
MixStyle-Based Contrastive Test-Time Adaptation:
Pathway to Domain Generalization

Kota Yamashita
Meijo University

1-501 Shiojirikuchi,
Tenpaku, Nagoya 468-8502,

Japan
200442179@ccalumni.meijo-u.ac.jp

Kazuhiro Hotta
Meijo University

1-501 Shiojirikuchi,
Tenpaku, Nagoya 468-8502,

Japan
kazuhotta@meijo-u.ac.jp

Abstract

Recent advancements in domain generalization have in-
creasingly focused on Test-time Adaptation (TTA), which
adapts models to unknown domains during testing. Test-
time Training (TTT) represents a prominent TTA approach,
utilizing multi-task learning on training images by combin-
ing the main task with self-supervised tasks such as rota-
tion prediction, and adapting the model to the test domain
using only self-supervised tasks during testing. However,
the selection of appropriate self-supervised tasks poses a
challenge in TTT, as incorrect choices can degrade model
performance. Common self-supervised tasks like rotation
prediction are not specifically designed for domain gen-
eralization. TENT implements an unsupervised TTA tech-
nique utilizing entropy minimization without engaging in
self-supervised tasks. Although it bypasses the need for self-
supervised tasks, its performance can fall short of TTT in
certain domains. To address TTT’s challenges, we propose
MixStyle-based Contrastive Test-time Adaptation (MCTTA)
which employs the original method of MixStyle-based Con-
trastive Learning (MCL) to train feature extractors capa-
ble of extracting consistent features across different do-
mains. The learning process is divided into Training and
TTA phases. During the Training phase, the model is gen-
eralized to various domains through multi-task learning:
main classification task and MCL. In the TTA phase, MCL is
applied to the test data to adapt the feature extractor to the
test domain. By experiments on the DomainBed benchmark
library and three datasets (PACS, Office-Home, and Col-
ored MNIST), MCTTA achieved the highest domain gener-
alization accuracy, surpassing not only TTT but also other
TTA methods and domain generalization methods.

1. Introduction

In recent years, deep learning technology has made remark-
able progress with applications extending to autonomous
driving, medical diagnostics, image recognition, and nat-
ural language processing. The advancements in this tech-
nology are supported by the significant increase in com-
putational power provided by GPUs, the construction of
large-scale datasets, and the development of new learning
algorithms. While deep learning has achieved high accu-
racy in specific tasks, maintaining comparable performance
across different domains and environments remains a chal-
lenging issue. To address this challenge, researches in do-
main generalization plays a vital role[23][19]. Domain gen-
eralization aims to develop models with high versatility that
perform well across different domains, serving as a bridge
between deep learning technology and real-world applica-
tions. Researches in domain generalization have evolved
over decades through various approaches such as data aug-
mentation, improvements in feature extraction techniques,
and meta-learning. Data augmentation, for example, in-
creases the diversity of training data, aiding models in learn-
ing generalized features. Meanwhile, meta-learning en-
hances the model’s ability to learn efficiently from differ-
ent tasks, improving adaptability to new domains[10]. Re-
cently, TTA[13][20] has emerged as a focal point in domain
generalization research. TTA enables models to adapt to
unknown domain data during testing, ensuring consistent
performance even on new domains that were not accessi-
ble during training. TTT[16] is a leading method within
TTA, enhancing the generalization capability to new do-
mains through multi-task learning that combines the de-
sired task with a self-supervised task, such as rotation pre-
diction. However, TTT faces several issues. Incorporat-
ing common self-supervised tasks, such as rotation predic-
tion, into multi-task learning does not directly contribute
to domain generalization. Moreover, choosing inappro-
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priate self-supervised tasks risks degrading model perfor-
mance. The reliance on intuition to select self-supervised
tasks presents a significant obstacle in TTA, where quick
adaptation is crucial. In contrast to approaches that incorpo-
rate self-supervised tasks, TENT[18] utilizes unsupervised
learning on test data without engaging in multi-task learn-
ing like TTT during the training phase. Specifically, it fo-
cuses solely on the main task during training and adapts to
the test data through unsupervised learning, employing en-
tropy minimization. TENT offers a straightforward method
by only requiring entropy minimization for the test data.
However, it is important to note that its effectiveness can
vary across domains, potentially resulting in lower accuracy
compared to TTT in some cases.

We propose MCTTA as a simple yet powerful solution
for TTT. Unlike conventional contrastive learning which re-
lies on color transformations or random cropping, MCTTA
employs a novel approach to contrastive learning, named
MCL specialized for domain generalization. MCL uti-
lizes MixStyle[22] in the feature space for data augmen-
tation in order to consistently extract features across var-
ious domains. MCL employs two feature extractors ini-
tialized with different parameters but sharing the same ar-
chitecture. This is the difference from conventional con-
trastive learning[6][7]. These extractors are not only piv-
otal in MCL but also enhance the stability and accuracy in
classification through ensemble classification. The training
process of MCTTA is divided into the Training phase, fo-
cusing on multi-task learning with ensemble classification
and MCL for domain generalization, and the TTA phase,
where MCL is applied to the test data to adapt the feature
extractors to new data. This approach positions MCTTA as
a learning algorithm specialized for domain generalization,
capable of adapting to a wider range of domains compared
to TTT and other TTA methods.

In experiments, we utilized the DomainBed[4] bench-
mark library alongside three datasets: PACS[9], Office-
Home[17], and Colored MNIST[1]. Compared to TTT,
our approach achieved an accuracy improvement of 1.2%
on PACS, 2.9% on Office-Home, and 0.9% on Colored
MNIST, with an average increase of 1.7% across these
datasets. Furthermore, MCTTA outperformed other tech-
niques, including TENT, which employs entropy minimiza-
tion, SHOT[12], which uses pseudo-labeling for TTA, and
conventional domain generalization methods that do not
adapt the model at test time, establishing itself as the most
accurate approach.

This research aims to endow models with further domain
generalization capabilities by resolving issues with TTT,
making three primary contributions:
• The introduction of MCL, a contrastive learning approach

specifically designed for domain generalization.
• The use of two feature extractors with identical architec-

tures but different initial values in MCL, which not only
serves the purposes of MCL but also improves the sta-
bility and accuracy of class predictions through ensemble
classification.

• Experiments on the DomainBed benchmark library show
that the proposed MCTTA achieved higher accuracy than
TTT, other TTA, and conventional domain generalization
methods.
The structure of this paper is as follows. Section 2 dis-

cusses the main approaches to domain generalization and
TTA as related work. Section 3 explains the details of
our proposed method, MCTTT. Section 4 presents the ex-
perimental setup and results on the DomainBed and three
datasets. Finally, Section 5 describe conclusion and future
works.

2. Related Work
Domain Generalization. The objective of domain gener-
alization research is to train models using data from dif-
ferent domains of test data, enabling these models to per-
form well on test data from unseen domains. As the appli-
cation of deep learning technology expands across various
fields, such as autonomous driving technology and medi-
cal image analysis, the ability of models to maintain stable
performance across unknown domains is increasingly de-
manded. Domain generalization is anticipated to remain a
vital research theme, bridging deep learning and real-world
applications. Approaches to domain generalization can be
broadly divided into three main categories, and our pro-
posed method encompasses all of these categories.

Firstly, data-level approaches include techniques like
data augmentation. For example, Mixup[21] creates new
training images by blending images from different domains
to prevent models from overfitting to domain-specific fea-
tures. Unlike Mixup which mixes domain information at the
image level, our proposed method employs MixStyle which
mixes domain information at the feature level. MixStyle
blends the mean and standard deviation of features from the
shallow layers of CNN[11] across batches through instance
normalization, producing features with intermixed domain
information.

Secondly, there is a model-level approachs that focuses
on the architecture of the model, designed to extract features
common across different domains. For instance, Style-
Agnostic Networks (SagNet)[14] employs two networks
named the content-biased network and the style-biased net-
work. Through these networks, SagNet separates the con-
tent (such as shape) from the style (e.g., color tones and
textures) of images. This separation ensures that the model
makes decisions based on content without being influenced
by style differences.

Thirdly, algorithm-level approaches modify the learning
process to enhance the model’s generalization capability
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across domains. Meta-Learning for Domain Generaliza-
tion (MLDG)[10] is a meta-learning method designed
specifically for domain generalization, using data from
multiple domains for meta-training to ensure the model
performs well on new, unseen domains. Additionally, the
increasingly recognized TTA also falls into this category.

Test-time adaptation. In recent years, the field of
domain generalization has seen TTA emerge as a signif-
icant breakthrough. The primary goal of TTA is to allow
models to adapt in real-time during testing, thereby main-
taining consistent performance on new domains that were
not encountered during training. Closely related to TTA
is another approach, Unsupervised Domain Adaptation
(UDA)[15][3], which trains models using labeled data
from the source domain and unlabeled data from the target
domain. Unlike UDA, TTA is characterized by its real-time
adaptability and the fact that it fundamentally does not
require access to source data during model adaptation. TTT
is a quintessential method in TTA, involving multi-task
learning with target tasks and self-supervised tasks such as
rotation prediction using training images. Subsequently, for
the test data, it performs self-supervised learning without
accessing the source data, enabling the feature extractor
to bridge the gap between the domains of training and
test data. While TTT has shown impressive results, it
also encounters significant challenges. Firstly, multi-task
learning using common self-supervised tasks like rotation
prediction does not directly contribute to domain gener-
alization. Secondly, the choice of self-supervised task is
critical, and selecting an inappropriate task can degrade
model performance. The selection of self-supervised tasks
relies on intuition rather than quantitative criteria, posing
a significant challenge for TTA that requires real-time
adaptation. Contrarily, TENT employs unsupervised
learning instead of self-supervised tasks to adapt the model
to test data. Diverging from TTT’s multi-task learning
approach during the training phase, TENT concentrates
exclusively on the primary task. When faced with test
data, it utilizes unsupervised learning, specifically entropy
minimization, to fine-tune the model’s batch normalization
layers, thereby adapting it to the new data. The simplicity
of TENT, necessitating merely the application of entropy
minimization to test data, offers an uncomplicated yet
effective method. However, its performance can be inferior
to TTT in certain domains. Alongside TTT and TENT,
SHOT is another high-accuracy TTA method. SHOT uses
pseudo-labeling for TTA, adapting the feature extractor
to test data through cross-entropy loss with assigned
pseudo-labels. Nevertheless, SHOT faces challenges when
pseudo-labeling fails, potentially leading to decreased
classification accuracy.

3. Proposed Method
We propose MCTTA as a simple yet potent solution to
the challenges outlined in Section 2. As a solution to
the primary challenge, MCTTA employs MCL, a unique
contrastive learning approach specifically designed for do-
main generalization. Unlike conventional contrastive learn-
ing approaches that rely on color transformations and ran-
dom cropping, MCL uses MixStyle for data augmentation
in the feature space. This enables the feature extractors to
identify consistent features across various domains, making
MCL more specialized in domain generalization compared
to conventional contrastive learning. In addition, MCL dis-
tinguishes itself from conventional contrastive learning by
utilizing two feature extractors with distinct initial values
but identical architecture. The dual extractor approach not
only serves MCL’s purposes but also contributes to im-
proved classification performance through ensemble classi-
fication. For the second challenge, we demonstrate in Sec-
tion 4 through evaluation experiments that MCTTA can be
universally applied across various domains. It is noteworthy
that, despite incorporating all three approaches to domain
generalization described in Section 2, MCTTA remains a
remarkably simple method. It incorporates MixStyle for
the data-level approach, ensemble classification with two
feature extractors for the model-level approach, and adap-
tation to the test domain via MCL for the algorithm-level
approach.

Section 3.1 explains the details of Training phase, em-
ploying multi-task learning that combines ensemble classi-
fication and MCL using training data. Section 3.2 focuses
on the TTA phase of our method, wherein the feature extrac-
tor is adapted to the domain of the test data through MCL.

3.1. Training Phase

The goal of the Training phase in the MCTTA approach
is to develop a feature extractor that can identify consis-
tent features across various domains through a multi-task
learning framework combining ensemble classification and
MCL. The comprehensive view of the Training phase is il-
lustrated in Figure 1. Training data are defined as x, without
preprocessing. Each x is fed into two feature extractors with
the same structure but different initial values, producing two
types of outputs. As depicted in Figure 2, one output comes
from straightforward feature extraction, while the other is
obtained by applying MixStyle which mixes domain in-
formation across batches. In each learning step, the layer
for MixStyle application is randomly selected from those
nearer to the input than the feature extractor’s intermediate
convolutions. We focus on shallower layers because domain
information is primarily represented in these initial layers
of the CNN[22]. The choice of random selection aims to
enrich the variation in the mixing of domain information.
All features are utilized in both ensemble classification and
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MCL. Ensemble classification enhances the stability and ac-
curacy of classification. When our method is combined with
MixStyle, it further promotes domain generalization com-
pared to conventional classification methods. In MCL, a
loss based on cosine similarity is calculated between fea-
tures that have undergone MixStyle, with domain informa-
tion mixed between batches, and those that have not. By
maximizing the similarity between features, the feature ex-
tractor is enabled to consistently extract features across var-
ious domains, thereby advancing domain generalization.

The ensemble classification is formulated by employing
cross-entropy loss. Probability distributions obtained from
the classifier are denoted as Pmix and Pori for the features
with and without the application of MixStyle, respectively.
P ′

mix and P ′
ori represent these distributions from the other

classifier. y indicates the ground truth label and CE stands
for cross-entropy loss.

Pre =
Pori + P ′

ori

2
(1)

Pre′ =
(Pmix + P ′

mix)

2
(2)

Lce = CE(Pre, y) + CE(Pre′, y) (3)

Next, we introduce the formulation of MCL, where
Zmix and Zori denote the features extracted with and
without the application of MixStyle, respectively, from one
of the feature extractors. Similarly, Z ′

mix and Z ′
ori are

the features from the other extractor, processed in the same
manner. In addition, · and ∥∥ represent the dot product and
vector norm, respectively.

Lcos = 2− (
Zori · Z ′

mix

∥Zori∥∥Z ′
mix∥

+
Z ′

ori · Zmix

∥Z ′
ori∥∥Zmix∥

) (4)

The final loss in the Training phase is defined as

Ltrain = Lce + αLcos (5)

where α is a hyperparameter. During the Training phase,
the objective is to minimize Ltrain by training two feature
extractors and two classifiers.

3.2. TTA Phase

The goal of the TTA phase in MCTTA is to adapt the fea-
ture extractor to the test data using MCL. In TTT, the Train-
ing phase involves multi-task learning that combines com-
mon self-supervised tasks such as rotation prediction with
classification. By performing self-supervised tasks during
the TTA phase, the feature extractor can absorb differences
between the domains of training data and test data. In
MCTTA, we leverage MCL, a self-supervised task specif-
ically designed for domain generalization. This approach

Figure 1. The comprehensive view of the Training phase. Training
data is fed into two feature extractors and classifiers with identical
structures but different initial values. Beyond serving as input for
the classifiers, the output from the feature extractors is utilized in
our proposed MCL. This enhances the extractors’ ability to iden-
tify universal features across domains. The classifiers’ output is
employed for ensemble classification.

Figure 2. Internal Structure of the Feature Extractor. MixStyle is
applied to random shallow layers of the CNN, and domain infor-
mation is mixed across batches.

Figure 3. The comprehensive view of the TTA phase. Unlike the
training phase, ensemble classification is not performed due to the
absence of ground truth labels for test data.

allows us not only to absorb differences across domains us-
ing test data but also to significantly enhance the model’s
generalization capabilities to various domains. This phase
is implemented online during inference on test data, with
the updated parameters being retained for subsequent tests.
For the test data, feature extraction is performed in the same
manner as during the training phase. However, as the test
data lack class labels, ensemble classification is not con-
ducted, and only MCL is executed. It should be noted that
ensemble classification is utilized for inference.

The final loss in the TTA phase is represented by Equa-
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tion (6), utilizing Equation (4) for its calculation.

Ltta = Lcos (6)

During the TTA phase, only two feature extractors are
trained to minimize Ltta. The learning rate is set to β times
that of the Training phase, where β is a hyperparameter.

4. Experiment
4.1. Setting

Datasets. To ensure objectivity in our experiments, we
employed the DomainBed benchmark library, selecting
three datasets: PACS, Office-Home and Colored MNIST.
PACS includes 9,991 images across seven classes and
four domains (Photo, Art painting, Cartoon, Sketch),
making it one of the most extensively used resources in the
field of domain generalization. Office-Home comprises
15,588 images, 65 classes, and four domains (Art, Clipart,
Product, Real world). Colored MNIST, a modification
of MNIST[8] with color added to create three domains,
contains 70,000 images and two classes.

Training and evaluation details. For our study, im-
ages were partitioned for each domain into an 8:2 ratio
(train:validation), with the split dynamically selected by
DomainBed for each trial. The model undergoes training in
5,000 iterations using all domains except the test domain,
after which it is evaluated on the test domain. The model
selection for testing employs a strategy within DomainBed
known as training-domain validation set selection. This
approach calculates the average accuracy on the validation
data across all training domains at predetermined steps
defined by DomainBed, selecting the model that achieves
the highest average accuracy. In all experiments, the feature
extractor is ResNet18[5] pre-trained on ImageNet[2]. Each
trial is conducted 10 times with varied initial values, and
the seed value, learning rate, and augmentation techniques
are dynamically set following DomainBed, with a uniform
batch size of 32. The unique hyperparameters of our
proposed method, α and β (refer to Section 3.1 and
Section 3.2), are set to α = 1 and β = 0.1 across all
experiments. Setting α = 1 aims to equally leverage
ensemble classification and MCL in the model’s training,
ensuring a balanced contribution from both methods. The
choice of β = 0.1 is intended to prevent the model from
overfitting to the test data. Continuous over-adaptation may
compromise the feature extractor’s ability to consistently
extract features across various domains.

4.2. Results

In this section, we first present and discuss the detailed
results obtained from the PACS, Office-Home, and Colored
MNIST datasets. Subsequently, we provide a summary and

discussion of the findings across these datasets. The values
in the Tables represent the average accuracy over 10 trials,
expressed in percentage terms. For instructions on how to
read the table, see the detailed description in Table 1. In
TTT’s self-supervised task, rotation prediction is used.

PACS. Referencing Table 1, our method achieved an
average accuracy of 84.6% on PACS, marking a 1.2%
improvement over TTT. When our method is compared
with TENT which adapts the model to the test domain
through unsupervised learning, our method was superior by
an average of 1.6%. Even against SHOT, a TTA technique
using pseudo-labeling, our approach leads by an average of
1.0%. Furthermore, it outperformed conventional domain
generalization methods such as Mixup, SagNet, and MLDG
using meta-learing, which do not adapt the model to the
test data, showing the superior domain generalization
capability of our method over both other TTA techniques
and conventional domain generalization methods. The rank
score comparison further confirmed that our method is the
most effective. It is also noteworthy that TTA methods
consistently outperformed the baseline method, which re-
lies on a simple approach using a ResNet18 pre-trained on
ImageNet and cross-entropy loss, reaffirming the efficacy
of TTA methods for domain adaptation.

Office-Home. As shown in Table 2, our proposed
method achieved an average accuracy of 63.5% on the
Office-Home dataset, marking a 2.9% improvement over
TTT. When we compared with TENT, our method is
superior by 0.9% on average and is on par with SHOT.
When we compared our method with conventional domain
generalization methods like Mixup, SagNet, and MLDG,
our proposed method achieved the second highest accuracy
following SelfReg. This demonstrates that our method is
an effective learning approach with superior generalization
across domains while falling just short of SelfReg. In
terms of rank score, SelfReg leads, with our method tying
for second place with CORAL, SD, and SHOT. When
comparing TTT to the baseline, TTT shows lower accuracy
in the test domains as follows: Art by 2.6%, Product
by 1.8%, Real world by 0.3%, with an overall average
reduction of 0.9%. TTT only surpasses the baseline in
the Clipart domain. This phenomenon aligns with the
discussion in Section 2, where a mismatch between the
domain and the self-supervised task can lead to decreased
accuracy with TTT.

Colored MNIST. As seen in Table 3, our proposed
method achieved an average accuracy of 53.2% on the
Colored MNIST dataset, outperforming TTT by 0.9%.
When we compared to TENT, our method leads by an
average of 1.3%, and it also surpasses SHOT by the same

1033



Table 1. Comparison results on PACS. Accuracy shows the results from 10 trials for each method across four different test domains: Photo,
Art painting, Cartoon, and Sketch. Each model was trained on the three domains other than the test domain. The ”average” denotes the
mean accuracy across these four domains, while ”rank score” aggregates the ranking positions of each method. For instance, if a method
ranked the 5th in the Photo domain, the 10th in Art painting, the 15th in Cartoon, and the 10th in Sketch, the rank score would be 40. In
cases of tied ranks, the lower score is attributed to the methods. For example, if three methods tie for the 1st place in the Photo domain,
each receives a score of 1, and the next highest accuracy method would receive a score of 4. TENT, SHOT, TTT, and our method fall under
the category of TTA, which adapt to test data at the time of testing. In contrast, other methods mentioned do not perform adaptation on
test data, following conventional domain generalization approaches. The baseline represents a simplistic learning approach that does not
utilize any domain generalization method; it is derived from TENT by excluding the adaptation to test data.

Algorithm Photo Art painting Cartoon Sketch average rank score↓
ERM 94.8 81.6 72.3 73.9 80.6 51
Fish 94.9 82.6 79.3 70.7 81.9 34

GroupDRO 95.4 77.4 74.5 73.4 80.2 50
Mixup 93.2 84.0 73.1 67.0 79.3 57
MLDG 94.5 84.1 74.9 74.9 82.1 36
CORAL 94.8 81.7 78.4 73.7 82.1 38

MTL 94.1 73.2 76.2 76.5 80.0 50
SagNet 95.6 80.5 76.3 78.6 82.7 29
ARM 92.3 82.3 77.0 77.0 82.1 35
VREx 94.8 79.7 73.6 76.8 81.2 43

SD 96.2 80.7 74.7 76.5 82.0 32
ANDMask 93.5 75.8 73.2 65.5 77.0 71

SelfReg 94.6 82.1 74.3 76.0 81.7 43
TRM 94.9 79.6 77.2 75.8 81.9 38

baseline 94.5 79.6 74.4 68.9 80.2 60
TENT 96.6 81.8 80.9 72.9 83.0 29
SHOT 96.7 85.0 81.6 71.1 83.6 19
TTT 96.0 82.2 81.3 74.1 83.4 24
ours 95.8 83.5 82.1 76.8 84.6 13

Table 2. Comparison results on Office-Home. Accuracy shows the results from 10 trials for each method across four different test domains.

Algorithm Art Clipart Product Real world average rank score↓
ERM 48.7 45.1 69.0 69.1 58.0 62
Fish 52.4 48.4 66.5 70.6 59.5 46

GroupDRO 49.8 45.5 67.0 68.4 57.7 61
Mixup 53.2 49.9 70.4 71.7 61.3 32
MLDG 48.8 45.5 67.4 69.1 57.7 61
CORAL 55.5 50.3 72.3 73.6 62.9 14

MTL 48.9 47.8 66.5 68.0 57.8 61
SagNet 53.2 48.9 69.8 70.4 60.6 37
ARM 49.2 46.7 65.9 68.0 57.4 66
VREx 50.5 47.9 66.8 70.0 58.8 51

SD 55.7 50.8 71.0 74.4 63.0 14
ANDMask 47.3 47.7 65.9 67.4 57.1 69

SelfReg 56.6 50.2 73.3 74.0 63.5 11
TRM 51.8 47.3 69.2 69.6 59.5 49

baseline 54.4 47.7 71.1 73.0 61.5 31
TENT 55.0 50.3 71.7 73.2 62.6 19
SHOT 56.7 52.6 71.9 72.7 63.5 14
TTT 51.8 49.5 68.3 72.7 60.6 38
ours 53.6 54.1 72.9 73.4 63.5 14

margin. Although it is slightly behind ARM by an average
of 0.2%, it is the best accuracy among the other domain
generalization methods. Notably, our method ranked the
highest when we evaluated with rank score. Additionally,

when we compare TTT with the baseline, we observed a
reduction in accuracy by 0.4% and 0.3% for test domains
at +90% and +80% respectively, with an overall average
decrease of 0.1%, indicating that TTT’s self-supervised
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Table 3. Comparison results on Colored MNIST. Accuracy illustrates the results from 10 trials for each method across three different test
domains.

Algorithm +90% +80% -90% average rank score↓
ERM 71.2 72.8 9.8 51.3 49
Fish 72.3 73.6 10.1 52.0 28

GroupDRO 72.4 72.1 10.3 51.6 31
Mixup 72.0 72.4 10.1 51.5 42
MLDG 73.1 72.7 10.6 52.1 20
CORAL 71.8 73.9 10.2 51.9 26

MTL 71.6 72.7 10.4 51.6 33
SagNet 71.6 73.4 10.5 51.9 26
ARM 78.9 71.0 10.3 53.4 15
VREx 73.2 73.2 10.1 52.2 24

SD 72.0 73.7 10.1 52.0 30
ANDMask 73.2 73.3 10.2 52.2 19

SelfReg 72.1 72.7 10.2 51.7 34
TRM 67.9 72.0 10.2 50.0 46

baseline 73.1 74.1 10.0 52.4 24
TENT 72.3 73.0 10.3 51.9 27
SHOT 72.4 73.1 10.1 51.9 31
TTT 72.7 73.8 10.4 52.3 14
ours 73.2 73.5 13.0 53.2 9

Table 4. Rank score over three datasets. Under the names of three datasets (PACS, Office-Home, Colored MNIST), we show the average
accuracy for each test domain. ”average” represents the mean value across the three datasets, while ”rank score” is recalculated specifically
for this table.

Algorithm PACS Office-Home Colored MNIST average rank score↓
ERM 80.6 58.0 51.3 63.3 46
Fish 81.9 59.5 52.0 64.5 29

GroupDRO 80.2 57.7 51.6 63.2 46
Mixup 79.3 61.3 51.5 64.0 43
MLDG 82.1 57.7 52.1 64.0 29
CORAL 82.1 62.9 51.9 65.6 21

MTL 80.0 57.8 51.6 63.1 47
SagNet 82.7 60.6 51.9 65.1 24
ARM 82.1 57.4 53.4 64.3 25
VREx 81.2 58.8 52.2 64.1 31

SD 82.0 63.0 52.0 65.7 21
ANDMask 77.0 57.1 52.2 62.1 43

SelfReg 81.7 63.5 51.7 65.6 27
TRM 81.9 59.5 50.0 63.8 40

baseline 80.2 61.5 52.4 64.7 25
TENT 83.0 62.6 51.9 65.8 20
SHOT 83.6 63.5 51.9 66.3 13
TTT 83.4 60.6 52.3 65.4 16
ours 84.6 63.5 53.2 67.1 4

task is not effective for the Colored MNIST.

Summary of three Tables. Table 4 serves as a sum-
mary of Table 1, Table 2, and Table 3 which show the
average accuracy for each test domain under the names
of three datasets (PACS, Office-Home, Colored MNIST).
The ”average” indicates the mean accuracy across these
datasets, while ”rank score” has been recalculated specif-

ically for this Table. The proposed method shows a
significant improvement in accuracy compared to TTT,
with increases of 1.2% for PACS, 2.9% for Office-Home,
0.9% for Colored MNIST, and an overall 1.7% for average,
demonstrating effective learning across various domains.
When our method is compared with TENT, the proposed
method is superior with improvements of 1.6% for PACS,
0.9% for Office-Home, 1.3% for Colored MNIST, and
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Table 5. The effectiveness of MCL. To confirm the effectiveness of MCL, we compare the accuracy of conventional contrastive learning,
which performs random color transformations on an image-by-image basis (referred to as ”Color”), with MCL that applies MixStyle at the
feature level (referred to as ”MixStyle”). Note that all other algorithms employed are identical to the proposed method.

Color MixStyle PACS Office-Home Colored MNIST average
✓ - 74.5 59.6 54.9 63.0
- ✓ 84.6 63.5 53.2 67.1

Table 6. Effectiveness of two models. To investigate the effectiveness of using two models with the same structure but different initial
values, we compare the case of performing MCL with a single model without ensemble classification to the case of conducting MCL and
ensemble classification with two models.

Two models PACS Office-Home Colored MNIST average
- 83.4 62.7 52.9 66.3
✓ 84.6 63.5 53.2 67.1

1.3% for average. Although TENT outperformed TTT by
0.4% on average, it falls short by 0.4% on PACS and Col-
ored MNIST, indicating that it may not be more effective
across all domains as suggested in Section 2. SHOT using
pseudo-labeling achieved an average of 66.3%, surpassing
TTT by 0.9%, yet our proposed method exceeded SHOT
by an additional 0.8% on average. Furthermore, our
method is compared with conventional domain general-
ization methods like Mixup, SagNet, and MLDG using
meta-learning which do not adapt the model at test time as
discussed in Section 2, and MCTTA achieved the highest
mean accuracy. The proposed method also proved to be
the most superior when we compared in the rank score
scenario, outperforming TTA and conventional domain
generalization techniques.

4.3. Ablation Study

Table 5 contrasts the accuracy between conventional con-
trastive learning, which applies random color transforma-
tions individually to each image, and MCL, which inte-
grates MixStyle at the feature level, to evaluate the effi-
cacy of MCL. All other algorithms are identical to the pro-
posed method. MCL using MixStyle has shown a 4.1% im-
provement in accuracy over random color transformations
in the average, and this result indicates MCL’s significant
effectiveness. However, for the Colored MNIST, created by
adding colors to MNIST to form different domains, MCL
using MixStyle resulted in a 1.7% lower performance. This
inferior performance in Colord MNIST is attributed to the
exceptional compatibility of conventional contrastive learn-
ing with Colored MNIST, as it is designed to learn and ex-
tract consistent features across domains with varying colors.

To explore the effectiveness of utilizing two models with
identical structures but distinct initial values, Table 6 com-
pares the scenario of executing MCL with a single model,
excluding ensemble classification, with the scenario where

MCL and ensemble classification are implemented using
two models. The usage of two models has resulted in im-
proved accuracy: 1.2% in PACS, 0.8% in Office-Home,
0.3% in Colored MNIST, and an overall increase of 0.8%
in average, and the result shows the effectivness of this ap-
proach.

5. Conclusion

In this paper, we introduced MCTTA as a notably simple
yet effective solution to the challenges of TTT. MCTTA
leverages MCL, our novel contrastive learning approach
which tailored specifically for domain generalization. Un-
like conventional contrastive learning which commonly em-
ploys color transformations and random cropping, MCL
innovates by utilizing MixStyle in feature space for data
augmentation. This enables to consistently extract features
across various domains. MCL utilizes two feature extrac-
tors with varying initial settings yet the same structure, set-
ting it apart from standard contrastive learning. The use
of two extractors not only serves MCL’s purposes but also
enhances classification accuracy via ensemble classifica-
tion. Experiments on the DomainBed benchmark library
and three datasets demonstrated that MCTTA achieved an
average accuracy improvement of 1.7% over TTT, outper-
forming other TTA methods and conventional domain gen-
eralization techniques. Additionally, the effectiveness of
employing MCL and two models was demonstrated. The
reduction of computational overhead due to the usage of
two models is a subject for future works.
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