
LaDiffGAN: Training GANs with Diffusion Supervision in Latent Spaces

Xuhui Liu1*, Bohan Zeng1*, Sicheng Gao 1, Shanglin Li1, Yutang Feng1,
Hong Li1, Boyu Liu1, Jianzhuang Liu2,Baochang Zhang1,3,4†

1Beihang University 2Shenzhen Institute of Advanced Technology, Shenzhen, China
3Zhongguancun Laboratory, Beijing, China 4Nanchang Institute of Technology, Nanchang, China

Abstract

Diffusion models have recently become increasingly
popular in a number of computer vision tasks, but they fail
to achieve satisfactory results for unsupervised image-to-
image translation, since they require massive training data
and rely heavily on extra guidance. In this scenario, GANs
can alleviate these issues existing in diffusion models, al-
beit with suboptimal quality. In this paper, we leverage the
advantages of both GANs and diffusion models by training
GANs with diffusion supervision in latent spaces (LaDiff-
GAN) to solve the unsupervised image-to-image translation
task. Firstly, to promote style transfer quality, we encode
the data in specific latent spaces with styles of the target and
source domains. Secondly, we introduce the diffusion pro-
cess with different amounts of Gaussian noise to enhance
the modeling capability of GANs on the complex data dis-
tribution. We accordingly design a latent diffusion GAN loss
to align the latent features between generated and training
images. Lastly, we introduce a heterogeneous conditional
denoising loss that incorporates image-level supervision to
further improve the quality of generated results. Our LaDif-
fGAN significantly alleviates the drawbacks associated with
diffusion models, such as data leakage, high inference cost,
and high dependence on large training data sets. Exten-
sive experiments show that LaDiffGAN outperforms previ-
ous GAN models and delivers comparable or even better
performance than diffusion models.

1. Introduction

Image-to-image translation, especially unsupervised with
unpaired images, is one of the hottest research fields in ma-
chine learning and computer vision, and has a variety of
far-reaching applications including photography, coloriza-
tion, image inpainting, and style transfer [20, 29, 76]. As
essentially a mapping function across two image domains,
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image-to-image translation is usually considered a genera-
tive task. Accordingly, many models have emerged obtain-
ing impressive results, such as generative adversarial net-
works (GANs) [20], variational autoencoders (VAEs) [35]
and flow models [34]. Nonetheless, due to the lack of paired
samples coupled with semantic disparities across different
domains, unsupervised image-to-image translation remains
a challenging problem.

GANs employing a shared latent space and the cy-
cle consistency assumption [76] have been the prevailing
choice for unsupervised image-to-image translation in the
past several years. However, GANs are notoriously sus-
ceptible to training instability and even mode collapse, and
prone to generate unnatural details, which reveals the lim-
ited capability of GANs to capture complex data distribu-
tions. Recently, the great success of diffusion probabilistic
models (DMs) [57] in image synthesis has attracted signifi-
cant attention to explore their potential in image translation.
Promptomania 1 attains impressive performance on image
style transfer, yet it requires massive training data and re-
lies heavily on the text-to-image model [8, 22]. CycleDif-
fusion [66] successfully employs DMs to solve the unpaired
image translation without extra guidance (e.g., text descrip-
tion and semantic maps), but it shows unsatisfactory results
when there are limited training data and a large gap across
translation domains.

DMs’ performances degrade with small training sets,
and may regenerate training examples leading to copyright
infringement issues. For instance, NovelAI 2 has been sued
for copyright infringement due to the striking similarity be-
tween the results produced by Stable Diffusion [53] and the
data in the training set. These drawbacks mainly attribute
to the fact that the neural networks of DMs are directly
fed with the ground truth, causing insufficient generaliza-
tion with small training sets. Moreover, as verified by [9],
such networks tend to memorize the information from the
training set. As shown in Figs. 1 (d) and (e), the result
of CycleDiffusion is similar to the sample from the train-

1https://promptomania.com
2https://novelai.net
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Figure 1. (a) Input image. (b) Result generated by our LaDiffGAN. (c) Result generated by U-GAT-IT. (d) Result generated by CycleDiffu-
sion. (e) A training image similar to (d). It is evident that our model generates images of higher-quality stylization than the state-of-the-art
GAN model. Moreover, while CycleDiffusion can generate images that match the style of the target domain, as demonstrated in (d), quite
similar images can be directly identified from the training dataset, as shown in (e).

ing set, and we observe that such privacy leakage is par-
ticularly evident in small training sets. In contrast, GANs
only use the ground truth to supervise the generation pro-
cess, thereby mitigating the problem of small data sets and
reducing the likelihood of severe data leakage. Moreover,
DMs faces the problem of long inference time in practice,
which imposes a severe constraint in situations that require
real-time processing.

This paper comprehensively considers safety, conve-
nience, quality, and inference speed for unsupervised
images-to-image translation. To address these critical con-
cerns, we propose LaDiffGAN, a new framework that en-
ables GANs to be optimized in latent spaces using the diffu-
sion process, providing a deeper exploration of the potential
of GANs in handling complex data distributions and gener-
ating better images. For safety and inference speed, we se-
lect GANs over DMs as the base model to mitigate the risk
of data leakage and high inference cost. For quality, we en-
code the input and generated data into specific latent spaces
with the styles of the target and source domains and employ
the latent diffusion Markov chain to model richer distribu-
tions to facilitate the generators and discriminators to cap-
ture the essential representations of the target and source
domains and be more resistant to overfitting. As such,
LaDiffGAN does not rely on extra guidance nor massive
training data to handle the unsupervised images-to-image
translation problem, meeting the convenience requirement.
We emphasize that LaDiffGAN is different from Diffusion-
GAN [65], which only injects instance noise in the image
space during forward diffusion for stable training of GANs.
LaDiffGAN supervises the styles of generated results in the
latent spaces and leverages the pre-trained denoising net-
works conditioned on the downsampled generated images
to further improve the quality of generation. It incorporates
both image-level and latent-level supervision in a unified
framework. We achieve that by developing two new loss
functions, latent diffusion GAN (LDG) loss, and heteroge-

neous conditional denoising (HCD) loss. Overall, these de-
signs enhance the optimization of the GAN model and pro-
mote the generation of better images with improved quality
and fidelity, as shown in Fig. 1.

The main contributions of this paper are summarized as
follows:

• We comprehensively analyze the pros and cons of GANs
and diffusion models, and then present LaDiffGAN to
explore the ability of GANs in handling unsupervised
image-to-image translation by training GANs in the la-
tent spaces using diffusion process.

• We design a latent diffusion GAN loss to optimize the la-
tent representations of generated results, and a heteroge-
neous conditional denoising loss to introduce image-level
supervision for high-quality generation.

• We conduct extensive experiments on various unsuper-
vised image-to-image tasks. The proposed LaDiffGAN
exhibits state-of-the-art qualitative and quantitative re-
sults compared with previous methods without the as-
sistance of extra guidance such as text description and
sketch.

2. Related Work

2.1. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [20] and their
variants are trained this way: the generator of GANs tries
to generate results that can fool the discriminator, while the
discriminator is updated by distinguishing real and fake im-
ages. So far, GANs have been applied to a variety of gener-
ative tasks, such as DALL-E text-to-image generation [52],
super-resolution (SRGAN [38], ESRGAN [64], SFTGAN
[73], and GLEAN [10]), and style editing (styleGAN [29]
and styleGAN2 [30]). To address some of the challenges as-
sociated with GAN training, several techniques have been
introduced. For example, Diffusion GAN [65], DiffAug
[75], and ADA [28] aim to improve the stability of GAN
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training. Meanwhile, ProjectGAN [56] incorporates a pro-
jection step to supervise the generated results, projecting
both generated and real samples into the feature space of
EfficientNet [60]. BigGAN [7] realizes high-quality multi-
resolution image synthesis with big models and large batch
sizes. However, many experimental results show that it is
difficult for GANs to capture complex data distributions
[65].

2.2. Diffusion Probabilistic Models

Deep diffusion models (DMs) are first introduced by Sohl-
Dickstein et al. [57] as a novel generative model that gen-
erates samples by gradually denoising images corrupted by
Gaussian noise. Recent DMs advances have demonstrated
their superior performance in image synthesis, including
DDPM [25], DDIM [58], ADM [17], LSGM [62], LDM
[53], and DiT [50]. DDGAN [68] can reduce the number
of sampling steps by directly predicting the ground truth
in each timestep. DMs also have achieved state-of-the-art
performance in other synthesis tasks, such as text-to-image
generation demonstrated in GLIDE [48], speech synthesis
[36, 43], and super-resolution (SRDiff [40] and SR3 [55]).
Moreover, DMs have been applied to text-to-3D synthesis
in DreamFusion [51] and Magic3D [42], and other 3D ob-
ject synthesis in RenderDiffusion [3], diffusion SDF [41],
and 3D point cloud generation [46]. More applications in-
clude video synthesis [24, 26], semantic segmentation [6],
text-to-motion generation [61] and object detection [13].
Besides, SinDDM [37] and SinDiffusion [63] generate di-
verse results by learning the internal patch distribution from
a single image. Overall, DMs have shown promising results
and have been widely adopted in various synthesis tasks.

2.3. Unsupervised Image-to-Image Translation

Unsupervised image-to-image translation involves generat-
ing images in domain A based on input images in domain B
without paired training data.

Several approaches have been proposed for unsupervised
image-to-image translation. CycleGAN [76], DiscoGAN
[32], and Dual-GAN [71] incorporate a cycle-consistency
loss to preserve key attributes of input images during
style transfer. Inspired by cVAE-GAN [5] and cLR-GAN
[18, 19], BicycleGAN [77] jointly adopts the latent code
and bi-directional generation to achieve performance im-
provement. MUNIT [27] and DRIT [39] decompose the la-
tent codes of images into a domain-invariant content space
and a domain-specific style space to obtain diverse outputs.
StarGAN [16] enhances CycleGAN by enabling transla-
tion across multiple domains simultaneously. CoupledGAN
[45], UNIT [44], ComboGAN [4], and XGAN [54] encode
images from different domains into a shared latent space.
AGGAN [1] leverages an attention model to distinguish
foreground from background to improve the quality of gen-

erated images, but it cannot aid object shape transfer. Car-
toonGAN [14] performs well in cartoon-style synthesis but
is unsuitable for object shape modification in images. U-
GAT-IT [31] employs attention modules for feature selec-
tion. TransGAGA [67] and TravelGAN [2] represent la-
tent features through Cartesian product and preserving vec-
tor arithmetic. NiceGAN [12] proposes a training strategy
in which the discriminator’s encoder is reused for the gen-
erator and only trained when maximizing the adversarial
loss. DRB-GAN [69] and [11, 70, 72] utilize one model for
multiple style image synthesis. CUT [49] and DCLGAN
[21] attempt to alleviate the cycle loss’s restrictiveness in
GAN models. However, compared with the improvements
brought by the cycle loss, its shortcomings are tolerable.

Recent methods, Prompt-to-Prompt [22], Instruct-
Pix2Pix [8], and [52], use text models for object edit-
ing. CycleDiffusion [66] explores the shared latent space
of diffusion models and can achieve unsupervised image-
to-image translation by adopting pre-trained ILVR [15],
SDEdit [47], and EGSDE [74]. However, when two do-
mains differ greatly, it is challenging for CycleDiffusion to
achieve style transfer. SinDDM [37] can achieve style trans-
fer faithful to the internal statistics of training data. Never-
theless, these diffusion models face some issues, such as
slow inference, large amounts of training data, and disclo-
sure of dataset information.

3. Method
In this section, we present LaDiffGAN in detail, an ef-
ficient GAN model that effectively addresses the criti-
cal challenges posed by diffusion models and significantly
improves the fidelity of GAN’s outputs for unsupervised
image-to-image translation. LaDiffGAN achieves this by
encoding images into latent spaces and introducing two new
loss functions that iteratively supervise the training process
in the diffusion manner.

3.1. Overview of LaDiffGAN

Given the source domain Xs and target domain Xd, the goal
of LaDiffGAN is to map images from Xs to high-fidelity re-
sults with the style of Xd. The overall training framework
of LaDiffGAN is shown in Fig. 2. Like most classic GAN
models for the image-to-image translation problem, LaDif-
fGAN consists of two generators Gs→d and Gd→s and two
discriminators Ds and Dd, which provide image-level su-
pervision. Inspired by LDM [53] and Diffusion-GAN [65],
we introduce a pre-trained autoencoder Ed to map Xd and
the generated result Xs→d into the target latent space, and
another pre-trained autoencoder Es to map Xs and the gen-
erated result Xd→s into the source latent space. A diffu-
sion Markov chain is then employed to iteratively inject
Gaussian noise into the latent features, which helps to en-
rich the distributions of the generators’ outputs. Moreover,
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Figure 2. Overview of our LaDiffGAN. Initially, we obtain translated images using the generators Gs→d and Gd→s of a GAN model. We
then encode these images into the latent spaces of the target and source domains to ensure the style consistency between the generated
and real images. Finally, we employ the latent diffusion models to supervise the generated results in both the image and latent spaces, as
depicted in Fig. 3. Ed and Es are two autoencoders [53] pre-trained on the target and source data sets, respectively, and are fixed during
LaDiffGAN training. Dd and Ds are two discriminators in the image space, while DLd and DLs are two discriminators in the latent spaces,
respectively.

we incorporate two latent discriminators DLs and DLd to
distinguish whether a latent feature is from a real or fake
image. To obtain style-matching and high-quality results,
we design two loss functions, latent diffusion GAN loss,
and heterogeneous conditional denoising loss. These loss
functions unify the image-level and latent-level supervision
in one framework, providing further constraint for both the
generators and the latent discriminators.

In essence, LaDiffGAN is a GAN model trained in the
latent spaces using the diffusion process, and only Gs→d is
used to generate images with the style of Xd during infer-
ence. Accordingly, LaDiffGAN can achieve high-quality
synthesis without extra guidance in real-time applications,
and alleviate the risk of data leakage.

3.2. Latent Diffusion GAN Loss

Different from previous methods such as UNIT [44], Com-
boGAN [4] and XGAN [54] that encode images from dif-
ferent domains into a sharing latent space for generating the
outputs conditioned on the latent code, LaDiffGAN encodes
both generated results and training images into the target
and source latent spaces. Moreover, the new latent diffu-
sion GAN (LDG) loss is introduced to penalize the latent
codes of generated images that are not well aligned with

those of the training images, ensuring the style consistency
between the generated and real images. Consequently, the
latent spaces enable LaDiffGAN to capture the unique style
characteristics of the target and source domains, facilitating
the generation of high-quality results.

Specifically, given samples xs and xd from domains Xs

and Xd, respectively, we first use the autoencoder Ed pre-
trained on the target domain to map xd and the generated
result from xs into the target latent space and extract their
style features:

zs→d, zd = Ed(Gs→d(xs)), Ed(xd). (1)

After that, we iteratively add Gaussian noise to zs→d and zd
through the forward diffusion chain with an adaptive length
T . Formally, we define the distributions of the latent codes
in timestep t by:

q(zs→d,t|zs→d) = N (zs→d,t|
√
γtzs→d, (1− γt)I),

q(zd,t|zd) = N (zd,t|
√
γtzd, (1− γt)I),

(2)

where γt ∈ (0, 1) are the variances of the Gaussian noise in
T iterations.

Then, we utilize the latent discriminator DLd to dis-
tinguish the fake and real latent codes at each timestep t.
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Figure 3. HCD loss computation. The denoising network ϵθd is
pre-trained on the target data set and fixed during LaDiffGAN
training.

Hence, the objective of the LDG loss Ls→d
LDG is for the gen-

erator Gs→d to fool DLd, so that the style of the generated
results well aligns with the target style, which is defined be-
low to optimize DLd and Gs→d:

Ls→d
LDG = Ezd,t∼q(zd,t|zd)[(DLd(zd,t, t))

2]+

Ezs→d,t∼q(zs→d,t|zs→d)[(1−DLd(zs→d,t, t))
2].
(3)

Supervising the latent codes on the target domain with
different Gaussian noise levels enables the generator Gs→d

to effectively produce better images with the desired style,
while making the latent discriminator DLd more robust to
overfitting. Furthermore, the maximum timestep T is adap-
tively adjusted in every iteration during training. It is note-
worthy that, since zt tends to approach pure noise as t in-
creases, we restrict T to {0, 1, ..., T/4} to avoid undesir-
able interference with the training of the latent discrimina-
tor DLd, where T is the step length of the diffusion chain
in the pre-training of the denoising network ϵθd (see Sec-
tion 3.3) and is set to 100 as DDIM [58]. T is adjusted as
follows:

T =
T · i
4K

, i ∈ {0, 1, ...,K}, (4)

where K denotes the number of maximum training itera-
tions. Following [65], we also sample t from {0, 1, ..., T }
uniformly for the computation of Ls→d

LDG.
In the above description of the LDG loss, we only define

half of it Ls→d
LDG. Another half Ld→s

LDG can be obtained simi-
larly and is omitted here. Finally, LLDG = Ls→d

LDG+Ld→s
LDG.

3.3. Heterogeneous Conditional Denoising Loss

In addition to the LDG loss which gives latent-level super-
vision, we accomplish image-level supervision by design-
ing the heterogeneous conditional denoising (HCD) loss to
further improve the quality of the generated results.

Conditional Latent Denoising Models. Before the train-
ing of LaDiffGAN, we follow LDM [53] to train a condi-
tional latent denoising module with 100 DDIM denoising
timesteps on the target latent space. Let ϵθd be the denois-
ing network, which is trained by predicting the noise ϵ from
zd,t conditioned on the downsampled images xd ↓. The
pre-training objective is defined as:

Ls→d
LDM = Ezd,t,xd,ϵ∼N (0,1),t[∥ϵ− ϵθd(zd,t, xd ↓, t)∥22],

(5)
where ϵ ∼ N (0, I), and ↓ represents the downsampling
operation. Similarly, another denoising network ϵθs is pre-
trained with xs, whose objective Ld→s

LDM is defined similar
to Eq. 5

HCD Loss. With the pre-trained conditional latent diffu-
sion models, we design the HCD loss to construct a relation
between the latent and image spaces. Unlike the commonly
used cycle loss on image translation tasks, which directly
matches the target image xd with the image xd→s→d gener-
ated by the target-to-source and source-to-target mappings
in the image space, the HCD loss leverages the pre-trained
diffusion model ϵθd to match the generated image space
with the latent space of the target domain, as shown in Fig.
3. The generation of xd→s→d is expressed as:

xd→s→d = Gs→d(Gd→s(xd)), (6)

and half of the HCD loss is defined as:

Ls→d
HCD = Ezd,t,ϵ∼N (0,1),t[∥ϵ− ϵθd(zd,t, xd→s→d ↓, t)∥22].

(7)
Ls→d
HCD uses xd→s→d as the image-level condition in the

latent denoising network ϵθd. Since ϵθd is fixed during LaD-
iffGAN training, minimizing Ls→d

HCD will update the gener-
ators such that their generated images xd→s→d can help the
generation of the target style.

Similarly, we can obtain the other half of the HCD loss
Ld→s
HCD. Finally, LHCD = Ls→d

HCD + Ld→s
HCD.

Note that compared with the cycle loss that imposes
strict image alignment between the target/source and gen-
erated images, our HCD loss allows for more variations in
the generated images due to the diffusion process.

3.4. Other Loss Functions

Following [31], we also introduce the commonly used loss
functions for unsupervised image-to-image translation, in-
cluding adversarial loss LGAN , cycle loss Lcycle, identity
loss Lidentity and CAM loss LCAM . On the whole, with
the pre-trained autoencoders and denoising networks, we
train LaDiffGAN to optimize the total objective:

Ltotal =α1LLDG + α2LHCD + Lother,

Lother =λ1LGAN + λ2Lcycle+

λ3Lidentity + λ4LCAM ,

(8)
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Table 1. Kernel Inception Distances obtained by difference image translation models. Lower is better.

Methods selfie2anime horse2zebra cat2dog vangogh2photo
DRIT 4.38 ± 0.40 3.35 ± 0.74 2.69 ± 0.87 6.47 ± 0.89
MUNIT 3.71 ± 0.39 2.68 ± 0.63 2.70 ± 0.47 5.54 ± 0.82
UNIT 5.14 ± 0.41 5.09 ± 0.92 2.65 ± 0.48 4.05 ± 0.43
U-GAT-IT 2.62 ± 0.30 2.77 ± 0.70 0.85 ± 0.28 2.33 ± 0.44
DCLGAN 12.7 ± 0.55 2.71 ± 0.43 1.27 ± 0.29 3.11 ± 0.46
LaDiffGAN (ours) 1.97 ± 0.23 2.61 ± 0.73 0.75 ± 0.26 2.16 ± 0.44
Methods anime2selfie zebra2horse dog2cat photo2vangogh
DRIT 4.51 ± 0.48 3.40 ± 0.37 3.58 ± 0.47 6.75 ± 0.80
MUNIT 3.49 ± 0.37 4.78 ± 0.65 3.46 ± 0.34 23.5 ± 0.85
UNIT 4.04 ± 0.36 4.30 ± 0.56 2.05 ± 0.30 3.78 ± 0.51
U-GAT-IT 1.57 ± 0.26 2.70 ± 0.50 0.82 ± 0.27 2.71 ± 0.60
DCLGAN 7.99 ± 0.62 5.74 ± 0.63 1.06 ± 0.23 18.8 ± 1.16
LaDiffGAN (ours) 1.52 ± 0.31 2.68 ± 0.49 0.76 ± 0.26 2.70 ± 0.61

where α1 = 0.2, α2 = 0.01, λ1 = 1, λ2 = 10, λ3 = 10,
and λ4 = 1000 are set empirically. More details of these
loss functions are provided in the supplementary materials.

4. Experiments
In addition to the extensive experiments described in this
section, we also provide more results in the supplementary
materials.

4.1. Implementation Details

Datasets. We evaluate the performance of LaDiffGAN on
four datasets: selfie2anime, horse2zebra, cat2dog, and van-
gogh2photo. (1) The selfie2anime dataset is presented in
U-GAT-IT [31], both the selfie and anime styles of which
have 3400 and 100 images for training and testing, respec-
tively. (2) The horse2zebra and vangogh2photo datasets are
built in CycleGAN [76], with the amounts of the classes for
training being: 1,067 (horse), 1,334 (zebra), 6,287 (photo),
and 400 (vangogh), and for testing: 120 (horse), 140 (ze-
bra), 751 (photo), and 400 (vangogh). Note that the training
data and the testing data of vangogh2photo are the same. (3)
The cat2dog dataset is used in DRIT [39], with the amounts
of the classes for training: 871 (cat) and 1,364 (dog), and
for testing: 100 (cat) and 100 (dog). All images are resized
to 256 × 256 for training.

Training Details. We adopt 4 A100-SXM4-40GB for
training. All of the models are trained by Adam [33] with
β1 = 0.5 and β2 = 0.999. To accelerate the training, we
adopt the pre-trained U-GAT-IT as the based model, which
was trained for 400,000 iterations, and is further trained for
100,000 iterations in LaDiffGAN.

Evaluation Metric. We adopt the Kernel Inception Dis-
tance (KID) as the quantitative metric to evaluate the im-

age quality, which computes the squared Maximum Mean
Discrepancy between the features of real and fake images,
where the features are extracted by the Inception model
[59]. Unlike Frechet Inception Distance (FID) [23], KID
is an unbiased metric, making it more reliable than FID,
especially with limited testing images. The lower KID in-
dicates that the generated images look more similar to the
real images [1].

4.2. Comparison with State-of-the-Art Methods

Methods. We compare our LaDiffGAN with state-of-
the-art (SOTA) GAN-based methods including DRIT [39],
MUNIT [27], UNIT [44], U-GAT-IT [31], and DCL-
GAN [21], and one diffusion-based method CycleDiffusion
(LDM+DDIM) [66]. We use their official code to train these
models on each dataset for 500,000 iterations.

Quantitative Comparison. The comparison on unsuper-
vised image-to-image translation is shown in Table 1. LaD-
iffGAN achieves the best performance on all four bench-
mark datasets, each of which contains two tasks, such as
selfie2anime and anime2selfie. Especially, LaDiffGAN ob-
tains pronounced improvements on the selfie2anime task.
Although the latest approach DCLGAN shows impressive
performance on the cat2dog and horse2zebra datasets, it
fails to obtain satisfactory results on both selfie2anime and
vangogh2photo. In contrast, LaDiffGAN succeeds in gen-
erating best results regardless of the amounts of changes in
both shape and texture between different domains.

Qualitative Comparison. A qualitative comparison is
given in Fig. 4, demonstrating that our LaDiffGAN gen-
erates better images with high visual quality and consistent
styles with the target domains, particularly when tackling
the challenging selfie2anime task. Although U-GAT-IT pro-
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(a) Input (b) LadiffGAN (c) U-GAT-IT (d) DCLGAN (e) UNIT (f) MUNIT (g) DRIT

Figure 4. Qualitative comparison with state-of-the-art GAN-based models.

Table 2. Ablation study on the selfie2anime dataset.

Methods selfie2anime anime2selfie
Baseline 2.62 ± 0.30 1.57 ± 0.26
Baseline + LDG loss 2.12 ± 0.26 1.58 ± 0.31
Baseline + HCD loss 2.44 ± 0.24 1.53 ± 0.32
LaDiffGAN 1.97 ± 0.23 1.52 ± 0.31

duces comparable quantitative results with LaDiffGAN, it
suffers from distortions (e.g., the eyes in the first row of
Fig. 4 (c)) or undesired styles (e.g., the fourth row of Fig. 4
(c)).

4.3. Ablation Study

We conduct a comprehensive ablation study to verify the
effectiveness of the proposed LDG loss and HCD loss.
Specifically, we utilize the selfie2anime dataset for evalu-
ation, which exhibits significant stylistic differences across
the domains. We use U-GAT-IT [31] as the baseline, and
construct three comparison models: (1) the baseline trained
with the LDG loss, (2) the baseline trained with the HCD
loss, (3) and the full model of LaDiffGAN with both the
losses. The results are shown in Table 2. We can see
that the two losses both have significant effects. Moreover,

Table 3. Quantitative comparison with CycleDiffusion and Diffu-
sionGAN on selfie2anime and anime2selfie.

Methods selfie2anime anime2selfie
CycleDiffusion 4.11 ± 0.59 8.94 ± 0.67
U-GAT-IT+DiffGAN 2.61 ± 0.28 1.75 ± 0.32
LaDiffGAN (ours) 1.97 ± 0.23 1.52 ± 0.31

Fig. 5 intuitively shows how the two losses work on the
selfie2anime task. Concretely, compared with the baseline
U-GAT-IT, the generated result of the baseline trained with
the LDG loss attains more high-quality style, while that of
the baseline trained with the HCD loss exhibits better visual
quality with fine textures. Meanwhile, our full model LaD-
iffGAN produces the best overall result and outperforms
other models.

4.4. Further Analysis

We further analyze the limitations of diffusion models for
unsupervised image synthesis when the amount of train-
ing data is limited. To this end, we conduct a compara-
tive analysis between the performances of LaDiffGAN and
CycleDiffusion (LDM+DDIM) [66]. CycleDiffusion is de-
signed to perform multiple tasks such as text-to-image gen-
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(a) Input (b) LaDiffGAN (c) U-GAT-IT+LDG (d) U-GAT-IT+HCD (e) U-GAT-IT

Figure 5. Visual results of the ablation study.

A

B

(a) Input (b) LaDiffGAN (c) CycleDiffusion

Figure 6. Row A: anime2selfie; Row B: selfie2anime.

eration and wild-animal-to-dog translation. We train it on
the selfie2anime dataset. The quantitative results are given
in Table 3. Evidently, CycleDiffusion performs poorly on
the image translation task with a large domain gap. We also
provide the qualitative comparison in Fig. 6, it is obvious
that LaDiffGAN exhibits much more consistent results with
the input than CycleDiffusion.

Moreover, we compare our LaDiffGAN with U-GAT-IT
trained by Diffusion-GAN [65] on the selfie2anime dataset.
As shown in Table 3, LaDiffGAN delivers better perfor-

mance on both the selfie2anime and anime2selfie tasks,
demonstrating its superior ability to Diffusion-GAN. Fur-
ther qualitative comparisons are provided in the supplemen-
tary materials.

4.5. Inference Time Comparison

We verify the efficiency of LaDiffGAN by comparing its
inference time with CycleDiffusion. Taking frames-per-
second (FPS) as the evaluation metric, we randomly select
100 samples for testing. As a result, the FPS of LaDiffGAN
is 35.54, much faster than that of CycleDiffusion (0.21),
demonstrating the great efficiency of LaDiffGAN. Note that
since LaDiffGAN only uses the generator Gs→d for infer-
ence, its time cost is the same as U-GAT-IT.

5. Conclusion

Despite the great success of diffusion models in image syn-
thesis, GANs still matter for unsupervised image-to-image
translation. In this paper, we propose LaDiffGAN which
trains GANs with diffusion supervision in latent spaces. We
employ two autoencoders to map images into two specific
latent spaces with styles of the target and source domains,
and then introduce a latent diffusion GAN loss to align the
latent codes between generated and training images. More-
over, we design a heterogeneous conditional denoising loss
that incorporates image-level supervision to further enhance
the quality of generated results. Extensive experiments il-
lustrate that our LaDiffGAN achieves state-of-the-art per-
formance.
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