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Abstract

Low-light Original Denoising (LOD) is a challenging
task in Computational Photography (CP). The low number
of photons in low light environments makes imaging very
difficult. The most difficult step in LOD is to establish a
noise model under low light. Currently, there are numerous
approaches aim to noise modeling, however the noise es-
tablished have significant differences from real noise due to
the highly intricate distribution of noise. Towards this goal,
this paper proposes an Extremely Low-light Noise Model-
ing (EL2NM) approach, which designs an original image
condition constraint module and a multi-noise fusion mod-
ule to generate complex noise consistent with real scenes.
In order to satisfy the complex noise distribution in low-
light environments instead of just Gaussian noise, we inte-
grate various noises into cold diffusion to establish a realis-
tic noise generation model for extremely low-light environ-
ments. At the same time, to avoid the image semantic misin-
terpret during the reverse diffusion process, we propose to
use conditional image to guide noise generation of the dif-
fusion model. Extensive experiments demonstrate that our
proposed method EL2NM exhibits excellent performance in
extremely low-light environments and achieves the state-of-
the-art on Starlight Dataset.

1. Introduction
With the advancements in imaging sensors and computer
technology, computational photography has experienced
rapid growth [35]. Certain wildlife species (such as moths)
are active in moonless nights, special forces engage in noc-
turnal operations, and monitoring nighttime sewage dis-
charge requires functioning in extremely low-light condi-
tions. Weak light imaging technology holds significant ap-
plications in fields like defense, wildlife observation, mo-
bile photography [20], and astronomy [27]. However, due
to limited photon counts and inevitable noise, imaging
in low-light and nighttime scenarios becomes exceedingly
challenging. A straightforward solution is to widen the

aperture or extend exposure time to capture more photons.
Nevertheless, these solutions inherently trade off noise, fail-
ing to eliminate it entirely.

Deep generative models have achieved success in the
realm of weak light denoising. For instance, they have
learned to perceive objects in the dark [8], detect motion
in the dark [9], and discern moving objects in darkness
[24]. Simultaneously, there exist numerous classical de-
noising algorithms like BM3D [10], VBM4D [26], mean fil-
tering [13], and Kalman filtering [5]. However, these meth-
ods are typically built upon a simplistic Gaussian model,
which isn’t well-suited for noise in extremely low-light con-
ditions. Even sophisticated heteroscedastic Gaussian noise
models [16] struggle to accurately capture noise in weak
light environments. In situations of extremely low-light,
noise often follows non-Gaussian distributions that adhere
to sensor characteristics, making their modeling complex.
Recently, efforts have been made to study noise charac-
teristics generated during imaging in dim light environ-
ments. Among these, Extreme Low-light Denoising ELD
[36] approaches noise from a physical imaging perspec-
tive, delving into the noise generated at each step of low-
light imaging. ELD breaks down the imaging process into
four stages: photons, electrons, voltage, and digital sig-
nals, thereby reasonably representing noise arising in dim-
light environments. Building upon ELD, the dancing in the
starlight [29] approach redefines noise types and employs a
Wasserstein GAN [19] network to learn parameters for each
noise type. This methodology produces high-quality noise
images, showcasing for the first time a video of individuals
dancing under starlight.

Inspired by recent advancements in conditional diffusion
models [11, 22] and cold diffusion models [4], this paper
introduces a new noise modeling approach, EL2NM, build-
ing upon the work of Kristina Monakhova [29]. EL2NM
employs a series of refinement steps to convert complex
noise distributions into empirical data distributions, akin to
Langevin dynamics. At its core lies the U-Net architecture
[32], utilized to train the noise model and iteratively pro-
duce noise outputs. The U-Net architecture, adapted from
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SR3 [34], is modified in this work to accommodate con-
ditional image generation. The sampling technique of the
cold diffusion model is applied iteratively to generate the fi-
nal noise image. In comparison to the GAN-based approach
used in Dancing under the Stars, our method doesn’t require
adversarial training, making noise image generation more
straightforward. Moreover, the quality of generated noise
images is higher, and the resulting noise image effects are
similar to those achieved by dancing under the starlight.

Our main contributions of this paper are summarized as
follows:

1: We proposes a novel approach for noise modeling
in low-light environments. By combining the conditional
diffusion model with the cold diffusion model, the method
employs the conditional diffusion model to control the gen-
eration of conditional images and integrates the cold diffu-
sion model to introduce a wider range of noise distributions.
Through iterative refinement, the approach achieves the cre-
ation of high-quality noise images. Importantly, this study
represents the first application of diffusion models in the
domain of noise modeling for low-light images.

2: We extends the application of the conditional diffu-
sion model to noise image generation. The EL2NM method
involves an iterative subdivision technique to generate noise
images in low-light conditions. It departs from an under-
standing of the physical processes involved, sidestepping
the need for adversarial training, yet yielding high-quality
noise images for dim-light scenarios.

3: Experimental results affirm that the proposed ap-
proach exhibits a high level of advancement in both quan-
titative and qualitative evaluations. It effectively gener-
ates superior quality noise images. Moreover, the method
demonstrates remarkable performance on the Starlight
Dataset [1], showcasing its competitiveness in the field.

2. Related Work

2.1. Noise Modeling

Astronomy, wildlife observation, and military sectors,
among others, demand noise reduction in computational
photography. However, the scarcity of denoising datasets
has hindered the advancement of low-light photography.
The key to denoising low-light images lies in accurately es-
tablishing corresponding noise models. In recent years, nu-
merous video and image denoising methods have emerged.
Classical denoising approaches often rely on prior knowl-
edge about images, such as self-similarity [6, 10, 26, 30],
smoothness [31, 33], sparsity [3, 12], and low-rank prop-
erties [18]. In contrast to pre-defined methods, learning-
based [39] techniques obtain image priors by learning the
distribution of image data. Recent research indicates that
learning-based methods offer significant improvements in
image quality compared to classical methods. However, due

to the lack of paired datasets, learning-based methods tend
to exhibit fragile learnability. These methods often need
to make simple assumptions about noise statistics, such as
heteroscedastic Gaussian distribution. Nevertheless, such
noise models often struggle to accurately fit noise in low-
light environments. Consequently, the complex data distri-
bution coupled with limited data availability constrains the
development of learning-based methods.

In order to overcome the challenges posed by complex
data distributions, a series of studies have focused on en-
hancing the realism of noise modeling in low-light and
nighttime scenarios. Such research stems from the inher-
ent characteristics of sensors, considering noise introduced
by the sensors themselves, including photon shot noise
and readout noise, to precisely model potential noise under
low-light conditions. Examples of these include Poisson-
Gaussian noise [16], ELD [36], and Rethink noise [40]
methods. Other statistical models including Poisson Mix-
ture model[38], mixed AWGN with Random Value Im-
pulse Noise (RVIN)[42] and Gaussian Mixture Model[44]
are also proposed to model real noise. A common approach
in low-light photography is to merge multiple images for
denoising, known as burst denoising [17, 21, 28]. However,
these methods often necessitate substantial paired datasets
for training, which can be challenging to obtain in real-
world scenarios. To address the limitation of available data,
Hansen Feng [14] and others have utilized noise modeling
to reconstruct paired real data, effectively augmenting the
dataset of original low-light images.

Recently, a multitude of deep learning-based methods
have emerged, aiming to address the challenge of extreme
environment image denoising by learning the characteris-
tic distributions of each type of noise. Such methods typ-
ically start by gathering pairs of clean/noisy images and
then employ deep learning networks to approximate the Im-
age Signal Processing (ISP) pipeline for image denoising.
Remarkable success has been achieved even in very low-
light conditions (0.1 lux), enabling capabilities like learn-
ing to see in the dark [8] or seeing motion in the dark [9].
Kristina Monakhova pioneered the collection of datasets in
extremely low-light environments. They built upon ELD to
precisely model noise in extreme conditions and employed
GAN networks to learn parameters for each noise type. This
approach yielded exceptionally high-quality noise models.
Furthermore, they trained video denoising networks, al-
lowing for the first time the observation of highly realis-
tic videos in extremely dim conditions (<0.001 lux, un-
der starlight). In parallel, approaches based on normalized
flows [2] have been used to synthesize realistic noise. How-
ever, they do not capture sensor-specific noise character-
istics. Experimental results suggest that statistically-based
methods grounded in physical properties often outperform
Neural Network DNN-based methods [40]. But zhang [41]
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proposed a real time image and video denoising network
have good performance.

2.2. Diffusion Model

Recently, Diffusion Models [23] have emerged as potent
tools for generative modeling. These models come in var-
ious forms, all centered around the concept of removing
random noise. Built on the foundation of the fundamental
Unet network, DDPM involves an iterative process where
Gaussian noise is progressively added to the image during
the forward pass. This noisy image is then input to the
network, which produces a denoised output. Originating
from Langevin dynamics, diffusion models are understood
as stochastic processes of the image density function, with
each step involving Gaussian noise. With the advent of dif-
fusion models in DDPM, the entire landscape of generative
modeling has been reshaped, transcending the dominance
of Generative Adversarial Networks (GANs) as the repre-
sentative generative models. The core process of DDPM
comprises two steps: forward noisy addition and backward
denoising. During the forward process, Gaussian noise is
continually added to a clear image. Subsequently, the re-
verse process aims to restore the clear image from the noisy
one.

Subsequently, Jonathan Ho [22] proposed a conditional
diffusion model. During training, a conditional variable
’y’ is incorporated to guide the model’s generation process.
An alternate approach in Conditional Diffusion Models in-
volves introducing the conditional variable ’y’ during the
reverse process, training a classifier for conditional gener-
ation [11]. Arpit Bansal [4] and others suggested that the
forward process of diffusion models is not limited to Gaus-
sian noise; it can utilize any form of noise replacement and
even invert any image without noise. Diffusion models have
found applications in various fields. Chitwan Saharia [34]
and colleagues adapted conditional diffusion models for im-
age super-resolution. Yeying Jin [25] and others employed
diffusion models for shadow removal in images. Zhou [43]
and others employed diffusion models for 3D reconstruc-
tion. Yutong Xie[37] and colleagues modified the diffusion
model, considering Gaussian, gamma, and Poisson noise,
applying it to image denoising. Moreover, diffusion mod-
els have shown their prowess in image and text generation,
as well as multimodal generation scenarios. For example,
Feng [15] and others employed diffusion models for text to
image generation.

3. Method
In this section, we first introduced the noise characteris-
tics and principles in low-light environments. Next, we ex-
plained the specific implementation and forward process of
our proposed method, which uses the conditional diffusion
model. Finally, we described the reverse sampling process

of our method using cold diffusion. This approach allows
us to generate high-quality noise images without the need
for adversarial training. The Fig. 1 summarizes our training
and inference process.

3.1. Physically Induced Noise Model

The noise D generated by digital image sensors can be rep-
resented using a simple linear model [36]:

D = KI +N (1)

where I represents the number of photo electrons, K sig-
nifies the sum of analog and digital gains, and N accounts
for the total noise components. Previous research indicates
that the imaging process of a camera can be divided into
four stages: photon, electron, voltage, and digital signal.
Across these stages, distinct types of noise are generated,
influencing the overall image quality. In well-lit environ-
ments, where the sensor collects a substantial number of
photons, noise has a minor impact on the image and is
mainly attributed to photon shot noise, hence modeled as
heteroscedastic Gaussian noise. However, in low-light con-
ditions like during nighttime, where the sensor receives a
limited number of photons, noise proportionally occupies a
larger part of the image. The previous noise models can-
not adequately describe the intricate noise characteristics in
such dim environments.

Therefore, we approximate the distribution of shot noise
and readout noise to Gaussian noise, so that they can be
learned by the network:

NsI +Nr ∼ N (x, λr + λsx) (2)

Line stripe noise usually exists between each frame, and
we model it as a Gaussian random distribution with a mean
of 0. The quantization noise Nq is the rounding error be-
tween the input voltage and output voltage of the Analog-
to-Digital Converter (ADC), which follows a uniform dis-
tribution:

Nq ∼ U (−1/2q, 1/2q) (3)

In addition, we have added fixed mode noise Np, which
is a specific distribution that needs to be separately intro-
duced into the forward process.

At this point, we introduce all the distribution types that
all noise follows in weak light environments to ensure that
the network can learn all the noise distribution types, thus
establishing a complete noise model. The noise model in
this paper primarily encompasses shot noise, row noise,
read noise, quantization noise, and fixed pattern noise. For
the original image captured by the sensor, this paper models
the formation process of noise as follows:

N = Ns +Nr +Nq +Np, (4)
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Figure 1. The framework of our method EL2NM. Given a clear imageX0, our method gradually introduces diverse noise distributions to
obtain a blurry image XT in the Forward Process. During the training phase, we fed both the clear image X0 and blurry image XT into
the conditional diffusion model to learn the noise characteristics within the noisy image. During the inference phase, we introduces the
inference method of the cold diffusion model to generate the noisy image in an iterative manner, as illustrated by the dashed lines.

where Ns is the shot noise, Nr is the read noise, Nq is the
quantization noise and Np is the fixed pattern noise.

Once the noise model was established, we proceeded by
simulating the forward process of the conditional diffusion
model to introduce noise into clear images, thereby causing
them to become blurred. Subsequently, these images were
fed through a Unet network alongside the original clear im-
ages. This approach aimed to learn the characteristics of the
noise. Further, through reverse inference, the study synthe-
sized noise images.

3.2. Conditional Diffusion

Given a dataset consisting of input images and correspond-
ing output images, it is denoted as: D = {xi,yi}

N
i=1, which

represent samples drawn from an unknown conditional dis-
tribution p(y|x). This constitutes a many-to-one mapping,
where multiple images y might correspond to a single im-
age x. However, this article is more concerned with the
mapping where image y corresponds to the same image x,
and it aims to learn its stochastic iterative optimization pro-
cess. This paper employs a denoising diffusion probabilis-
tic model for conditional image generation to address this
issue.

The conditional diffusion model can control the output
results through conditions. Therefore, this article modifies
the DDPM model by modifying the input of the model to
two images, introducing a reference image as the condition
to guide the output of the diffusion model. The other im-
age inputted by the model is a blurred image that undergoes
a forward process, which gradually adds noise to the clear
image. The goal of the proposed method in this paper is to
iteratively restore the noisy image by using a reverse pro-
cess conditional on the reference image. Finally, the noise
image is obtained using the method proposed in this paper.

During the forward noise addition process, this paper
does not apply noise randomly. Instead, the approach in-
volves an analysis inspired by the work conducted under
starlight conditions. Specifically, the paper examines the
proportions of various types of noise in the resulting image.
The method employed entails calculating the changes in
Kullback-Leibler divergence upon the addition of each type
of noise. This process reveals the extent to which each type
of noise influences the noise image. Subsequently, based on
the determined noise proportions, the different categories of
noise are incorporated into the forward process in ascending
order of their calculated proportions. The specific approach
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Figure 2. Denoiser: The clear image and the denoised image generated by the forward process are input into the network, and finally the
noisy image is output through a loop.

is to add shot noise and readout noise in the first 40 steps,
add quantization noise in the next 6 steps, and finally add
fixed mode noise. The reason is that shot noise and readout
noise account for the largest proportion in weak light en-
vironments, while quantization noise and fixed mode noise
decrease sequentially.

Given an image x0 ∈ RN , considering an operator S
that blurs x0 with a level of t , meaning t = S(x0, t). The
operator S also satisfies S(x0, 0) = x0. This S corresponds
to the forward process described in this paper, which is de-
picted in Fig. 3.

The architecture of EL2NM is similar to the Unet struc-
ture in DDPM. The input image goes through two linear
layers and a convolutional layer. It then passes through
four encoder layers, with the middle layer consisting of two
residual blocks and an attention module. Afterward, it goes
through four decoder layers and a GroupNorm layer before
producing the final output. The network’s structural dia-
gram is illustrated in Fig. 2.

Figure 3. forward process: During the forward process, different
distributions of noise are sequentially added to the clear image
using the above formula, resulting in an over noisy image.

Previous diffusion models [23] required 1 to 2 thousand
diffusion steps during the forward process, which signif-
icantly slowed down the generation of noise images. To
address this issue, this paper adopts the approach from the
cold diffusion model to achieve more efficient forward. This

allows the proposed method to utilize fewer forward steps.
Inspired by the snowflake operator forward steps in the cold
diffusion model, this paper sets the forward steps to 50 and
incorporates various types of noise within these 50 steps.

3.3. Refined Inference with Cold Diffusion

In cases of cold diffusion’s smooth/differentiable scenar-
ios (non-Gaussian random noise), we have added various
types of noise, standard diffusion model inference performs
poorly. Hence, the approach from cold diffusion’s algo-
rithm is adopted for inference in this work. After selecting
the blur operator S and training the model R for restoration,
these operators can be used in a sequential manner. By em-
ploying methods borrowed from diffusion model literature,
severe blurring can be reversed.

For low values of t, a single application of R suffices
to achieve the desired outcome. However, for larger t val-
ues, iterative application of R is necessary due to intensified
blurring effects. Specifically, through an iterative process,
each step computes S(x0, t) based on the previous state.
As the goal of this work is noise generation, the number
of iterations is determined experimentally. The algorithmic
workflow is detailed as follows.

algorithm: Cold diffusion sampling

input: sample xt, time series T
for s = t, t-1, ,,, 1 do

x0 = R(xs, s)
xs−1 = xs − S(x0, s) + S(x0, s− 1)

end for

Table 1. Inference Sampling Algorithm

For an iterative behavior R, it is exactly the same as the
degenerate behavior D of standard diffusion, which can be
proven as follows:
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xs−1 = xs − S(R(xs, s), s) + S(R(xs, s), s− 1)

= S(x0, s)− S(R(xs, s), s) + S(R(xs, s), s− 1)

= x0 + s · e−R(xs, s)− s · e+R(xs, s) + (s− 1) · e
= x0 + (s− 1) · e
= S(x0, s− 1)

(5)
This iterative behavior can avoid errors caused by stan-

dard diffusion if R is not a perfect inverse process of S.
Therefore, this method can enable the model to incorporate
noise from other non Gaussian distributions and achieve an
inverse process. Through induction, it was discovered that
using the sampling algorithm from the cold diffusion model
can achieve the expectations of this method. In other words,
this approach can obtain high-quality noise images without
the need for adversarial training. The inference process is
illustrated in Fig. 4.

Figure 4. Inference process: The reasoning process is calculated
using the above formula, and the images above correspond to the
formulas in the algorithm in sequence.

Therefore, the cold diffusion model can be used to it-
eratively decode the noise to generate realistic noisy im-
age. And it also benefits the forward process adding diverse
noise, including shot noise, row noise, quantization noise
and fixed pattern noise.

4. Experiment
In this section, the paper begins by introducing the dataset
used in the study and the experimental setup, including de-
tails of the experiments. Next, the paper analyzes the pro-
portions of various types of noise in the dataset. Then, the
proposed method is compared with baselines of existing
methods. The results are subsequently analyzed and dis-
cussed.

4.1. Data and experimental details

The paper utilizes a publicly available dataset from Star
Light Dance for training and validation purposes. Specif-
ically, a paired dataset containing grayscale images of
clean/noisy static scenes is employed to train the proposed
noise generator. Additionally, another paired dataset com-
prising clean/noisy images from natural scenes is used for

validation. This validation dataset consists of 67 pairs of
images, with each clean image accompanied by 16 noise
variations. All images were captured under extremely low-
light conditions, which aligns with the task requirements for
noise modeling in the paper.

Our implementaion is based on PyTorch. All experi-
ments in this paper were conducted using PyTorch 1.12.1 on
a system equipped with four NVIDIA V100 32GB GPUs.
The paper’s model was trained using the Adam optimizer
with an initial learning rate of 0.00001, and a batch size of
1. All images were in raw format. The training was per-
formed for 700 epochs using the mean squared error (MSE)
loss. During training, the learning rate was adjusted, with
the lowest rate being 10−6. The lowest loss was achieved at
the 616th epoch of training.

To ensure experimental fairness, this study cropped the
dataset into 128×128 video patches. After subtracting the
clean images, the paper computed the Kullback-Leibler
(KL) divergence between the synthesized noise and real
noise. It is used to calculate the similarity of two probability
distributions. This metric was used to assess the authentic-
ity of the noise images generated by the method proposed
in this paper.

4.2. Analysis of Noise Contribution Ratios

Due to the traditional DDPM’s characteristic of increas-
ing the hyperparameter βt as the diffusion steps progress,
the straightforward superimposition of noise during the for-
ward diffusion process in this study is not viable. Instead,
it is necessary to adapt the noise addition process to align
with the progressive increase in noise characteristic of tra-
ditional DDPM. To address this, the paper analyzes the pro-
portions of various noise types in the overall noise accumu-
lation within low-light environments.

The methodology involves using the hyperparameters
obtained from the starry dance model in the low-light en-
vironment. Starting from a clean image, each type of noise
is successively added to the image. The paper computes
the Kullback-Leibler Divergence (KLD) between the image
after each addition and the noisy image in a low-light en-
vironment. The change in KLD values is observed, with
the assumption that noise types contributing significantly to
KLD values also hold a substantial proportion in the over-
all noise. Conversely, noise types with smaller KLD values
contribute less proportionally. The KLD values calculated
by sequentially adding various types of noise in low-light
environments are presented in Table 2, where Ns, Nr, Nq ,
Nrow and Np approximate shot noise, read noise, quantiza-
tion noise, row and fixed pattern noise.

By calculating, it was found that quantization noise con-
tributes the most to the overall noise pattern in low-light
environments and has a significant impact on the metrics.
Therefore, it is placed at the end of the forward noise ad-
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Clear ELD Noise Flow CA-CAN Model Starlight Ours GT

Figure 5. Method Comparison: This study compared commonly used noise modeling methods and demonstrated the noise images gener-
ated by the proposed method and baseline methods. We found that our method EL2NM is more stable than the starlight and can generate
realistic noisy image in low light environments.

Noise Type KLD
Ns +Nr 0.402
Ns +Nr +Nq 0.125
Ns +Nr +Nq +Nrow 0.117
Ns +Nr +Nq +Nrow +Np 0.113

Table 2. The KL divergence value is calculated by stacking various
types of noise in turn

dition process. Granular noise, readout noise, fixed pat-
tern noise, and quantization noise are sequentially added
to the forward process in proportion. The added noise in-
cludes Poisson distribution, Gaussian distribution, and uni-
form distribution, covering various types of distributions
that noise in low-light environments can exhibit. As a result,
this approach can iteratively generate high-quality noise im-
ages for extremely low-light conditions.

4.3. Result comparison

After training the EL2NM model, this study validated the
feasibility and superiority of the proposed EL2NM method
using paired data from natural scenes in Star Light. The
test dataset was cropped into 128×128 image patches. By
subtracting clean images, the Kullback-Leibler (KL) diver-
gence between synthesized noise and real noise was com-
puted. We compared the baseline Star Light model based
on GAN networks [29], the non-deep low-light noise model
ELD [36], as well as two deep learning-based noise mod-
els, CA-GAN [7] and Noise Flow [2]. Both Noise Flow and

Noise Model KLD
ELD[36] 1.360

Noise Flow[2] 0.386
CA-GAN model[7] 0.513

starlight[29] 0.069
ours 0.068

Table 3. Method Comparison: This study compared the proposed
noise model with previous works, with each row representing a
different noise modeling method. The experiments demonstrated
that the proposed method is capable of generating noise images
similar to the Starlight method, yielding higher quality noise im-
ages.

CA-GAN miss the significant banding noise present in real
noisy clips. ELD miss the quantizaion noise. The EL2NM
method exhibited good performance on this dataset. Quali-
tative performance indicators are presented in Table 3, indi-
cating that KL divergence computed by EL2NM was com-
parable to the baseline. The quantitative results are illus-
trated in Fig. 5, showing that EL2NM effectively learned
noise under extremely low lighting conditions, closely re-
sembling the baseline’s performance. Furthermore, the pro-
posed method does not require adversarial training, offer-
ing better interpretability. EL2NM achieves optimal results
mainly because we decouple noise step by step through iter-
ative loops in the reverse process, which can better approx-
imate real noisy images. Meanwhile, due to the support of
formulas, EL2NM has interpretability.
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Input Conditional Diffusion Cold Diffusion Ours GT

Figure 6. Ablation Experiment: We can see that when only the conditional diffusion model is used, the image does not recover noise
information and some image information is lost. When there is only a cold diffusion model, the noise in image restoration is not complete
enough, and the visual effect quality is not high. When combined, it can generate noise images in weak light environments more completely
while ensuring the stability of the generation.

4.4. Ablation Experiment

We compared the effects of only the Conditional Diffusion
and only the Cold Diffusion 6. As before, we calculate the
KL divergence between synthetic and real noisy patches 4,
and we find that when only using the conditional diffusion
model, it is not possible to generate noise images with non
Gaussian distributions due to the noise added in this paper
following a non Gaussian distribution. When using only the
cold diffusion model, the loss of information from the orig-
inal image during model training prevents the restoration
of the original image, resulting in the inability to generate
noisy images. When combined, complementary advantages
can be achieved, ultimately generating better noisy images.

Noise Model KLD
only Conditional Diffusion 0.473

only Cold Diffusion 0.106
ours 0.068

Table 4. Ablation Comparsion: We compared the method with
only conditional diffusion model and the method with only cold
diffusion model with our method, and the results show that our
method can better establish the noise model.

Finally, we use a combination of conditional diffusion
model and cold diffusion model to establish the noise
model. We use the conditional diffusion model to ensure
that the structure of the image is not lost, and the cold dif-
fusion model to add diverse noise.

5. Conclusion

We presents a novel approach that combines Conditional
Diffusion Models with Cold Diffusion Models to perform
noise modeling in low-light conditions, marking the first
application of diffusion models in noise modeling under
such environments. By employing the Conditional Diffu-
sion Model, our work generates desired noisy images, while
the Cold Diffusion Model introduces noise following vari-
ous distributions. This combined approach ultimately pro-
duces high-quality noisy images. We hope that this work
will inspire further developments in denoising for low-light
images/videos and the advancement of diffusion models.

Our method offers opportunities for further exploration.
Currently, we add noise sequentially during the forward
noise addition process. However, the effects of parallel ad-
dition of noise distributions with different characteristics
remain uncertain and could provide interesting outcomes.
Hence, there is significant room for the diffusion model to
make even greater contributions in the field of noise model-
ing in low-light conditions.
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