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Abstract

Calibration-based and paired data-based methods have
achieved significant developments in the RAW image de-
noising field. However, the former requires accurate noise
modeling to synthesize training data, which is laborious ow-
ing to the specificity across different camera sensors. Mean-
while, the latter relies on the large quantity and high quality
of real paired datasets, which are difficult to collect in real-
world scenarios. To overcome these limitations, we propose
a simple pipeline termed as S2R to efficiently adapt Syn-
thetic noise to Real noise. S2R contains i) a calibration-
free synthetic pre-training stage to teach the network to rec-
ognize a variety of noise patterns and intensities and ii) a
few-shot real fine-tuning stage for quickly adapting to tar-
get camera sensors. Moreover, a multi-perspective feature
ensemble strategy is applied to enhance the network with
stronger generalization ability and further boost the per-
formance. We achieve a competitive score of 30.97 with
PSNR 31.23dB and SSIM 0.95 on MultiRAW test set, rank-
ing 1st place in the MIPI2024 Few-shot RAW Image De-
noising Challenge.

1. Introduction

Noise Reduction (NR) plays an important role in the image
restoration field, since the image capturing process of the
camera inevitably introduces different types of noises. The
original RAW images produced by camera sensors possess
the most primitive noise distribution for better distinguish-
ing real signals, making RAW image denoising a popular
topic.

Benefiting from the rapid development of deep learning
techniques, utilizing real noisy-clean datasets [1, 2, 7, 22]
for network training have made a breakthrough in RAW
image denoising. However, these paired data-based meth-
ods [8, 9, 15, 23–25] highly rely on the quality and quantity
of real paired datasets, which are extremely difficult to ac-

Figure 1. The primary differences between (a) LED and (b) our
S2R pipeline. On the one hand, given a clean image, LED pro-
duces only a fixed number of n virtual noise distributions for net-
work pre-training, whereas our formation can enrich the variety of
noise patterns and intensities to a large extend. On the other hand,
the designed blocks of LED used for learning camera-specific fea-
tures require further combination and reparameterization during
inference, while our pipeline is more flexible for direct application
to arbitrary existing networks without any modifications of the ar-
chitectures.

quire for every specific camera sensor. Another mainstream
approach is to train the network using synthetic noise data.
While saving efforts in real data collection, the design of
the physics noise model requires accurate alignment with
the electronic imaging pipeline and careful calibration of
noise distribution parameters, which suffer from disparity
not only among different camera sensors but also between
the simulation and real imaging processes.

To address the aforementioned limitations, a ground-
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breaking pipeline LED [13] is proposed to eliminate the
need for noise model calibration and allow quick deploy-
ment to different camera sensors with minimal real data.
It offers the innovative idea of implicitly calibrating the
denoiser instead of explicitly constructing noise model
through few-shot learning, giving rise to the Few-shot RAW
Image Denoising track on Mobile Intelligent Photography
and Imaging (MIPI) 2024 Workshop. In this challenge, with
the purpose of performing raw image denoising in scenarios
where only few-shot paired data are accessible, participants
are asked to propose a denoiser with strong generalization
ability to remove various levels of noise originating from
distinct cameras.

As a solution to this challenge, we propose a simple
pipeline S2R for efficiently adapting Synthetic noise to
Real noise, which contains a calibration-free synthetic pre-
training stage and a few-shot real fine-tuning stage for net-
work learning. During pre-training, unlike LED which
only samples a fixed number of virtual camera parameters
with limited noise diversity (See Figure 1(a)), we build an
enormous noise parameter set with the designed Pattern-
Augment (PAug) module and Intensity-Augment (IAug)
module (See Figure 1(b)), endowing the network with the
power to recognize as many noise forms and levels as pos-
sible. Then, we perform fine-tuning using the accessed min-
imal real paired data to efficiently adapt to specific camera.
The whole S2R pipeline can be directly applied to arbitrary
network without any inner modifications of the structures,
while LED requires additional combination and reparame-
terization step to embed their pre-trained blocks (See Fig-
ure 1(a)).

To further enhance the generalization ability of the net-
work under real-world scenarios, we propose a Multi-
Perspective Feature Ensemble (MPFE) strategy which is
able to identify and strengthen noise features from differ-
ent dimensions for better real signal extraction.

Extensive experiments have demonstrated the effective-
ness of our solution. We summarize the contributions of this
paper as follows.

• We aim to form an extremely wide range of random noise
set with abundant noise patterns and intensities and pro-
pose a calibration-free two-stage training pipeline for ef-
ficiently adapting synthetic noise to real noise.

• We mine the characteristics of noise and propose a multi-
perspective feature ensemble strategy to combine useful
information for better network learning, which further
boosts the generalization ability under complicated real-
world scenarios.

• We rank 1st place in the MIPI2024 Few-shot RAW Im-
age Denoising Challenge with our simple yet effective
pipeline, which can be easily applied to many learning-
based methods without any inner modification of the net-
work structures.

2. Related Works
2.1. Real Data-based RAW Image Denoising

Training an end-to-end neural network using real noise-
clean data pairs is the most intuitive idea for applying deep
learning technique to RAW image denoising. Early re-
searchers struggle with large-scale real RAW dataset col-
lection, giving rise to a series of popular benchmarks [1,
2, 7, 22]. With the support of real noise database, an in-
creasing number of elegant networks [8, 9, 15, 23–25] have
been carefully designed to perform image denoising. While
achieving encouraging results, difficulty of these methods
lies in the acquisition of clean images, whose qualities are
commonly impractical to guarantee when used as training
labels. To address this problem, some works [12, 14, 17]
adopt the idea of self-supervised learning using noise-noise
data pairs, which liberate the strong dependence on clean
images. However, these methods are built upon the statis-
tical characteristics of noise, which may degenerate under
challenging scenarios.

2.2. Physics-based RAW Image Modeling

To alleviate the burden of founding large-scale real paired
datasets, another mainstream line is synthesizing noise data
based on physics noise model. For the real-world RAW im-
age noise, the most fundamental and popular noise model
is Poisson-Gaussian distribution [11, 16], which assumes
the photon shot noise to be Poisson and the remaining
noise components to be Gaussian. For simplification, some
works [3, 18] approximate the Poisson distribution to Gaus-
sian and build the heteroscedastic Gaussian model with zero
mean and signal-dependent variance. To improve the ac-
curacy of noise modeling, ELD [22] disassembles the row
noise and quantization noise out of Gaussian distribution
for more concrete modeling. Yi et al.[27] further pro-
poses to directly sample the signal-independent noise from
dark frames with pattern-aligned and high-bit reconstruc-
tion strategies. Despite their significant contributions to
noise modeling, discrepancies between synthetic and real
noise are still unavoidable.

2.3. Few-shot RAW Image Denoising.

Owing to the different characteristics of cameras, methods
based on noise modeling [6, 10, 20, 22, 26, 27] require care-
ful parameter calibration process, which is laborious and
easily influenced by the lighting environment. Recently,
the groundbreaking method LED [13] brings the idea of
few-shot learning to eliminate the needs for noise model
calibration with a two-stage training pipeline. During pre-
training, LED simulates several virtual cameras with ran-
domly sampled noise parameters and subsequently designs
camera-specific alignment block to align different features.
For the fine-tuning, it inserts an out-of-model noise removal
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Figure 2. Overview of the proposed two-stage Synthetic to Real (S2R) pipeline. During the pre-training stage, PAug module augments the
initially sampled parameters k, σ2 with abundant noise patterns and IAug module varies the synthetic data In with noise intensities. Then
the network is quickly adapted to a specific camera sensor through fine-tuning using minimal real paired data.

branch to learn the gap between noise model and real noise
using minimal real paired data.

Behind the enormous success of LED, some limitations
still exist in terms of the lack of synthetic noise diversity
and the complexity of network deployment. Inspired by the
aforementioned pros and cons, our framework in this paper
follows the two-stage few-shot pipeline with an enlarged
synthetic noise set augmented by abundant noise diversities
and the simplification for fast adapting to real noise, which
shows strong generalization ability and further boosts the
performance of RAW image denoising.

3. Method

Under the few-shot RAW image denoising framework, only
a small amount of real-paired data is available given a spe-
cific camera sensor. We address this problem through a
simple two-stage Synthetic to Real (S2R) pipeline (Sec-
tion 3.2), which contains a calibration-free pre-training
stage using synthetic noise data with extremely abun-
dant noise patterns and intensities and an easily applied
fine-tuning stage using the accessed few-shot real-paired
data. To further strengthen the generalization ability and
boost the performance in real-world scenarios, we design a
Multi-Perspective Feature Ensemble (MPFE) strategy (Sec-
tion 3.3) to selectively combine noise features from differ-
ent dimensions. In the following, we first provide the pre-
liminaries of physics noise model (Section 3.1) and then
describe the proposed method and implementation in detail
(Section 3.4).

3.1. Preliminaries of Noise Model Formation

When we look into the inner raw imaging process of camera
sensors, the captured signals In are generally produced by
converting the incident photons to digital values, which can
be formulated as an ISO-related combination of the clean
image Ic and various noise components N .

In = Kd(Ka(Ic +Nd +Ni1) +Ni2), (1)

where Ka, Kd denote system analog gain and digital gain
varied by ISO settings. Nd is the signal-dependent noises
(i.e. photon shot noise) and Ni is the remaining signal-
independent noises (i.e. dark noise, fix pattern noise, quan-
tization noise, etc.). Eqn. 1 can be simplified as follows.

In = K(Ic +Nd) +B, (2)

with K = KdKa, B = KdKaNi1 +KdNi2.
Considering the enormous randomness of real-world

noise and the different characteristics of various camera
sensors, a more fundamental and simpler noise model can
possess a stronger generalization ability. Therefore, we
choose the most representative Poisson-Gaussian distribu-
tion that has been widely explored in plenty of previous
works [11, 16], which samples the signal-dependent and -
independent components from Poisson P(·) and Gaussian
N (·) distributions, respectively.

K(Ic +Nd) ∼ kP(
Ic
k
),

B ∼ N (0, σ2).
(3)
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Figure 3. Visualization examples of the synthetic noise data generated by PAug (column (b)(c)(d)) and IAug (column (f)(g)(h)), respec-
tively. Column (a) is the corresponding original clean images and column (e) plots the relations between real signal values in clean image
and the corresponding noise variances to better illustrate different noise patterns.

Based on Eqn. 2 and Eqn. 3, our final noise model used
for synthesizing noise data In from clean image Ic can be
expressed as follows.

In = kP(
Ic
k
) +N (0, σ2). (4)

Moreover, we can build the relation between the param-
eters k and σ2 through the mean and variance over In.

E(In) = Ic,

V ar(In) = kIc + σ2.
(5)

According to previous works [3], the parameters k and
σ2 follow linear and quadratic distributions with ISO, re-
spectively, which can be fitted as follows.

k = ka ∗ ISO + kb,

σ2 = σ2
a ∗ ISO2 + σ2

b ∗ ISO + σ2
c .

(6)

Therefore, for a clean image Ic, once we obtain the pa-
rameter set {ka, kb, σ2

a, σ
2
b , σ

2
c}, we can calculate k, σ2 with

Eqn. 6 given an ISO value and then generate a noise distri-
bution through Eqn. 4 to form the noise data In for training.

3.2. Synthetic to Real (S2R) Pipeline

As illustrated in Figure 2, the S2R pipeline contains
calibration-free pre-training with synthetic noise data and
few-shot fine-tuning with paired real data. We describe the
two stages as follows.

3.2.1 Calibration-free Synthetic Pre-training

The aim of pre-training is to endow the network with strong
generalization ability to rapidly adapt to specific camera
without careful noise calibration. We achieve this goal by
focusing on building an abundant synthetic noise set for the
network to recognize enormous noise forms and levels.

Given the noise model in Eqn. 4 and the parameter for-
mulations in Eqn. 6, we can add different noises on the clean
images Ic by varying parameters under different ISO set-
tings to form noise data In. Specifically, we first empirically
generate a random parameter set of {ka, kb, σ2

a, σ
2
b , σ

2
c} to

simulate an average noise level of different sensor types,
then randomly choose an ISO value between ISOmin and
ISOmax for calculating k and σ2.

To increase the diversity of the synthetic noise set, we
propose a Pattern-Augment (PAug) module for disturbing
noise parameters and an Intensity-Augment (IAug) module
for simulating various digital gains, giving rise to the final
noise data În used in our pre-training stage.

În = IAug(In|k̂,σ̂2),

k̂ = PAug(k), σ̂2 = PAug(σ2).
(7)

PAug module. Inspired by Eqn. 5, a set of parameter val-
ues of k, σ2 can determine a specific noise form given a
clean image under a constant ISO setting. Therefore, we
propose pattern-augment module to simulate various noise
forms derived from different types of cameras, which ran-
domly disturbs the initially sampled parameters k and σ2 to
generate sensor-diversified parameters k̂ and σ̂2.
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k̂ = k + kp1,

σ̂2 = σ2 + σ2p2,
(8)

where p1, p2 ∈ [0, p] , p ∈ (0, 1). The pattern augmented k̂
and σ̂2 are used as the final parameters for a clean image to
construct the corresponding noise distribution.

In Figure 3, we provide several visualization examples of
different noise data generated by PAug for the same clean
image under a same ISO setting. Since the differences in
noise patterns are difficult to distinguish visually, we plot
the relations of the real signal values in clean image Ic and
their corresponding noise variances V ar(In) for better il-
lustration. The slope and intercept of each curve indicate a
set of k and σ2 (See Eqn. 5), showing the diversity of the
noise pattern simulated by PAug.
IAug module. Considering the different noise levels af-
fected by additional digital gain under diverse luminance
environments, we selectively apply intensity augmentation
to the synthetic noise data In after PAug by multiplying a
random ratio r ∈ [1, 300] to amplify noise.

În = rIn,

In = k̂P(
Ic/r

k̂
) +N (0, σ̂2).

(9)

Note that the clean image is firstly divided by r to ensure
normal luminance of the amplified noise data. We use the
intensity-augmented synthetic noise În as the training data
during the pre-training stage. Some visually examples are
also depicted in Figure 3, which intuitively illustrates the
various noise intensities produced by IAug.
Parameter settings. We experimentally set ISOmin = 50,
ISOmax = 6400, p = 0.3 in our method. During the train-
ing process, p1, p2 in PAug and r in IAug are randomly re-
generated within the corresponding ranges for each training
sample, which can enlarge the randomness and diversity of
the noise set without extensive efforts on hyper-parameter
tuning.

3.2.2 Few-shot real fine-tuning

After the pre-training stage, the model is ready to trans-
fer denoising ability from synthetic space to real cameras,
bringing in the fine-tuning stage. Given a target camera,
only pairs of real data captured by the sensor are required
for few-shot learning. While saving huge effort on data col-
lection, it can also reach the superior performance within a
short period, enjoying both high efficiency and effective-
ness. No special designs such as network modifications
and training tricks are applied since we want the fine-tuning
stage to be as easy to deploy as possible.

3.3. Multi-Perspective Feature Ensemble (MPFE)
strategy

We further dive into the noise characteristics in real sce-
narios with the purpose of inferring the important ones that
benefit network learning. Firstly, we consider that the spa-
tial resolution of the noise pattern varies with noise inten-
sity. The stronger the noise, the larger the receptive field re-
quired to distinguish the original signals from noise. There-
fore, the network can be enhanced with the ability to recog-
nize real signals from various scales. Secondly, we observe
negative values for the noise data owing to the distribution
characteristics of noise. While maintaining an accurate and
complete noise form, this may also disrupt the stability of
the learning process.

Therefore, we propose a Multi-Perspective Feature En-
semble (MPFE) strategy to combine the advantages of noise
features from different dimensions. As shown in Figure 4,
we construct the training noise data following two princi-
ples: i) different input patch sizes during the pre-training
stage to enrich multi-scale information and ii) whether to
maintain the negative values for both accurate noise model
learning and better network convergence. We separately
train four models with different entries and integrate the re-
sults through average summation, which further strengthens
the generalization ability and boost the performance.

Note that the proposed MPFE strategy is an additional
bonus for our model to further reach to better behavior,
while our original S2R pipeline has already achieved an out-
standing performance (See Section 4.3). However, the av-
eraged ensemble operation may introduce over-smoothing
problem on the denoising results, leaving us future ex-
plorations on extracting fine-grained detail features and
weighted combination strategy.

3.4. Implementation Details

Network Architecture. We choose the original
NAFNet [15] as our main network structure, which is
a recently proposed simple baseline for image restoration
task building upon UNet [19] architecture with couples
of simple attention modules. We also apply our method
on other popular structures and provide the experimental
results in Section 4.3.
Training Data. In the pre-training stage, clean raw images
are required to generate synthetic noise data. In order to ob-
tain a strong pretrained model which can effectively adapt
to different sensors under various real-world scenarios, we
take the scene diversity and image quality into considera-
tion and carefully select ∼ 3.5k high-quality clean images
from two public datasets Fivek [4] and RealSR [5] captured
by DSLR. In the fine-tuning stage, we only use the paired
real data from two unknown types of cameras released by
the challenge organizer.
Training Details. As illustrated in Section 3.2, the model is
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Figure 4. Overview of the Multi-Perspective Feature Ensemble
(MPFE) strategy. Four entries varied by input resolution and neg-
ative value retention are provided to extract different noise char-
acteristics, which is further combined to generate more robust re-
sults.

trained in two stages. We detail the training configurations
as follows.

Synthetic pre-training stage. We pretrain the model from
scratch using the synthetic noise data aforementioned, with
the batch size of 8 and patch size of 224 for around 300k
iterations. The model is optimized by AdamW optimizer
using L1 loss, with the initial learning rate of 3e− 4, which
decreases by 0.6 in 100k and 200k iterations. This process
lasts for around three days on a single A100 GPU.

Real fine-tuning stage. We further finetune the model
using the provided real paired data for each specific camera,
with the batch size of 4 and patch size of 640 for around
5k iterations. Data augmentations include random flip and
rotation are applied. The model is optimized by AdamW
optimizer using L1 loss, with the initial learning rate of 1e−
4 and decreases by 0.6 in 1k and 3k iterations. It only takes
less than 5 hours to achieve the optimal results.

Note that given a new camera sensor, we only need to
perform few-shot fine-tuning without any inner modifica-
tion of the network, which can be completed within a few
hours to achieve optimal results, showing strong generality
and efficiency.

4. Experiments
We first provide the ablation studies to verify our main
contributions, followed by the comparison of our pipeline
against other methods.

4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our method on part of the MultiRAW
dataset officially provided by MIPI2024 challenge, which is
captured from two unknown types of cameras. For the main
results in comparison with other methods (Section 4.3), we

PAug IAug pre-training fine-tuning

Score PSNR SSIM Score PSNR SSIM

- - 18.23 19.37 0.812 - - -
✓ - 20.43 21.24 0.863 28.97 29.23 0.953
- ✓ 21.31 22.17 0.855 27.79 28.07 0.951

✓ ✓ 23.44 24.23 0.866 30.98 31.24 0.954

Table 1. Ablations of PAug module and IAug module on the sam-
pled training set.

Variants size128 size224 clip woclip Score PSNR SSIM

S2R-1 ✓ ✓ 30.89 31.15 0.953
S2R-2 ✓ ✓ 30.90 31.16 0.954
S2R-3 ✓ ✓ 30.83 31.10 0.952
S2R-4 ✓ ✓ 30.98 31.24 0.954

S2R+MPFE ✓ ✓ ✓ ✓ 31.22 31.47 0.956

Table 2. Ablations of the MPFE strategy on the sampled training
set. The top four rows indicate the single models with different
input characteristics and the last row is the ensemble results of
them.

use the label-inaccessible test set with 120 noise data for
each camera and run the results on the online server. For
the ablation studies (Section 4.2), in order to conveniently
perform offline evaluation on our own, we randomly crop
120 patches from the provided training set with ground truth
for each camera under the same resolution as the test set.
Evaluation metrics. The evaluation metrics include the
standard Peak Signal to Noise Ratio (PSNR) and the Struc-
tural Similarity Index [21] (SSIM) in grayscale. The overall
score is formulated as follows.

Score = PSNR− logk(SSIM), (10)

where k = 1.2 in the official implementation of the chal-
lenge. We use the average results of all predictions regard-
less of camera as the final evaluation score.

4.2. Ablation Studies

To verify the effectiveness our main contributions, we con-
duct evaluations on different variants of our method using
the sampled dataset described in Section 4.1.
Pattern-Augment (PAug) and Intensity-Augment (IAug)
module. One of our main contributions is building an enor-
mous synthetic noise set for the network to cover abundant
noise patterns and intensities, which is achieved using the
proposed PAug and IAug. We evaluate the two modules
in Table 1, where the first row denotes a baseline method
which simply samples a set of noise parameters without
any augmentation. Then we add PAug and IAug separately
upon the baseline. The last row is our final S2R pipeline
without MPFE strategy. Results demonstrate that the pro-
posed modules can bring considerable performance boosts.
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Ranking Score PSNR SSIM

1 (S2R+MPFE) 30.97 31.23 0.95
1 (S2R-4) 30.72 30.99 0.95

2 30.71 30.96 0.95
3 29.69 29.98 0.95
4 29.63 29.93 0.95
5 29.61 29.93 0.94

Table 3. The released top-five results of MIPI2024 challenge on
the provided test set. Our original pipeline without MPFE strategy
(the second row) can still reach the top performance.

Method Network Score PSNR SSIM

pre-training

LED UNet 19.40 20.42 0.83
S2R-4 UNet 19.58 20.67 0.82
LED Restormer 21.36 22.35 0.84

S2R-4 Restormer 22.32 23.28 0.84
LED NAFNet 21.32 22.25 0.86

S2R-4 NAFNet 23.38 24.19 0.87

fine-tuning

LED NAFNet 28.24 28.53 0.95
S2R-4 NAFNet 30.72 30.99 0.95

S2R+MPFE NAFNet 30.97 31.23 0.95

Table 4. Comparison results of our S2R with the state-of-the-art
LED for both pre-training and fine-tuning stage on the provided
test set.

Multi-Perspective Feature Ensemble (MPFE) strategy.
The MPFE strategy is designed to combine diverse noise
information to augment our S2R pipeline with more robust
network learning. As illustrated in Figure 4, we differ the
entries of the network into four variants (denoted as S2R-
1,2,3,4) with different patch size and whether to apply clip
operation to the noise data. The results are summarized in
Table 2, where ‘size128’ and ‘size224’ denote cropping the
inputs to 128×128 and 224×224, respectively. ‘clip’ means
the noise data is clamped to [0, 1] before feeding into the
network while ‘woclip’ means maintaining the original data
unchanged (i.e. keep the negative values of the noise). The
last row shows the score of applying MPFE strategy, which
integrates the predictions of the above four single models
through average summation. The results indicate an obvi-
ous performance boost of the MPFE strategy compared to
all the ensemble models, verifying its strong ability to better
distinguish real signals from noise.

Figure 5. Qualitative comparisons on the provided test set. The
first row is the noise inputs, followed by the predictions of LED,
our single model S2R-4 and MPFE augmented model, respec-
tively.

4.3. Comparison with State-of-the-Arts

Results on MIPI2024 challenge. We reach 30.97 Score
with PSNR 31.23 and SSIM 0.95 on the real test set, rank-
ing 1st on the MIPI2024 Few-shot RAW Image Denoising
Challenge. As illustrated in Table 3, we lead the second and
third place by 0.26 and 1.28 Score, respectively. Note that
even the single model S2R-4 without MPFE strategy can
still achieve superior results, verifying the effectiveness of
the proposed method.

Comparison with LED. We compare our S2R pipeline
with the state-of-the-art few-shot method LED in Table 4.
Evaluation results of LED for pre-training are directly in-
ferred using the pre-trained model released by the authors.
For fine-tuning, we reproduce the results using the official
code and configuration with the same training set as ours.
We can see that our S2R outperforms LED on both stages,
showing the stronger generalization ability of our pipeline.

We also provide the qualitative comparison in Figure 5.
The visualization results show that the model trained with
S2R can better distinguish real signals with clearer details
than LED, while MPFE can further improve the accuracy of
noise removal.

Apply S2R to different network architecture. We further
equip our pipeline on other network architectures including
UNet [19] and Restormer [25]. The results are also dis-
played on Table 4, which shows that our S2R pipeline can
achieve competitive performance on arbitrary networks.
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5. Conclusion
In this paper, we propose a simple yet effective two-
stage pipeline S2R for learning from synthetic noise to
real noise. In the pre-training stage, we synthesize an
enormous noise set with abundant noise forms and levels
through the designed Pattern-Augment (PAug) module and
Intensity-Augment (IAug) module without parameter cal-
ibration, which enhances the network with strong gener-
alization ability for efficiently adapting to specific camera
sensor fine-tuned with few-shot paired real data. We fur-
ther propose a Multi-Perspective Feature Ensemble (MPFE)
strategy to utilize different characteristics of noise features
to better extract the real signals, which significantly boosts
the performance. We achieve 1st place in the MIPI2024
Few-shot RAW Image Denoising Challenge, offering an
easily-plugged pipeline for future research.
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