experimental Setting

4.1.1 Datasets

We use five datasets of different domains for evaluation.
Clipart1k, Comic2k, and Watercolor2k are three artistic
media datatsets [11] and include artistic images in a vari-

ety of styles. They have been commonly used to bench-
mark domain adaptive object detection methods when the
source dataset is Pascal-VOC [8]. Clipart1k includes the
same 20 object categories as Pascal-VOC. Both Comic2k
and Watercolor2k include 6 classes, which are a subset of
the 20 classes of Pascal-VOC [8]. Each of them consists
of 1000 training images and 1000 testing images. Foggy
Cityscapes [24] and Rainy Cityscapes [25] are two datasets
by adding different levels of synthetic fog and rain to origi-
nal Cityscapes images [7], which are the source data. Only
the highest level of fog and rain is considered. The Foggy
Cityscapes dataset contains 492 images for evaluation while
Rainy Cityscapes dataset has 99 testing images. Only the
test sets of these five datasets are used for evaluation. Mean
average precision (mAP) at the IoU threshold 0.5 is used as
the performance metric.

4.1.2 Implementation Details

The object detector is Faster-RCNN with a RseNet50 back-
bone pre-trained on ImageNet, without any modification
to its network architecture. Its region proposal network
(RPN) produces 300 top proposals after non-maximum-
suppression (NMS), based on anchors at three scales (128,
256, 512), and three aspect ratios (1:1, 1:2, 2:1). The
source-trained model is trained for 70k iterations on Pascal-
VOC, and 30k iterations on Cityscapes, respectively, using
SGD with momentum set at 0.9, the initial learning rate set
as 0.001. The batch size is set as 1. For each single testing
image, we update this trained model for 5 iterations, using
SGD with momentum set at 0.9, and learning rate 0.001.
For all five testing datasets, the detection confidence thresh-
old is set as 0.6, the IoU-CI threshold is set as 0.6, and the
IoU-OD threshold is set as 0.9. We only use the detection
confidence threshold to filter detections that occupy almost
the entire image, i.e., more than 90% pixels, which empiri-
cally leads to better performance.

4.1.3 Benchmark Methods

We will compare our proposed approach with CoTTA [30],
a fully test-time adaptation method for classification, and
the self-training baseline introduced earlier, which only
uses detection confidence to select pseudo labels. Recently,
Xu et al. [33] demonstrate that the bounding box uncertainty
helps remove low-quality pseudo labels in semi-supervised
object detection. We integrate it into the self-training base-
line and compare it with our approach.

4.1.4 OSHOT Setting

This is the setting of one-shot unsupervised cross-domain
detection [2], which trains Faster-RCNN along with an aux-
iliary task (i.e., image rotation classification). During train-
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Comic Clipart Watercolor
t Method mAP mAP mAP
0 18.45 28.01 43.83

1

CoTTA 18.57 28.28 44.44
Self-training 18.58 28.42 45.23

Self-training+U 18.23 28.37 45.53
Ours 19.06 28.58 44.88

2

CoTTA 19.07 28.39 45.47
Self-training 19.27 28.84 44.44

Self-training+U 19.03 28.84 45.51
Ours 20.67 29.98 46.16

3

CoTTA 19.15 27.83 46.06
Self-training 20.24 28.02 46.61

Self-training+U 20.49 29.43 46.03
Ours 21.54 31.32 47.29

4

CoTTA 18.11 27.33 46.70
Self-training 20.16 29.88 45.76

Self-training+U 19.43 29.41 46.70
Ours 22.92 31.95 46.92

5

CoTTA 18.53 26.92 45.97
Self-training 19.11 30.49 46.21

Self-training+U 19.98 30.13 45.96
Ours 22.51 32.56 46.48

Table 2. Object detection results on three artistic media datasets
under fully test-time adaptation setting. The source dataset is the
Pascal-VOC dataset [8]. Self-training+U means the integration of
the self-training baseline and uncertainty modeling [33].

ing, the weight of the auxiliary task is set as 0.05. At test
time, the detector is updated based on both the detection
loss and the self-supervised loss. For all three datasets, the
weight of the detection loss is set as 1.0, and the weight of
the self-supervised loss is 0.2.

As the network architecture is modified and the self-
supervised head needs to be trained on the source data, this
setting is not source-free.

4.2. Experiment Results

4.2.1 Fully Test-time Adaptation

Tab. 2 and Tab. 3 show the object detection results on the
five testing datasets, under the fully test-time adaptation set-
ting. Four methods are compared, including the CoTTA
[30], self-training baseline, its integration with uncertainty
modeling, and our proposed method. t is the number of
self-training iterations. The best performance of each iter-
ation is bold. Our method outperforms the other methods
under most settings. From Tab. 2, the performance of each
method does not necessarily improve with more iterations.

RainyCityscape FoggyCityscape
t Method mAP mAP
0 25.02 26.11

1

CoTTA 26.16 26.84
Self-training 25.17 26.23

Self-training+U 25.17 26.58
Ours 26.12 26.90

2

CoTTA 26.75 26.97
Self-training 25.70 26.44

Self-training+U 24.77 26.70
Ours 28.58 27.71

3

CoTTA 27.04 27.55
Self-training 26.76 26.62

Self-training+U 24.76 26.65
Ours 30.19 28.66

4

CoTTA 28.48 28.41
Self-training 25.94 27.03

Self-training+U 25.02 26.79
Ours 32.70 30.08

5

CoTTA 29.53 26.59
Self-training 24.46 26.35

Self-training+U 24.39 26.31
Ours 32.87 28.58

Table 3. Results on RainyCityscape and FoggyCityscape datasets
under the fully test-time adaptation setting. The source dataset
is the original Cityscapes dataset. Self-training+U denotes the
combination of the self-training baseline and uncertainty model-
ing [33].

4.2.2 OSHOT

Tab. 4 and Tab. 5 show the results obtained under the OS-
HOT setting [2] (Sec. 4.1.4) with five testing datatsets. We
can see that using our IoU Filter to select pseudo labels in
[2] improves its performance under most of the settings.
Comparing Tab. 3 and Tab. 5, we could observe that the
performance obtained under the OSHOT setting is gener-
ally better than that obtained in fully test-time adaptation.
This is expected as the training data are assumed available
under the OSHOT setting and they could provide useful in-
formation for test-time adaptation.

4.3. Ablation study

We first validate the contribution of each model component
(Sec. 4.3.1), then study the impact of different thresholds
on the performance (Sec. 4.3.2), and finally show the re-
sults obtained after more than five self-training iterations
(Sec. 4.3.3). All results are reported at the fifth self-training
iteration (except for Sec. 4.3.3).

4.3.1 Component Analysis

Results are shown in Tab. 6. We can see that each of two in-
dicators IoU-CI and IoU-OD improves the performance of
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Comic Clipart Watercolor
t Method mAP mAP mAP
0 17.59 28.02 43.76

1
OSHOT 19.55 28.04 45.43

Ours 21.59 29.36 47.10

2
OSHOT 21.34 29.21 47.36

Ours 23.28 30.15 46.96

3
OSHOT 22.25 30.03 47.75

Ours 24.17 30.80 47.79

4
OSHOT 24.47 30.05 48.40

Ours 24.90 32.63 47.76

5
OSHOT 24.59 30.86 47.80

Ours 25.23 32.80 48.03

Table 4. Object detection results under the OSHOT setting based
on three artistic datasets. The source dataset is the Pascal-VOC
dataset. Ours: using the proposed IoU Filter to select pseudo labels
in OSHOT [2].

RainyCityscape FoggyCityscape
t Method mAP mAP
0 24.15 25.73

1
OSHOT 24.07 25.91

Ours 24.71 28.12

2
OSHOT 24.35 26.72

Ours 28.71 29.87

3
OSHOT 24.18 27.32

Ours 31.62 30.68

4
OSHOT 26.10 27.65

Ours 31.97 30.25

5
OSHOT 26.43 27.91

Ours 33.84 30.46

Table 5. Object detection results under the OSHOT setting [2] with
RainyCityscape and FoggyCityscape datasets. The source dataset
is the original Cityscapes dataset.

Method Comic RainyCityscape
Self-training Baseline 19.11 24.46
+IoU-CI 21.92 29.43
+IoU-OD 21.77 25.75
+IoU-CI + IoU-OD 22.51 32.87

Table 6. Effectiveness of each IoU-based indicator in our IoU Fil-
ter.

the self-training baseline as they could obtain higher-quality
pseudo labels. In addition, these two indicators are comple-
mentary to each other and their integration leads to the best
performance.

(a) IoU-CI Threshold

(b) IoU-OD Threshold

Figure 6. Performance obtained by the proposed IoU Filter (blue
solid curves) on the Comic dataset after changing the thresholding
values. The orange dashed lines indicate the performance of the
self-training baseline.

Figure 7. Performance changes as the number of iterations in-
creases. Results are obtained on the Comic2k dataset.

4.3.2 Impact of Different Thresholds

We study the impact of different thresholds on performance,
including the IoU-CI threshold and the IoU-OD threshold.
We only change one threshold in every experiment and keep
the others the same as described in Sec. 4.1.2. The results
are displayed in Fig. 6. We can see that though there is some
performance perturbation, the proposed method always out-
performs the self-training baseline.
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Figure 8. Qualitative results of fully test-time adaptation for object detection. The first row is the ground truth of each image, the second
row is the results of the pre-trained detector, the third row is the results of the self-training baseline, and the last row is the results of our
proposed method. The object detection results are localized as green boxes.

4.3.3 Self-training Iterations

Fig. 7 shows how the performance of each method changes
in different iterations. It delineates that all these methods
improve at the first 5 or 6 iterations, but degrade in more
iterations and would continue this trend in the future. This
could be attributed to two reasons. First, as there is only
one testing image to perform adaptation, too many iterations
could lead to overfitting. Second, detection errors could ac-
cumulate in the pseudo labels and adversely affect the test-
time training.

4.4. Qualitative Results

Fig. 8 compares the qualitative results obtained by different
methods as well as the original Faster RCNN. The detected
targets are localized as green boxes. Incorrect classification
and false negatives are the two major problems in the pres-
ence of domain shift. Our method could effectively address
them. For example, as shown in the fourth column of Fig.
8, our proposed method could effectively detect the missing
objects, such as the small and obscured objects.

5. Discussion of Limitation
The major limitation of our method is that the proposed IoU
filter could exclude some correct detections from the pseudo
labels in addition to the incorrect detections, e.g., the blue
box in Fig. 3. It increases the percentage of correct pseudo
labels but decreases the absolute number of pseudo labels.
Though our method could obviously improve object detec-

tion in the presence of domain shift, we believe the perfor-
mance could be further improved if fewer correct pseudo
labels are removed while increasing the quality of pseudo
labels.

6. Conclusion

This paper presents the first approach to address fully test-
time adaptation for object detection. Compared with cur-
rent domain adaptive object detectors, it neither assumes a
stationary and known target distribution nor requires access
to a target dataset, which is desired in many applications.
We first investigate a baseline self-training framework but
find that its performance is bottlenecked by the low-quality
pseudo labels, caused by the domain shift. To overcome this
obstacle, we introduce the IoU Filter. It includes two IoU-
based indicators that could select higher-quality pseudo la-
bels in the presence of domain shift. Experimental results
on three datasets demonstrate that our approach could ef-
fectively adapt a trained detector to various kinds of domain
shifts at test time and bring substantial performance gains.
Through a controlled ablation study, we show that each in-
dicator is effective and they are complementary, the thresh-
old values could impact the performance, and training too
many iterations could degrade fully test-time adaptation.
Acknowledgements. This work was supported in part by
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