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Abstract

Under-display cameras (UDC) provide uninterrupted
display experience on smartphones, but the captured im-
ages suffer from quality degradations such as diffraction
blur, and reduced signal-to-noise ratio due to the pres-
ence of the OLED panel which obstructs the camera. In
this work, we propose to use under-display array cameras
(UDAC) consisting of two cameras placed under the OLED
display panel to further reduce image artifacts and enhance
image quality. We rotate the OLED panel by 45 degrees for
one of the cameras to utilize the complimentary nature of
the point spread function. We also propose an algorithm
to combine images from the two cameras, which includes
occlusion and optical flow analysis, image warping, color
match and image blending. Experiments on real UDC de-
vices show that the proposed method is superior in reducing
the artifacts and improving the signal-to-noise ratio. The
proposed method is simple but effective, and it can be easily
extended to various configurations and incorporated with
various algorithms.

1. Introduction
Under-display Cameras (UDC) in smartphones provide un-
interrupted display experience for large screen devices by
eliminating the need for a “punch hole” in the display
through which a camera can take pictures. As shown in
Fig. 1, the camera assembly (lens and sensor) of an UDC
is placed behind a specialized display panel that allows
some light to pass through transparent inter-pixel gaps in
the display. Compared with a punch-hole camera, an UDC
achieves large screen-to-body ratio and improves user ex-
perience, but the image quality of an UDC is substantially
reduced because the OLED pixels reduce the light that
reaches the sensor. The lower light transmission rate results
in poor signal-to-noise ratio, and the display panel produces
various optical artifacts, such as diffraction [13] and scatter
effect [17], which result in blurry and hazy images. One
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Figure 1. The layout of an under-display camera. The camera
sensor is placed under the transparent display panel, and the par-
tial pass OLED pattern results in degradation of the point spread
function.

method to alleviate these artifacts is to increase the transpar-
ent area on the panel and improve the design of the OLED
layout to reduce the diffraction artifacts [20], but this af-
fects the invisibility of the camera and reduces the quality
of the display. Sophisticated image restoration techniques
are therefore critical for UDC systems.

Various neural network based methods have been pro-
posed in recent years to solve the UDC image degradation
issue [6, 7, 12, 13, 17, 22]. In these methods, paired training
data are usually obtained via a monitor camera imaging sys-
tem (MCIS) or from simulations using point spread function
(PSF) modeled from a binary display mask. However, there
are several disadvantages associated with these methods. In
an MCIS setup, an OLED display panel is placed in front
of a traditional camera to imitate an UDC, but such a sys-
tem has different optical features from a real UDC device.
Similarly, using a simulated PSF can also be problematic
in the simulation scenario. Firstly, optical modeling of the
PSF can be inaccurate because the OLED panel is simply
modeled as a binary mask. Secondly, a single PSF is not
enough to describe the imaging process. In fact, it has been
observed that the change in the angle of incidence results
in distorted PSF, i.e., shift-variant PSF [13]. Third, mea-
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suring a PSF using an UDC device requires the access to
the unprocessed raw data and knowledge of the physical
characteristics of the imaging sensor. Although the afore-
mentioned methods resolve some of these issues, it is still
difficult to address all of them to obtain the accurate data
for network training. Besides, all these methods focus on
the image restoration for a single UDC image without con-
sidering the system level innovation.

Inspired by the success of array cameras in computa-
tional imaging [1], particularly for diffraction removal [19],
here we consider further improving the image quality us-
ing multiple UDCs, named as under-display array cameras
(UDAC). While we specifically describe a two-camera ar-
ray, the proposed techniques described in this paper can
be generalized to more than two cameras in the array. As
shown in Fig. 2a, the PSF of an UDC exhibits spikes be-
cause of the presence of wires and OLED pixels. By us-
ing two cameras with the rotated OLED pattern and a suit-
able blending algorithm to combine the two images, we can
reduce the diffraction artifacts and improve the signal-to-
noise ratio. We also consider the 3D occlusion due to the
different camera viewpoints and the color difference be-
tween two images so that the proposed method can be easily
adapted to different configurations. The major contributions
of this paper can be summarized as follows:
• We propose a new system for under-display imaging

based on optical analysis that is composed of two UDCs,
and the OLED display patterns of the two cameras are
related with a rotation transformation.

• We provide a modularized imaging algorithm which con-
tains optical flow estimation, occlusion mask generation,
color match, image warping and blending.

• Experiments with a commercial UDC device are con-
ducted to show significant image quality improvement of
the proposed approach compared to a single UDC.

2. Related Work

2.1. UDC Restoration

UDC image restoration has been an emerging topic of inter-
est among the imaging community since early 2020s. The
earlier works were pioneered by Zhou et al. [22] and the
UDC 2020 Challenge [21], and many deep learning based
methods have been proposed thereafter. UDC images are
affected by a multitude of quality degradations, and the
most studied degradations are the diffraction blur and the
increased noise due to the presence of partial pass OLED
panel. Oh et al. [15] used a modified U-net with dilated con-
volutions and residual connections for UDC image restora-
tion. Conde et al. [3] developed a light U-net based network
that achieved real-time computation on smartphone GPUs.
Feng et al. [6] proposed a dynamic skip connection net-
work to inverse the diffraction blur given the PSF of the sys-

tem. Kwon et al. [13] built a controllable network that uti-
lized the per-pixel kernel representation to address the shift
variant blur. Kim et al. [11] proposed joint demosaicking
and deblurring for the Quad Bayer color filter array which
is commonly used in modern smartphone cameras. Qi et
al. [16] proposed a RAW-to-RAW pipeline that worked with
any image processing pipelines. Zhou et al. [23] employed
generative adversarial network framework for both simulat-
ing and restoring the UDC image.

The display panel in front of the camera also affects
the spectrum of the incident light and the light permeation,
which results in reduced contrast and saturation. Luo et
al. [14] analyzed the data distribution in the hue, saturation
and value channels of UDC images and proposed a semi-
supervised approach to enhance the images. Koh et al. [12]
boiled down the degradations in UDC images to the diffrac-
tion blur and the color filtering operation and proposed a
two-branched method to restore the image. Similarly Gao
et al. [8] proposed a two-stage restoration method that re-
stored the color and the detail sequentially given two differ-
ently exposed UDC images. Song et al. [17] analyzed the
haziness and contrast distortion caused by the UDC scatter-
ing effect and proposed to utilize a scattering branching in
image restoration.

2.2. UDC Dataset

The primary challenge in training an UDC restoration net-
work is acquiring paired training data. The first UDC
dataset was created by Zhou et al. [22], where the paired
dataset was obtained from a MCIS setup. A 4K LCD moni-
tor was used to display natural images, and a T-OLED or
P-OLED panel was installed in front of an RGB camera
to capture the images. This setup was further enhanced
by Qi et al. [16] that explored the usage of HDR monitor
data. Although these work provided the dataset for UDC
Restoration research and inspired the development of new
algorithms [3, 15, 18, 23], the data captured by a MCIS
setup suffered from the low dynamic range of the moni-
tor and could not match the real world scenes, especially
bright outdoor scenes. More recently synthetic data has
been used in the experiments, which requires the acquisi-
tion of the PSF of the imaging system. Kwon et al. [13]
considered the angle of incident of the incoming light and
modeled the shift variant PSF using the orthogonal projec-
tion of the OLED panel. Although optical modeling pro-
vides the theoretical PSF of an optical system, it still differs
from the PSF of a real UDC system due to the approximated
system parameters and manufacturing imperfections. In [6]
and [8] the PSF captured by an UDC setup was employed
to generate a synthetic dataset to remedy this issue. How-
ever, models trained on synthetic data with estimated PSF
have limited generalization across real-world scenarios be-
cause of the proximity of the complicated degradation. Re-
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Figure 2. PSF analysis of UDC and UDAC. The PSF pattern of the camera rotates with the OLED pattern, and combining the rotated PSF
by retaining the minimum value yields a more concentrated PSF.

cently, Feng et al. [7] proposed a Transformer based method
to align misaligned data for generating high-quality paired
data.

3. Under-display Array Cameras
The degradation of the UDC image quality comes from var-
ious aspects. Here we focus on the effect of light diffraction.
Fig. 1 illustrates the layout of an UDC system. An OLED
display with pattern G is placed on top of the camera lens
with the aperture P . According to the Fourier Optics [9], a
Fraunhofer diffraction pattern corresponding to the field in
front of lens is observed at the focal plane behind the lens.
The PSF intensity at the focal plane can be written as

h = |F(GP )|2, (1)

where F represents the Fourier transform. Note that in
Eq. (1) constant terms and scaling factors are ignored for
simplicity. We consider a binary OLED pattern and the cor-
responding PSF shown in Fig. 2a. Because of the wires
and LEDs on the panel, the binary aperture contains straight
edges which results in spikes in the PSF and therefore orien-
tation dependent imaging performance in an UDC system.
This can be characterized by the orientational MTFs illus-
trated in Fig. 3, where the MTFs along two directions, de-
noted by the green (axial) and the blue (diagonal) arrows in
Fig. 2a are simulated. While diagonal MTF has higher value
for high frequency signals, axial MTF has higher value for
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Figure 3. MTF analysis of UDC. The simulated MTFs for axial
direction (green), diagonal direction (blue) and OLED-free cam-
era (black) are shown. In an UDAC system, the system MTF
can be maximized by combing the MTFs of the two orientations:
max(MTF1(ν), MTF2(ν)).

low frequency signals.
Inspired by the nature of the PSF of an UDC system, we

propose a multi-camera system titled under-display array
cameras (UDAC) with the main goal of reducing diffraction
artifacts and significantly improving image quality. To uti-
lize the complimentary nature of the PSF, the OLED pat-
terns of the two cameras are not identical but related
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(a) No PSF inversion (b) Single UDC (c) UDAC

Figure 4. The performance of the proposed method on 2D scenes. The effectiveness of UDAC in diffraction removal can be observed
around the light source and the railings.

by a 45-degree rotation transformation. As illustrated in
Fig. 2b, the spikes in the PSF rotates with the OLED pattern.
If the two PSFs are combined to retain the smaller value for
each pixel, the spikes can be removed (see Fig. 2c).

The advantage of the pattern rotation can also be seen
from the MTF of the system. With the pattern rotation,
the blending algorithm essentially combines the two images
with different MTFs. In this paper, we use a simple algo-
rithm to blend the images based on spatial frequency, and
obtain the maximum value for each frequency:

MTFblend(ν) = max(MTF1(ν),MTF2(ν)). (2)

As a proof of concept, we created a 2D scene with a
printed poster image and added a light source using a LED
button lamp. A 2D scene is selected to avoid artifacts from
inaccurate 3D registration. Sec. 5 provides more details on
the capture setup. In Fig. 4 we compare the blended image
using the proposed UDAC system with a single UDC image
produced using the built-in image signal processing pipeline
which contains a PSF inversion module to restore the image
from the diffraction blur. We also include the result when
this built-in PSF inversion module is disabled. While the
restoration for a single image can improve the resolution
and reduce the diffraction artifacts, it is clear that UDAC
can further reduce artifacts significantly.

Developing unique OLED patterns with the aim of re-
ducing diffraction can be challenging as the invisibility of
the UDC is a paramount design consideration. A UDAC
system with rotated OLED patterns provides an easy and ef-
fective solution to address diffraction artifacts seen in UDC
systems.

It is worth-noting that the proposed rotation of the OLED
pattern can be achieved in various methods. For example,
other than using two cameras with rotated OLED pattern,
one can use mechanically rotatable OLED or manually ro-
tate the device. Both of these methods require two captures
using a single camera.

4. Method

Improving image quality with under-display array cameras
is not trivial. Merging two images captured from different
viewpoints requires finding the pixel correspondence be-
tween them. To achieve that, the extrinsic parameters of
the cameras, lens aberration and occlusion in the 3D scenes
need to be addressed, and the auto exposure/ISO/white-
balance in the smartphone cameras need to be compen-
sated. To this end, we present a data processing method
for a UDAC system that can improve UDC image quality
effectively, as shown in Fig. 5. Our method contains several
modules including global warping, scene analysis with op-
tical flow and occlusion estimation, local optical flow warp-
ing, color match, occlusion substitution and image blend-
ing.

We denote the two input images I1 and I2, and the out-
put image Iout shares the same viewpoint as I1. Firstly, the
camera translation and rotation are addressed with global
warping where the homography transformation is esti-
mated and I2 is warped as Iglobal2 , to match I1. Next,
the lens aberration, 3D occlusion and the inaccurate global
warping are addressed with the optical flow and the occlu-
sion map analysis, after which the analysis result is used
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Figure 5. An overview of the UDAC processing pipeline. Global warping is first used to compensate the global motion, and the two
images are more accurately aligned with optical flow estimation, occlusion map estimation and optical flow warping. Color match and
occlusion substitution are then executed before the UDAC output is generated from image blending.
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Figure 6. Illustration of the proposed color match method. The images are divided into patches and the linear match is applied to each
patch individually. A Gaussian blur is applied afterwards to ensure smooth transition between patches.

to perform local warping. The optical flow, Fflow, shows
the pixel level correspondence between the two images,
whereas the occlusion map, Focc, estimates the pixels that
appears in I1 but not in Iglobal2 , such that the occluded pix-
els in those regions in Iglobal2 will be substituted by pixels
in I1 before two images are blended.

However, there exists brightness/tone difference between
the two images due to the aforementioned camera settings.
Thus, direct blending of the two images results in artifacts.
This issue can be addressed with global linear match, i.e.,
finding a global linear transformation {α, β}:

α∗, β∗ = argmin
α,β

N∑
n=1

(In2 ∗ α+ β − In1 ), (3)

where N represents the number of pixels in each image.
However, as we show in the next section, the global lin-
ear match is often inadequate and the brightness/color tones

still differ locally. To address this we propose a local linear
color match method, as shown in Fig. 6. In this method,
the images are divided into patches and the linear transform
coefficients for each patch is calculated. To avoid boundary
artifacts, a Gaussian blur is applied to the coefficient maps
before applying the linear transform. The local warp and
the color match can be summarized by

I local2 = Match(Warp(Iglobal2 , Fflow) | I1) ∗ Focc

+ I1 ∗ (1− Focc),
(4)

where Warp represents the local warp guided by optical
flow, Match(·|I1) represents color match with reference I1.
The two registered images I1 and I local2 are finally blended
to produce the output image Iout.

Note that the proposed UDAC system is built on top of
the existing single UDC image restoration. While the latter
seeks to inverse the PSF to restore the image, the former
exploits the complimentary nature of the PSF.
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Scene No PSF Inversion UDC UDAC (ours)

Figure 7. Comparison between a single UDC and the proposed UDAC system.

5. Experiments
5.1. Implementation Details

We conducted the experiments using a Samsung Galaxy Z
Fold 5 with built-in 3A (auto focus, auto exposure and auto
white-balance) control. The image resolution is 2304 ×
1728. The OLED rotation is achieved by rotating the cell-
phone by 45 degrees, and we also included the camera
translation to introduce different viewpoints. The rotation
was compensated by the global warping. For the optical
flow and the occlusion map estimation, we used pretrained
RAFT [4] and IRR [10] respectively, and for the final merg-

ing we used pyramid blending [2, 5]. In the color match
step, the images were divided into 48 patches, each with
288× 288 pixels.

5.2. Results

We evaluated the entire pipeline under nature 3D scenes.
The results are shown in Fig. 7. The single UDC output
with built-in PSF inverse is denoted as “UDC”, and the
single UDC output without built-in PSF inverse is denoted
as “No PSF Inversion”. Compared with the PSF inversion
for a single UDC, the proposed method can further reduce
diffraction effect, resulting in more details and less artifacts
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(a) No color match (b) Global method (c) Proposed method

Figure 8. Comparison between the global linear match and the proposed local linear match method: (a) no color match, (b) the global
linear match, and (c) the proposed method.

(a) (b) (c)

Figure 9. Examples of failed cases due to (a) inaccurate optical flow, (b) inaccurate occlusion map, or (c) scene dynamics.

in the output image. Reduced noise can also be achieved by
blending multiple images.

We then compare the global linear match and the pro-
posed local linear match in Fig. 8. In this example, the two
captures had different tones, and the global linear match was
able to improve the image color for the ceiling but failed
at the carpet. In contrast, the proposed local linear match
successfully adjusted the color for all the regions, and no
blending artifacts were observed in the output image.

The performance of the proposed method relies on the

accurate optical flow and occlusion estimation. In Fig. 9
we show the failed cases due to inaccurate optical flow, oc-
clusion map or scene dynamics. Note that the networks
used in the experiments were pretrained on clear images,
while UDC data suffered from high noise and diffraction
blur. Training these networks with UDC data can further
improve the final output image quality.
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6. Conclusion
We presented a multi-camera system for under-display
imaging using rotated OLED panel, and we described the
image processing pipeline to blend images that consid-
ers the occlusion in the scene. We also proposed a color
match method to compensate color mismatch arising due
to the camera 3A settings. The evaluation with a com-
mercial UDC device showed that the proposed method out-
performed image restoration on a single UDC image. As
part of future work we plan to incorporate the single UDC
restoration into the processing pipeline and achieve joint
image restoration, which can reduce the overall computa-
tion and produce better results.
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