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Abstract

Recent research has highlighted improvements in high-
quality imaging guided by event cameras, with most of these
efforts concentrating on the RGB domain. However, these
advancements frequently neglect the unique challenges in-
troduced by the inherent flaws in the sensor design of event
cameras in the RAW domain. Specifically, this sensor design
results in the partial loss of pixel values, posing new chal-
lenges for RAW domain processes like demosaicing. The
challenge intensifies as most research in the RAW domain
is based on the premise that each pixel contains a value,
making the straightforward adaptation of these methods to
event camera demosaicing problematic. To end this, we
present a Swin-Transformer-based backbone and a pixel-
focus loss function for demosaicing with missing pixel val-
ues in RAW domain processing. Our core motivation is to
refine a general and widely applicable foundational model
from the RGB domain for RAW domain processing, thereby
broadening the model’s applicability within the entire imag-
ing process. Our method harnesses multi-scale processing
and space-to-depth techniques to ensure efficiency and re-
duce computing complexity. We also proposed the Pixel-
focus Loss function for network fine-tuning to improve net-
work convergence based on our discovery of a long-tailed
distribution in training loss. Our method has undergone
validation on the MIPI Demosaic Challenge dataset, with
subsequent analytical experimentation confirming its ef-
ficacy. All code and trained models are released here:
https://github.com/yunfanLu/ev-demosaic.

1. Introduction
The event camera [8, 53, 59], with its low latency (<
100µs), high dynamic range (> 120dB), high temporal
resolution (> 1000fps), and efficient power consump-
tion, has garnered significant interest for enhancing com-
putational imaging in applications, e.g., video frame in-
terpolation [28, 35, 46], super-resolution [15, 29], deblur-
ring [14, 44, 52], and high dynamic range [32, 38]. These
works are realized in the RGB domain, based on the premise

(a) Raw Image and 
Sensor design (b) RGB Color Image

×

Figure 1. Contemporary design of an actual event camera sensor
(Hybridevs sensor), featuring red, green, and blue pixels for out-
putting RGB RAW signals. Black pixels in the lower right corner
of the green and red areas are designated for event signal output,
and white pixels do not emit any signals. The demosaicing task
aims to convert a RAW image with RGB signals and black holes
(a) into a full-color image with three RGB channels (b).

that the camera sensor can simultaneously and seamlessly
deliver RGB images and events. These RGB images are ob-
tained by RAW image processing approaches. Specifically,
RAW domain approaches convert RAW images, where each
pixel contains only one type of color information with
noise, into full-color images with all three RGB color infor-
mation with high-quality [13]. Filling in the missing color
information is known as demosaicing [31, 53], a core com-
ponent of RAW domain image process.

However, the transformation of RAW to RGB faces sig-
nificant challenges due to the existing event sensor chip de-
sign technology. Specifically, event cameras produce RAW
images where specific pixels are absent, as illustrated in
Fig. 1. These missing pixels emit event signals, not RGB
signals, resulting in incomplete pixel values in the RAW
output. This absence of pixel values poses challenges for
traditional RAW domain processing approaches, such as de-
mosaicing, because the pixels emitting event signals cause
the RAW image to lose a quarter of its red and blue color
information. To effectively address the challenge of enhanc-
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ing downstream RGB images/videos with event guidance,
it is imperative to transform incomplete RAW images into
high-quality RGB full-color images without losing infor-
mation. Moreover, minimizing accumulated errors in this
transformation process is essential for improving the qual-
ity of inputs for downstream tasks [12].

RAW image process methods [1, 10, 17, 27, 31, 37, 43,
57] are predicated on traditional sensor technology, wherein
each pixel is capable of capturing a color signal. These
methods can be divided into model-based [10, 31, 43, 57]
and learning-based methods [1, 17, 37]. Learning-based
approaches have attracted substantial interest due to the
powerful fitting capabilities and robust generalizability of
neural networks. Inspired by the evolution of network ar-
chitectures, these methods primarily aim to integrate and
innovate neural network designs for RAW to RGB con-
version mapping. Many convolutional neural networks
(CNNs) [1, 17, 37] were designed as the backbone for
tasks such as demosaicing and denoising of RAW images.
For instance, PyNet [12] has designed a multi-scale, multi-
resolution CNN network architecture for processing RAW
into RGB. More recently, benefits from the enhanced con-
textual modeling abilities and broader receptive fields from
Vision Transformers (ViT) [7]. Many Transformer-based
methods are proposed for image processing [16, 26, 42,
49, 51, 55]. For example, RSTCANet [51] employs the
Swin-Transformer [9, 22] to the demosaicing, incorporat-
ing global residual connections. However, RSTCANet [51]
stacks Swin-Transformer layers [22, 24, 25] without down-
sample and multi-scale leads to higher computational com-
plexity while failing to provide the network with a suffi-
ciently large field of view.

Based on these considerations, we employ the Swin-
Transformer-based backbone and a pixel-focus loss func-
tion for event camera demosaicing. Our motivation is three-
fold: (1) Scalability: The Swin Transformer is a widely
used and powerful foundational model in the RGB domain.
Adapting it to the RAW domain could bridge foundational
modeling across RAW and RGB imaging tasks. (2) Effi-
ciency: RAW domain methods are upstream of RGB do-
main processes and underpin all computer vision tasks.
Therefore, RAW domain methods need to be sufficiently ef-
ficient to support downstream applications in the real world.
(3) Training Effectivity: A long-tail distribution of training
loss was identified for the demosaicing task. Consequently,
the pixel-focus loss was designed to facilitate a two-stage
training process, enhancing the network’s performance.

To achieve scalability, we refine the standard opera-
tors from the Swin-transformer [9, 22] while avoiding cus-
tomizations to enhance its portability. To ensure efficiency,
we initially employ the space-to-depth [5] method to reduce
the network’s resolution and design a network structure akin
to U-Net [39], achieving multi-scale and multi-resolution

capabilities. This structure allows for a broader field of view
with fewer layers. For effective training, we devised a two-
stage loss function to fine-tune the network after completing
the first training phase with Charbonnier loss [18].

Our method underwent testing on the MIPI Demosaic
Challenge dataset [34, 53] of the CVPR 2024 Workshop,
demonstrating its applicability and performance. Subse-
quently, we conducted additional analytical experiments to
evaluate its robustness and adaptability. These tests solidi-
fied the method’s effectiveness in various scenarios, clearly
illustrating the superiority of our approach in addressing the
intricacies of demosaicing in the RAW domain. Further-
more, we believe this work will inspire applications in the
RAW domain and catalyze enhancements across multiple
RAW-based tasks, fostering a new wave of innovation.

2. Related Works

Modern digital cameras capture light, producing images
with individual color channels (e.g., red, green, or blue) for
each pixel [30]. To compensate for the absence of color
information, demosaicing is devised to reconstruct a full-
color image from a single-channel RAW image [20]. In
addition, owing to the wave-particle duality of light and the
instability induced by dark currents in electronic devices,
noise is a pervasive issue in the pixels of RAW images [3].
Consequently, the processes of denoising and demosaicing
frequently occur concurrently. Our paper focuses on the
RAW domain processing of event cameras, prioritizing the
demosaicing task due to its unique characteristics from the
event camera sensor design.

2.1. Camera RAW Image Demosaicing

Demosaicing approaches can be categorized into two main
groups: (1) model-based methodologies [10, 31, 43, 57],
which rely on mathematical models and spatial-spectral im-
age priors for image reconstruction and (2) learning-based
methodologies [1, 12, 17, 23, 24, 37, 45, 50], which lever-
age process mappings learned from extensive datasets of
ground-truth images and corresponding mosaic counter-
parts. These techniques use different neural networks, e.g.,
CNNs and Transformers, to learn complex mappings be-
tween mosaic images and their corresponding full-color im-
ages. While CNN architectures have been widely used
in learning-based demosaicing methods, they are limited
in fixed-size receptive fields of convolution kernels and
global context awareness compared with Transformer [51].
As a result, recent advancements in Transformer architec-
tures, particularly the Swin-Transformer [51], have shown
promise in addressing these challenges and improving the
performance of learning-based demosaicing approaches.
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(a) Input RAW Image (b) Output with Difference-map
(PSNR:17.46)

(c) Difference distribution
(PSNR:17.46)

(d) Output with Difference-map
(PSNR:29.53)

(e) Difference distribution
(PSNR:29.53)

(f) Ground Thrush RGB Image (g) Output with Difference-map
(PSNR:34.16)

(h) Difference distribution
(PSNR:34.16)

(i) Output with Difference-map
(PSNR:39.72)

(j) Difference distribution
(PSNR:39.72)

(k) Input RAW Image (l) Output with Difference-map
(PSNR:15.53)

(m) Difference distribution
(PSNR:15.53)

(n) Output with Difference-map
(PSNR:29.98)

(o) Difference distribution
(PSNR:29.98)

(p) Ground Thrush RGB Image (q) Output with Difference-map
(PSNR:31.63)

(r) Difference distribution
(PSNR:31.63)

(s) Output with Difference-map
(PSNR:35.88)

(t) Difference distribution
(PSNR:35.88)

(I) An example with less edge and texture

(II) An example with more edge and texture

Figure 2. Visual results of two images at different stages of training. Example (I) displays an image with less edge and texture, featuring
extensive areas of sky and lake, while example (II) presents an image rich in edge and texture, including animal fur and splashing water. For
these two examples, four groups of reconstruction results are shown under varying PSNR values, along with different maps and difference
distributions. Here, ”difference” refers to the absolute value of discrepancies compared to the ground truth. As PSNR increases, the
differences exhibit a long-tailed distribution.

2.2. Transformer-based Imaging Processes

Transformer have been employed in many imaging pro-
cesses, e.g., image/video super-resolution [29, 54], deblur-
ring [56]. Remarkably, Swin-Transformer [9, 21, 22] uti-
lizes the shifted window mechanism to capture long-range
dependencies in images, enabling effective aggregation of
information from distant spatial locations, presenting im-
pressive performance in vision tasks like super-resolution
[6, 19], video deblurring [4], and video frame interpolation
[9, 26]. Besides, Swin-Transformer’s hierarchical archi-
tecture partitions input images into smaller patches, which
are then processed through multiple transformer blocks, fa-
cilitating the learning of both local and global features.
For example, [22] utilizes a sequence of residual Swin-
Transformer blocks for deep feature extraction, demonstrat-

ing leading-edge performance across various image super-
resolution tasks. Consequently, inspired by these success-
ful works [4, 9, 22] we also employ Swin-Transformer as a
backbone to leverage the demosaicing.

2.3. Image Reconstruction Loss Functions

A series of works prefer Charbonnier Loss [18] as the loss
function to train their neural network for image reconstruc-
tion [48, 58]. Nevertheless, areas characterized by numer-
ous high-frequency details, e.g. edges and textures, merit
increased attention compared to low-frequency and smooth
regions that are easily recoverable during the training pro-
cess, as shown in Fig. 2. In [23], an adaptive-threshold
edge loss is introduced to tackle this challenge, which adap-
tively adjusts the edge detection threshold for different im-
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(d) Swin-Transformer Internal Decoder Block
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(b) Swin-Transformer Internal Decoder Block
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Figure 3. Overview of the event camera demosaicing method. The input RAW image is first preprocessed using space-to-depth and 1×1
convolution operations. The encoder then extracts multi-scale features using Swin Transformer blocks with the shifted window mechanism.
The decoder mirrors the encoder’s structure and incorporates skip connections to recover spatial details. Finally, the reconstruction module
generates the output RGB image. (a) Encoder block architecture. (b) Shifted window mechanism for cross-window interactions. (c)
Decoder block architecture.

age patches based on their edge density, allowing the model
to focus more on regions with rich edge details during train-
ing. However, the loss in [23] needs to divide the image into
specific patches according to their edge density, demanding
a series of complicated thresholds and cross-entropy loss
calculations. Consequently, we offer a facilitated approach
called Pixel Focus Loss to optimize the model to capture
subtle differences effectively.

3. Methods

This section presents the details of our event camera demo-
saicing method. As illustrated in Fig. 3, our method lever-
ages the strengths of the Swin-Transformer [22] and the U-
Net architecture [39] to take the RAW image with missing
pixel values as input and aims to reconstruct a high-quality
RGB image. Our framework consists of five key compo-
nents: (1) preprocessing 3.1 with a space-to-depth opera-
tion [40] and a 1 × 1 convolution, (2) encoding 3.2 with
Swin-Transformer and shifted window mechanism, (3) de-
coding 3.3 with mirrored encoding modules, (4) reconstruc-
tion 3.4 with mirrored preprocessing modules, and (5) loss

functions 3.5 with exquisite designs.

3.1. Preprocessing

The preprocessing module aims to transform the input RAW
image into a suitable representation for the subsequent en-
coding stages while reducing the computational complex-
ity. Given the input RAW image IRAW ∈ RH×W×1, we
apply a space-to-depth operation [5] with a factor of s to
reduce the spatial resolution to (H/s) × (W/s) and in-
crease the channel dimension to s2. This operation effec-
tively reduces the model complexity, as the computational
cost is linear with respect to the number of channels and
quadratic concerning the spatial resolution [22]. Subse-
quently, a 1 × 1 convolution is employed to generate the
feature F0 ∈ R(H/s)×(W/s)×C from the RAW image. To
incorporate positional information, we add positional em-
beddings Epos ∈ R(H/s)×(W/s)×C to F0. The positional
embeddings [47] are computed using a sinusoidal function:{

Epos(2i) = sin
(
p/100002i/C

)
Epos(2i+ 1) = cos

(
p/100002i/C

)
,

(1)
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(a)

(b)

(c)

Range 0 to 1 Range 0 to 0.1
Figure 4. Loss functions visualization. (a) (b) and (c) refer to Charbonnier and pixel-focus loss with the power and the exponential function,
respectively. The line charts loss functions within the 0-1 range and their gradients. It also provides a magnified view of the 0 to 0.1 interval
to observe the characteristics of different loss functions better when dealing with long-tail distributions.

where p represents the position index and i is the dimension
index. The resulting preprocessed feature representation is
obtained as F

′

0 = F0 + Epos.

3.2. Encoding

The encoding module aims to extract multi-scale features
and capture long-range dependencies. We adopt a U-Net-
like architecture [39] with the Swin-Transformer [22] as the
backbone. The encoding module consists of four stages,
each containing a Swin-Transformer block followed by a
down-sample layer. The Swin-Transformer block com-
prises a Layer Normalization (LN) layer [2], a Window-
based Multi-head Self-Attention (W-MSA) module [24],
and a Multi-Layer Perceptron (MLP). The W-MSA mod-
ule, illustrated in Fig. 3 (a), performs self-attention within
local windows of varying sizes, allowing the model to
capture multi-scale features and structural details at dif-
ferent granularities. The Shifted Window mechanism, il-
lustrated in Fig. 3 (c), is employed in alternating Swin-
Transformer blocks to facilitate cross-window interactions
and enhance the model’s representational power. After each
Swin-Transformer block, a down-sample layer is applied to
half the resolution of feature maps. This multi-scale archi-
tecture enables the model to process information at multiple
scales while progressively reducing the spatial resolution.
Each downsampling operation reduces the computational
complexity by a factor of 4 while quadrupling the receptive
field, enabling the model to capture a large view field.

3.3. Decoding

The decoding module aims to gradually upsample the fea-
ture maps and recover the spatial resolution of the output
image. It follows a symmetric structure to the encoding
module, consisting of four stages. Each decoding stage con-
tains a decoder block, as depicted in Fig. 3 (b), followed
by an up-sample layer. The decoder block comprises an
LN layer, a W-MSA module, and an MLP, as illustrated in
Fig. 3 (d). The W-MSA module in the decoder block oper-
ates similarly to its counterpart in the encoder block, cap-
turing local dependencies within windows. An up-sample
layer is employed after each decoder block to increase the
spatial resolution. Furthermore, skip connections are intro-
duced between corresponding encoder and decoder stages
to facilitate the flow of information and aid in recovering
fine-grained details. The multi-scale architecture of the de-
coding module enables the model to gradually refine the re-
constructed image while incorporating features from differ-
ent scales, leading to improved demosaicing performance.

3.4. Reconstruction

The reconstruction module aims to generate the final output
RGB image from the upsampled feature maps produced by
the decoding module. To achieve this, we apply a depth-to-
space operation [41] to recover the resolution. This step
is crucial for maintaining image quality and minimizing
distortions introduced during preprocessing. The depth-to-
space operation rearranges the features and increases the
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（a）Raw （b）RSTCANet ! (c) RSTCANet "

（d）Ground Truth （e）RSTCANet # (f) Ours

（g）Raw （h）RSTCANet ! (i) RSTCANet "

（j）Ground Truth （k）RSTCANet # (l) Ours
Figure 5. Visualized results of our method and compared method - RSTCANet [51]. Comparison methods 1, 2, and 3, respectively
represent the processing directly on the original RAW, processing after converting the original RAW into Bayer Pattern, and the results
after fine-tuning RSTCANet [51].

spatial resolution by a factor of s, restoring the original
spatial resolution of the input image. Finally, we employ
a 1×1 convolution to map the high-dimensional features to
the three RGB channels with shape H ×W × 3.

3.5. Loss function

To train our demosaicing network, we employ a two-stage
training approach. In the first stage, we use the Charbonnier
loss [18] for pre-training. The Charbonnier loss is a com-
monly used loss function in image processing as shown:

LCharbonnier =
1

N

N∑
i=1

√(
I
(i)
RGB − I

(i)
GT

)2

+ ϵ2, (2)

where I
(i)
RGB and I

(i)
GT represent the i-th reconstructed RGB

image pixel and it’s corresponding in the ground-truth im-
age, respectively, N is the total number pixels of images,
and ϵ is a small constant (e.g., 1e − 3) added to improve
the robustness of the loss function to outliers [18]. Evident
from Fig. 2 (I), the Charbonnier loss effectively reduces the
difference with larger values during the pre-training stage.

Upon closer examination of the Difference Distribution
in Fig. 2 (II), we observe that it comprises two main com-
ponents: high frequency, e.g., edge areas, at low difference
values and low frequency, e.g., smooth areas, at high differ-
ence values. This observation suggests that while the model
efficiently learns to restore smooth blocks such as back-
grounds, it has yet to handle edge areas fully. This shortfall
is primarily due to edge differences, highlighting the impor-
tance of increasing the gradient magnitude for edge.

In response to this need, we explored two forms of Pixel
Focus Loss (Lpf ) to capture edge-related differences bet-
ter. One version of the Pixel Focus Loss is described as a
piecewise function:

Lp
pf =

{
(d/a)

g · b , 0 < d < a

(d− 1)(1− b)/(1− a) + 1 , a ≤ d ≤ 1,
(3)

where d represents the difference value, a is a threshold
parameter, and b and g are scaling factors that control the
gradient magnitude. We also introduced another version of
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(a) Raw Image (b) Charbonnier Loss 34.14 / 0.9779 (c) Power Loss 34.61 / 0.9796

(d) GT Color Image (e) Exponential Loss (𝜆 = 1.0) 34.67 / 0.9795 (f) Exponential Loss (𝜆 = 1.1) 34.75 / 0.9799

Figure 6. Visualization for output of fin-tuned models with different loss functions. The number values represent PSNR/SSIM.

Table 1. Comparison of our method with the RSTCANet
method [51] on the MIPI-Challenge Demosaic dataset. RST-
CANet 1, 2, and 3 denote different processing strategies.

Case Methods Params (M ) PSNR SSIIM
#1 RSTCANet1 7.19 13.2477 0.3590
#2 RSTCANet2 7.19 15.7721 0.4234
#3 RSTCANet3 7.19 36.2691 0.9659
#4 Our-Small 6.22 37.3272 0.9738
#5 Our-Large 9.40 37.4117 0.9756

Pixel Focus Loss defined as:

Le
pf = eλd − λd− 1, (4)

where λ serves as a hyperparameter, both versions ad-
dress the issue, providing a comprehensive approach to fine-
tuning the model’s ability to capture edge areas. We uti-
lize these two Pixel Focus Loss to fine-tune the pre-trained
model obtained from the first stage, enhancing the demo-
saicing performance by emphasizing gradients for edge-
related differences. In the experiments section, we delve
into the impact of different forms of Pixel Focus Loss and
the effects of varying hyperparameters on the experimental
results, providing a detailed analysis of our findings. Com-
bining the two-stage training approach, utilizing the Char-
bonnier loss for pre-training and the proposed Pixel Fo-
cus loss for fine-tuning, enables our network to learn high-
quality RGB image reconstruction.

4. Experiments
Dataset: Our experiments are based on the Demosaic for
HybridEVs Camera dataset at MIPI-Challenge 2024 [34],
comprising 900 RAW-Color image pairs with around
2000 × 1500 resolution. In this dataset, 800 RAW-Color

pairs are designated for training. 50 color images are allo-
cated for validation and another 50 for testing. Note that the
validation and test sets were not released during the compe-
tition phase. Consequently, we adapted our approach by
utilizing 760 images from the training set and designated
40 images for testing. Within the validation set, 26 pairs of
color images are available for local quantitative testing.
Implementation Details: Our experiments were conducted
using PyTorch [36] on a server with an Intel(R) Xeon(R)
Platinum 8378A CPU and one NVIDIA A800 GPU. The
training batch size is one. Each training iteration employs
random crop augmentation with patches sized at 640×640.
In the first training phase, we utilized the Charbonnier
Loss [18], training for 500 epochs with a learning rate start-
ing from 1e−4 and decreasing to 0 following a cosine func-
tion. In the second training phase, we applied the pixel-
focus Loss, training for 200 epochs with a learning rate
initiating from 1e − 5 and diminishing to 0. To achieve
faster training speeds, we employed mixed precision tech-
niques [33] facilitated by PyTorch.
Evaluation: PSNR and SSIM [11] were utilized as quan-
titative evaluation metrics. Qualitative results are demon-
strated through the visualization of difference maps and dif-
ference distributions. Given the high performance of de-
mosaicing methods, directly observing differences between
images can be challenging; difference map visualization fa-
cilitates addressing this issue.

4.1. Comparison Experiments:

We benchmark our method against the publicly available
RSTCANet [51], which is a pioneer in applying the Trans-
former architecture to demosaicing tasks. In contrast to our
method, RSTCANet [51] is tailored exclusively for demo-
saicing under the Bayer pattern and, consequently, is not
inherently equipped to address scenarios with missing pixel

1101



(a) RAW Image (b) Tiny Model, 37.67 / 0.9706 (c) Small Model, 39.80 / 0.9676

(d) GT Color Image (e) Medium Model, 39.93 / 0.9698 (f) Large Model, 40.07 / 0.9706

(g) RAW Image (h) Tiny Model, 33.64 / 0.9684 (i) Small Model, 34.60 / 0.9754

(j) GT Color Image (k) Medium Model, 34.47 / 0.9724 (l) Large Model, 35.20 / 0.9770

Figure 7. Visualization of results from model different size. The number values represent PSNR and SSIM, respectively.

Table 2. Ablation for the model size. Params denote the model’s
parameters, measured in millions. Depth indicates the count of
Transformer layers within each block

Case Model Size Params (M ) Depth PSNR SSIIM
#1 Tiny 4.62 2 36.3044 0.9696
#2 Small 6.22 4 37.3272 0.9738
#3 Medium 7.81 6 37.3798 0.9751
#4 Large 9.40 8 37.4117 0.9756

Table 3. Ablation for the Loss Function.

Case Loss Function PSNR SSIM
#1 w/o 37.4117 0.9756
#2 LCharbonnier 37.4402 0.9758
#3 Lp

pf 37.8164 0.9767
#4 Le

pf with λ = 1 37.8360 0.9765
#5 Le

pf with λ = 1.1 37.9656 0.9770

values. RSTCANet also falls short in addressing the miss-
ing values associated with defects in RAW images. Conse-
quently, employing the RSTCANet method often results in
images plagued with noise, as depicted in Fig. 5.

4.2. Ablation and Analytical Experiments:

Ablation for the model depth and size: The ablation
study indicates a progressive improvement in image recon-
struction quality with increasing model depth, as shown in
Tab. 2 and Fig. 7. While the initial increase from a Tiny
to a Small model shows a substantial rise in quality met-
rics, the growth tapers as the depth extends to Medium and
Large. This pattern suggests a diminishing return on en-
hancing PSNR and SSIM values with deeper networks, im-
plying an optimal balance between depth and performance.
Ablation for the loss function: The Tab. 3 presented delin-
eates an ablation study examining refining loss functions,

particularly in mitigating the challenges posed by long-tail
distributions encountered during the latter part of the initial
training phase. A secondary training phase spanning 200
epochs was implemented to counteract this issue, utilizing
a suite of four variant loss functions. The benchmark was
set using the Charbonnier loss function. Contrastive analy-
ses were conducted with a power loss function and two ex-
ponential loss functions with λ weights set at 1 and 1.1, as
delineated in the second and fourth rows of Tab. 3. Notably,
excessively high λ values, such as 2, have been observed
to induce instability within the network. Evaluating the
impact on PSNR and SSIM scores reveals that alterations
to the loss function can significantly affect model perfor-
mance. The exponential loss functions, particularly with a
λ value of 1.1, surpassed the performance of the baseline
Charbonnier function. These insights imply that meticulous
adjustment of the loss function parameters can effectively
overcome optimization hurdles in the advanced stages of
training, thereby improving the fidelity of the reconstructed
images, as shown in Fig. 6.

5. Conclusion
This paper employs Swin-Transformer and U-Net archi-
tecture tailored for the demosaicing task within the CVPR
2024 MIPI-Challenge. A pixel focus loss was designed for a
two-stage training to facilitate efficient training. Our model
demonstrates advantages over transformer-based methods
for event camera demosaicing. The model and the proposed
loss function hold the potential to inspire future research in
the field of demosaicing and beyond.
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