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Abstract

Hybrid Event-Based Vision Sensor (HybridEVS) is a
novel sensor integrating traditional frame-based and event-
based sensors, offering substantial benefits for applications
requiring low-light, high dynamic range, and low-latency
environments, such as smartphones and wearable devices.
Despite its potential, the lack of Image signal processing
(ISP) pipeline specifically designed for HybridEVS poses
a significant challenge. To address this challenge, in this
study, we propose a coarse-to-fine framework named Demo-
saicFormer which comprises coarse demosaicing and pixel
correction. Coarse demosaicing network is designed to pro-
duce a preliminary high-quality estimate of the RGB image
from the HybridEVS raw data while the pixel correction net-
work enhances the performance of image restoration and
mitigates the impact of defective pixels. Our key innova-
tion is the design of a Multi-Scale Gating Module (MSGM)
applying the integration of cross-scale features, which al-
lows feature information to flow between different scales.
Additionally, the adoption of progressive training and data
augmentation strategies further improves model’s robust-
ness and effectiveness. Experimental results show superior
performance against the existing methods both qualitatively
and visually, and our DemosaicFormer achieves the best
performance in terms of all the evaluation metrics in the
MIPI 2024 challenge on Demosaic for Hybridevs Camera.
The code is available at this repository.

1. Introduction

Event-Based Vision Sensor (EVS) detects luminance
changes asynchronously and will output event data imme-
diately, which has the advantages of low power consump-
tion and high sensitivity, and is suitable for capturing high
dynamic range visual information without blurring. How-
ever, the inability to capture color information greatly lim-
its the application scope of event cameras. Hybrid Event-
based Vision Sensor (HybridEVS) [11] is a novel hybrid
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Figure 1. Illustration of two different patterns and demosacing
task. (a) Quad Bayer pattern. (b) HybridEVS pattern. (c) De-
mosaic for HybridEVS Camera task refers to the conversion of
HybridEVS pattern raw data into RGB images.

sensor formed by combining traditional frame-based sensor
and event-based sensor. It combines the advantages of these
sensors, offering high temporal resolution, low latency, and
exceptional dynamic range while still capturing color in-
formation with higher Signal-to-Noise Ratio (SNR). Com-
pared to traditional sensors, HybridEVS can perform better
in a greater range of applications because of its hybrid de-
sign. Quad Bayer pattern, as shown in Fig. 1(a) is a common
type of pattern widely employed in smartphone cameras due
to its ability to obtain high-quality images under low light
secnary by averaging four pixels within a 2 × 2 neighbor-
hood. While signal-to-noise ratio (SNR) is improved in the
binning mode, the spatial resolution is reduced as a tradeoff.
Defect pixels are flaws caused by the sensor’s manufactur-
ing process, where certain pixel values are inaccurate during
the photoelectric conversion process.

HybridEVS pattern, as shown in Fig. 1(b), is based on
Quad Bayer pattern which replaces two normal pixels in the
4 × 4 pattern by event pixels (represented by black pixels).
However, conventional general-purpose methods face chal-
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Figure 2. The architecture of our proposed DemosaicFormer to demosaic the raw data captured by HybridEVS cameras.

lenges when demosacing for HybridEVS raw data. Since
Quad Bayer pattern sacrifices spatial resolution and event
pixels can not record color information, demosaicing for
HybridEVS raw data has less spatial and color information
than demosaicing for regular raw data. On the other hand, as
with any sensor, defect pixels can occur. Therefore, with the
HybridEVS pattern, identifying and correcting these pixels
is more challenging.

To address this challenge, we propose a coarse-to-fine
framework named DemosaicFormer which comprises a
coarse demosaicing network and a pixel correction network.
For the coarse demosaicing stage, in order to produce a
preliminary high-quality estimate of the RGB image from
the HybridEVS raw data, we introduce Recursive Resid-
ual Group (RRG) [28] which employs multiple Dual At-
tention Blocks (DABs) to refine the feature representation
progressively. For pixel correction stage, aiming to en-
hance the performance of image restoration and mitigate the
impact of defective pixels, we introduce the Transformer
Block which consists of Multi-Dconv Head Transposed At-
tention (MDTA) and Gated-Dconv Feed-Forward Network
(GDFN). Our key innovation is the design of a novel Multi-
Scale Gating Module (MSGM) applying the integration of
cross-scale features, which allows feature information to
flow between different scales.The main contributions of our
paper are summarized as follows:

- We present a novel coarse-to-fine framework (called De-
mosaicFormer) to demosaic for HybridEVS raw images
with defect pixels which decomposes the task into two
sub-tasks: coarse demosaicing and pixel correction.

- We devise the Multi-Scale Gating Module (MSGM) to
enhance the network by improving the interaction of fea-
ture information flow among different scales.

- Experimental results show that the proposed method sig-
nificantly outperforms other exited solutions. In the
MIPI-challenge 2024 Demosaic for HybridEVS Camera
track, our DemosaicFormer achieves first place in terms
of all the evaluation scores (PSNR, SSIM) and outper-
forms the others by a large margin.

2. Related Work

2.1. Image Signal Processing Pipeline

Image signal processing (ISP) pipeline is a series of pro-
cessing steps in digital image processing that are used to
convert raw images obtained from cameras or other image
acquisition devices into final usable images. This pipeline
typically consists of multiple stages, each performing spe-
cific image processing tasks to improve image quality, en-
hance specific image features, or prepare the image for sub-
sequent processing or display. ISP includes a series of pro-
cessing algorithms that process raw images to obtain RGB
images, such as demosaic, denoising, gamma correction,
etc. With the development of deep neural networks (DNN),
many studies [9, 13, 16] use DNN to directly replace the
main processing flow of ISP and convert raw images into
RGB images end-to-end. CycleISP [28] uses a cyclic ap-
proach to construct a noise data set of real scenes, modeling
the camera imaging pipeline in both forward (RGB2RAW)
and reverse (RAW2RGB) directions.
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Figure 3. The structures of sub-modules in the main architecture.

2.2. Deep Learning for Image Restoration

Image restoration aims to recover its clean counterparts
from a degraded image. A popular scheme is to use CNN
structures to learn efficient models to capture local features
of images and learn generalizable image priors. CNNs have
been widely used in various image restoration tasks, in-
cluding image denoising [3, 26], demosaicing [14, 31], and
super-resolution [19, 32]. Chen et al. [2] used multipli-
cation to replace or delete unnecessary activation functions
such as Sigmoid, ReLU, GELU, and Softmax, and derived
a nonlinear activation free network called NAFNet. Zhu et
al. [36] proposed ECFNet to effectively restore UDC im-
ages which takes multi-scale images as input. MIRNet [27]
is a novel architecture that learns a rich set of features incor-
porating contextual information from multiple scales while
maintaining high resolution.

After the Transformer model shined in the field of natural
language processing, Vision Transformer (ViT) [5] has also
been extensively explored in high-level visual tasks, such
as object detection [1, 35], image segmentation [24, 33],
etc. Transformer has the ability to capture long-range de-
pendencies between image patches and adapt to given input
content. Due to these characteristics, Transformer is also
used in the field of image restoration [12, 21, 34]. Shuf-
fleFormer [23] proposes a local window Transformer based
on a random shuffling strategy to model non-local interac-
tions with linear complexity. Restormer [29] proposes an
efficient Transformer-based model.

2.3. HybridEVS Visions

Event-Based Vision Sensor Camera has the advantages of
low power consumption and high sensitivity, and is suitable
for capturing high dynamic range visual information with-
out blurring. There have been related works using Deep
Neural Network (DNN) with RGB and event data for ef-
fective image enhancement (such as deblurring and video

frame interpolation) [10, 17]. But these image processing
techniques require equivalent RGB characteristics to ad-
vanced mobile RGB sensors, as well as alignment of fo-
cus between RGB and event pixels on the sensor. Based on
this, Kodama et al. [11] proposed the Hybrid Event-Based
Vision Sensor, which can achieve image enhancement of
mixed data in mobile application processors. However, the
manufacturing process of the sensor will cause defects, and
there will also be some inaccurate pixel values during the
photoelectric conversion process, resulting in the appear-
ance of defective pixels. Currently, the reconstruction of
HybridEVS raw data containing event pixels and defective
pixels into RGB images is less explored.

3. Method

Our proposed DemosaicFormer is built with two-stage cas-
cade framework, which gradually generates desired high-
quality results for Hybridevs camera in a coarse-to-fine
manner. As shown in Fig. 2, the proposed framework con-
sists of coarse demosaicing and pixel correction network,
which is based on the CycleISP [28] and Restormer [29]
respectively. Different from these approaches, our two-
stage framework can decompose the complex task into in-
dividual sub-tasks which can increase each network’s learn-
ing ability and make the whole framework easier to con-
verge. Furthermore, we devise the Multi-Scale Gating Mod-
ule (MSGM) to transfer the feature information flow among
the Transformer Blocks of cross scales. Following this, we
present detailed explanations of our pipeline and the key
components encompassed within proposed approach.

3.1. Overall Pipeline

In some learning ISP methods [9, 13, 16], defect pixel re-
moval and demosaicing are often implemented in one stage
due to the relatives between them. So we first feed the orig-
inal raw image into the coarse demosaicing network to get
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Table 1. Quantitative comparisons of methods on the official test-
ing datasets of the MIPI-challenge 2024 Demosaic for Hybridevs
Camera track. The best and the second results are boldfaced and
underlined, respectively.

Rank Methods Metrics
PSNR↑ SSIM↑

1 DemosaicFormer(Ours) 44.8464 0.9854
2 2nd 44.6234 0.9847
3 3rd 44.4950 0.9845
4 4th 43.9564 0.9837
5 5th 42.6508 0.9810
6 6th 41.3279 0.9780
7 7th 41.0737 0.9752

an imperfect image in RGB space. Then, the RGB image
will go through the pixel correction network which gradu-
ally restores the corrupted RGB image in a coarse to fine
manner. The second stage finally outputs a desired high-
quality RGB image.

In detail, for coarse demosaicing stage, given a Hy-
bridEVS raw image of Iraw ∈ RH×W×1, we extend it to
RGB space IRGB

raw ∈ RH×W×3, a coarse demosaicing net-
work noted as Fcd is employed to simply eliminate the de-
fect pixels and restore the raw image to RGB space IRGB

rest .

IRGB
rest = Fcd(Extend(Iraw)) (1)

After that, IRGB
rest is taken as the input of pixel correction

stage and a pixel correction network noted as Fpc is adopted
to correct pixel and refine the imperfect image.

IRGB
output = Fpc(I

RGB
rest ) (2)

Finally, we get the desired images IRGB
output ∈ RH×W×3 .

The whole two-stage framework can be formulated as:

IRGB
output = Fpc(Fcd(Extend(Iraw), θcd), θpc) (3)

Here θcd, θpc denote the learnable parameters in Fcd and
Fpc. By decomposing complex demosaic tasks, our Domi-
saicFormer achieves outstanding results.

3.2. Coarse Demosaicing Network

The Coarse Demosaicing Network aims to produce a pre-
liminary high-quality estimate of the RGB image from the
raw data. Inspired by [6, 15, 30], we introduce Recursive
residual group (RRG) [28] which employs multiple Dual
Attention Blocks (DABs) to refine the feature representa-
tion progressively. As shown in Fig. 3, the DAB is a com-
prehensive attention unit within the RRG that utilizes both
spatial[22] and channel[8] attention mechanisms. The over-
all process of DAB is:

TDAB = Tin + Conv(Concat([CA(U), SA(U)])) (4)

RGB2RAW

Defect Pixels Extract

Defect Pixels 
Injection DemosaicFormer𝑅𝐺𝐵!"#$%

𝑅𝐴𝑊&%'()

𝑅𝐴𝑊!"#$% 𝑅𝐺𝐵 𝐼*$+
𝑅𝐺𝐵 𝐼,()'()

Defect Pixels 
Map

Figure 4. Train model using synthesized augmented data.

where U ∈ RH×W×C denotes tensors of features maps ob-
tained by applying two 3 × 3 conv layers on input tensor
Tin ∈ RH×W×C , Conv(·) is the last 1× 1 conv layer.

3.3. Pixel Correction Network

The output of coarse demosacing stage still suffers from the
impact of defect pixels because the first stage can’t perfectly
tackle joint demosaic and defect pixels removal tasks. Pixel
Correction Network is aimed to enhance the performance of
image restoration and mitigate the impact of defective pix-
els. Existing CNN-based image restoration methods have
achieved impressive results [2, 4, 27, 36]. However, these
approaches exhibit shortcomings in capturing long-range
dependencies and non-local similarities. In contrast, Trans-
former methods have shown exceptional ability over the
past few years with great performance. However, directly
applying a conventional Transformer has more computa-
tional overhead which comes from the self-attention layer.
Moreover, regular Transformer architectures always over-
look the integration of cross-scale features, which is cru-
cial for effective image restoration. To address this prob-
lem, inspired by [29], we introduce the Transformer Block
which consists of Multi-Dconv Head Transposed Attention
(MDTA), Gated-Dconv Feed-Forward Network (GDFN)
and Multi-Scale Gating Module (MSGM).

Multi-Dconv Head Transposed Attention(MDTA),
shown in Fig. 3 has linear complexity implemented by
applying conventional SA [18] across channels dimension
which is the key design of MDTA. As another important
component of MDTA, depth-wise convolutions generate the
global attention map emphasizing on the local context be-
fore computing attention.

Gated-Dconv Feed-Forward Network(GDFN), shown
in Fig. 3, is utilised to transform features after
MDTA, which is different from the regular feed-forward
network(FN)[5]. To improve representation learning, gat-
ing mechanism and depthwise convolutions are applied
in GDFN.The gating mechanism is structured as the
Hadamard product (element-wise multiplication) of two
parallel pathways consisting of linear transformation layers.
Similar to MDTA, all pathways include 3 × 3 depth-wise
convolutions to encode information from spatially neigh-
boring pixel positions, useful for learning local image struc-
ture for effective restoration. One of these pathways is acti-
vated with the Gaussian Error Linear Unit (GELU)[7] .
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Table 2. Quantitative comparisons of methods on the official validation datasets of the MIPI-challenge 2024 Demosaic for Hybridevs
Camera track. The MACs and FLOPs is computed using a 128× 128 image as input by calflops tool. The best and the second results are
boldfaced and underlined, respectively.

Methods #Params (M) MACs (G) FLOPs (G) Metrics
PSNR↑ SSIM↑

CycleISP[28] 2.8 46.0 93.4 41.32 0.98
MIMO-UNet[4] 8.9 21.1 41.2 40.75 0.98
MIMO-UNet∗[4] 8.9 21.7 41.7 41.27 0.98
ECFNet[36] 9.1 21.7 42.5 41.45 0.98
NAFNet[2] 67.8 15.8 31.6 41.19 0.98
MIRNet[27] 5.9 34.9 70.0 40.92 0.98
Restormer[29] 26.1 35.2 70.6 41.73 0.98
ShuffleFormer[23] 50.6 20.7 41.6 41.70 0.98
DemosaicFormer(Ours) 30.3 85.1 171.5 42.01 0.98

Multi-Scale Gating Module (MSGM) Inspired by
ResNet, some methods supplement the original features in
the encoder to the decoder through skip connection. This
can reduce the difficulty of network optimization and im-
prove network performance. In some cases, features are
even transferred across scales, feeding features from the en-
coder into different scales of the decoder. In this paper, in-
spired by NAFNet [2], we furthermore introduce a simple
gating mechanism into cross-scale feature fusion increas-
ing the nonlinearity of fusion. Based on the gating mecha-
nism, we can extract the features needed by different scale
decoders which improves the correction effect of the net-
work. Specifically, as shown in Fig. 3, our Multi-Scale Gat-
ing Module (MCGM) up-samples or down-samples the fea-
tures at different scales according to the required shape of
the module output, then concatenates them at the channel
dimension and adjusts the number of channels using 1×1
convolution. Inspired by the simple gate in NAFNet, we
divide them into two equal parts for 3×3 depth-wise convo-
lution. Each feature is multiplied by the sigmoid change of
the other feature, and finally the two parts of the features are
transformed into the required enhancement features using
1×1 convolution. Formally, the MCGM at the shallowest
scale can be presented as

F = Conv(Concat([(TBout
1 ), (TBout

2 )↑, (TBout
3 )↑])),

F1, F2 = Split(DConv(F )),

F1 = Sigmoid(F1)× F2,

F2 = Sigmoid(F2)× F1,

Fe = Conv(Concat([F1, F2])),

(5)

where TBout
i , i = 1, 2, 3 denotes the output of the nth

scale transformer block, ↑ denotes the up-sampling oper-
ation, Concat(·) denotes the concatenation operation along
the channel dimension, Dconv(·) denotes the depth-wise

Table 3. Quantitative comparisons of different training objects.
The best result is boldfaced.

Model Training Description PSNR↑
A Indiv. Train. & Joint FT 41.99
B Joint Train. w. Ext. Sup. 40.76
C Joint Train. (default) 42.01

convolution, Split(·) denotes the chunk operation.

3.4. Joint Training of DemosaicFormer

Given the intrinsic interdependence of coarse demosaicing
and pixel correction, it is impractical to disentangle them
completely into separate subtasks. Hence, in our Demo-
saicFormer, we employ a joint training approach which will
be discussed in Section 4.4. We utilize ℓ1 loss, which is
widely used in many image restoration and enhancement
tasks[2, 13, 27–29, 36]. The loss function for the joint opti-
mization is:

L1(I, Î) =
1

N

∑
p∈P

|I(p)− Î(p)|, (6)

where p is the index of the pixel and P is the patch; I and
Î represent the ground-truth and restored result by our De-
mosaicFormer with N pixels, respectively.

4. Experiments
4.1. Dataset

We conduct the experiments strictly following the setting of
the MIPI-challenge 2024 Demosaic for Hybridevs Camera
track[25]. The training data consists of 800 pairs of Hy-
bridevs’s input data and label result with a resolution of 2K.
Both the input and label have the same spatial resolution.
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Table 4. Ablation study of the Training Strategies. The best and the second results are boldfaced and underlined, respectively.

Progressive Training Data Augmentation Finetune Stage PSNR↑
VAL SET TEST SET

DemosaicFormer 42.01 -
DemosaicFormer 50% Prob. 42.39 42.61
DemosaicFormer ✓ 43.10 42.54
DemosaicFormer-s1 ✓ ✓ 43.17 42.63
DemosaicFormer-s2 ✓ ✓ ✓ 43.26 42.98

Table 5. Ablation study of the connection manner in the different
level. The best and the second results are boldfaced and under-
lined, respectively.

Level Connection Manner PSNR↑

Arch
Pixel Correct First 42.92
Coarse Demosaic First(default) 43.10
Parallel Connection 42.85

Block
Simple Concatenation 42.93
Single Gating Fusion 42.99
Multi-Scale Gating Module(default) 43.10

The input is of 10bits in the “.bin” format and ranges from
[0, 1023], and the corresponding ground truth is of 8bits in
the “.png” format. The validation and testing sets consist
of 50 images each, and each set contains images of varying
resolutions. In the testing set, the resolution of images is
not fixed, ranging from 1280 × 720 to 5760 × 5760. Note
that the ground truth data corresponding to the validation
and testing dataset is not publicly available.

Data augmentation. Due to our inability to accurately
model defective pixels, inspired by [28], we extract the de-
fect pixels map from the training data of the challenge to
generate more diverse and realistic inputs. As shown in
Fig. 4, at the training phase, we randomly rotate and flip
ground-truth images(RGBclean) of training split, then sam-
ple them according to HybridEVS pattern, and randomly
cover the sampled images with defect pixels map. The aug-
mentation technology is applied at the initial training of our
proposed approach for improving the model’s generaliza-
tion and robustness. Note that the models trained with dif-
ferent data augmentation strategies are different, as seeing
in the section 4.2.

4.2. Implementation Details

We implement our proposed network via the PyTorch 1.8
platform. Adam optimizer with parameters β1 = 0.9 and
β2 = 0.99 is adopted to optimize our network. Addition-
ally, motivated by [29], we introduce the progressive train-
ing strategy. The training phase of our network could be
divided into two stages:

(1) Initial training of DemosaicFormer. We use a
progressive training strategy at first. We start training
with patch size 80 × 80 and batch size 84 for 58K iter-
ations. The patch size and batch size pairs are updated
to [(1282, 30), (1602, 18), (1922, 12)] at iterations [ 36K,
24K, 24K]. The initial learning rate is 5 × 10−4 and re-
mains unchanged when patch size is 80. Later the learning
rate changes with Cosine Annealing scheme to 1 × 10−7.
For data augmentation, we use our data augmentation men-
tioned above. The first stage is performed on the NVIDIA
4090 device. We obtain the best model at this stage as the
initialization of the second stage.

(2) Fine-tuning DemosaicFormer.We start training
with patch size 192 × 192 and batch size 12. The initial
learning rate is 1× 10−4 and changes with Cosine Anneal-
ing scheme to 1 × 10−7, including 20K iterations in total.
We use the entire training data from the challenge without
any data augmentation technologies. Exponential Moving
Average (EMA) is applied for the dynamic adjustment of
model parameters. The second stage is performed on the
NVIDIA 4090 device.

To better distinguish between the model results,
we label the two stages as DemosaicFormer-s1 and
DemosaicFormer-s2, respectively.

4.3. Evaluation Metrics

We employ two reference-based metrics which are widely
applied in similar tasks[2, 4, 12, 13, 27, 29], to assess
the efficacy of our method: Peak Signal-to-Noise Ratio
(PSNR), the structural similarity (SSIM) [20]. Higher val-
ues of PSNR and SSIM indicate better performance in im-
age restoration tasks. Note that due to the evaluation set-
tings of the challenge, we are unable to obtain the exact
SSIM value, but it does not affect the ordering of SSIM.

4.4. Comparations

Table 1 presents a comprehensive comparison of various
solutions on the MIPI-challenge 2024 Demosaic for Hy-
bridevs Camera track. Evidently, our approach outperforms
all others across all evaluation metrics on the official testing
datasets, showcasing superior performance. Specifically,
our method achieves a remarkable improvement, surpass-
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Figure 5. Visual comparison results of Demosaic for Hybridevs Camera on the evaluation dataset of MIPI-challenge 2024 track. Note that
brighter means bigger error.

ing the second-place method by 0.2230 dB in PSNR.

Besides, in Table 2, we demonstrate comparable per-
formance methods on the official validation datasets when
compared to some ISP methods and general image restora-
tion methods. For a fair comparison, note that all meth-
ods utilize HybridEVS’s raw data expanded into RGB
space as input without any data augmentation techniques.
Our method consistently demonstrates outstanding perfor-
mance. Compared to the method Restormer and Shuffle-
Former, we obtain 0.28dB and 0.31dB gain in PSNR. Fur-
thermore, in Fig. 5,6, to more intuitively show our excellent
performance, we generate the residual map representing
the disparity between the predicted output and the ground
truth. The comparison clearly demonstrates that our tech-
nology produces superior visual results and outperforms
others in terms of visual quality. Especially, our method re-
constructs finer details more effectively and shows less de-
parture from the ground truth, demonstrating its efficiency
in image restoration.

For training objects, Table 3 presents the results of
employing various training objects for DemosaicFormer.
Model A is two-phase training procedure where Coarse De-

mosaic Network is initially trained to convert raw data into
RGB images, followed by joint finetuning, which extends
training duration. Model B denotes joint training with ex-
tra constraint loss at Coarse Demosaic stage. Model C, in
contrast, represents joint training devoid of any extra con-
straints. The comparison clearly demonstrates that directly
joint training can produce better results with less time dur-
tation. Specifically, the model is encouraged to jointly op-
timize both the demosaicing task and any auxiliary tasks,
thereby leveraging the interconnectedness inherent between
two stages.

4.5. Ablation Study

We conduct plenty of ablation experiments to verify the ef-
fect of each component of our method. Note that in the ab-
lation study with the absence of other annotations, we train
the model with our data augmentation technology and with-
out progressive training manner for convenience.

Effects of the Connection Manner. As shown in Table
5, we verify the validity of the DemosaicFormer connection
manner at different levels, including the sequential choice
of the two-stage network(arch-level) and the effectiveness
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Figure 6. Visual comparison results of Demosaic for Hybridevs Camera on the testing dataset of MIPI-challenge 2024 track.

of the MSGM module(block-level). In connection manner
of arch-level, we compare the performance of the model
using different two-stage connection approaches which in-
clude exchanging the order of coarse demosaicing and pixel
correction and processing the two branches in parallel. It
is evident that coarse demosaicing before the pixel correc-
tion results in significant performance gains. Because of the
sparsity nature of defect pixels, the initial demosaicing pro-
cess is not significantly affected, while also providing more
detailed color information for the post-processing. Parallel
processing causes degraded performance by disrupting the
progressive processing flow created by cascading.

Furthermore, in connection manner of block-level, ef-
fectiveness of the MSGM module is verified by replacing it
with Simple Concatentation and Single Gating Fusion. The
MSGM module incorporates multi-scale feature informa-
tion and adaptively selects features based on the hierarchy
of the output, obtaining 0.17dB gain in PSNR.

Effects of the Training Strategies. Following [28, 29],
we additionally adopt the progressive training strategy,
various data augmentation strategies and fine-tune model
to enhance the model performance. As shown in Table
4, the models trained at different stages are marked as

DemosaicFormer-s1 and DemosaicFormer-s2. Experiments
show that training with progressively larger patches often
results in higher gains in generalization performance. Our
data augmentation technology greatly improves model’s
performance by increasing generalization and robustness.
After initial training with progressive learning and data aug-
mentation, fine-tuning the model on the original training set
facilitates better adaptation to the real data distribution, ob-
taining 0.09dB and 0.35dB gain in PSNR on challenge offi-
cial val set and test set, respectively.

5. Conclusion
In this paper, we present DemosaicFormer, an effective
coarse-to-fine network for demosaicing HybridEVS’s raw
data. Built with a two-stage cascade framework compris-
ing coarse demosaicing and pixel correction networks, De-
mosaicFormer decomposes the complex task into sub-tasks,
and formulates Multi-Scale Gating Module(MSGM). Be-
sides, the adoption of progressive training and data augmen-
tation strategies further improves the model’s robustness
and effectiveness. DemosaicFormer achieves the best per-
formance in terms of all the evaluation metrics in the MIPI-
challenge 2024 Demosaic for Hybridevs Camera track.

1133



References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 3

[2] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In European confer-
ence on computer vision, pages 17–33. Springer, 2022. 3, 4,
5, 6

[3] Shen Cheng, Yuzhi Wang, Haibin Huang, Donghao Liu,
Haoqiang Fan, and Shuaicheng Liu. Nbnet: Noise basis
learning for image denoising with subspace projection. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4896–4906, 2021. 3

[4] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,
and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-
gle image deblurring. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 4641–4650,
2021. 4, 5, 6

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3, 4

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[7] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[8] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 4

[9] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replac-
ing mobile camera isp with a single deep learning model.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 536–537,
2020. 2, 3

[10] Zhe Jiang, Yu Zhang, Dongqing Zou, Jimmy Ren, Jiancheng
Lv, and Yebin Liu. Learning event-based motion deblurring.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3320–3329, 2020. 3

[11] Kazutoshi Kodama, Yusuke Sato, Yuhi Yorikado, Raphael
Berner, Kyoji Mizoguchi, Takahiro Miyazaki, Masahiro
Tsukamoto, Yoshihisa Matoba, Hirotaka Shinozaki, Atsumi
Niwa, et al. 1.22 µm 35.6 mpixel rgb hybrid event-based
vision sensor with 4.88 µm-pitch event pixels and up to
10k event frame rate by adaptive control on event sparsity.
In 2023 IEEE International Solid-State Circuits Conference
(ISSCC), pages 92–94. IEEE, 2023. 1, 3

[12] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1833–1844,
2021. 3, 6

[13] Zhetong Liang, Jianrui Cai, Zisheng Cao, and Lei Zhang.
Cameranet: A two-stage framework for effective camera isp
learning. IEEE Transactions on Image Processing, 30:2248–
2262, 2021. 2, 3, 5, 6

[14] Bolin Liu, Xiao Shu, and Xiaolin Wu. Demoir\’eing of
camera-captured screen images using deep convolutional
neural network. arXiv preprint arXiv:1804.03809, 2018. 3

[15] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu,
and Deyu Meng. Progressive image deraining networks: A
better and simpler baseline. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 3937–3946, 2019. 4

[16] Eli Schwartz, Raja Giryes, and Alex M Bronstein. Deepisp:
Toward learning an end-to-end image processing pipeline.
IEEE Transactions on Image Processing, 28(2):912–923,
2018. 2, 3

[17] Stepan Tulyakov, Alfredo Bochicchio, Daniel Gehrig, Sta-
matios Georgoulis, Yuanyou Li, and Davide Scaramuzza.
Time lens++: Event-based frame interpolation with paramet-
ric non-linear flow and multi-scale fusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17755–17764, 2022. 3

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 4

[19] Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu
Xu, Jungang Yang, Wei An, and Yulan Guo. Unsuper-
vised degradation representation learning for blind super-
resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10581–
10590, 2021. 3

[20] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 6

[21] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang
Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general
u-shaped transformer for image restoration. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 17683–17693, 2022. 3

[22] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 4

[23] Jie Xiao, Xueyang Fu, Man Zhou, Hongjian Liu, and Zheng-
Jun Zha. Random shuffle transformer for image restoration.
In International Conference on Machine Learning, pages
38039–38058. PMLR, 2023. 3, 5

[24] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in neural information processing systems, 34:
12077–12090, 2021. 3

[25] Wu Yaqi, Fan Zhihao, Chu Xiaofeng, Ren Jimmy S.,
Li Xiaoming, Yue Zongsheng, Li Chongyi, Zhou
Shangcheng, Feng Ruicheng, Dai Yuekun, Yang Peiqing,

1134



Loy Chen Change, et al. Mipi 2024 challenge on demosaic
for hybridevs camera: Methods and results. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024. 5

[26] Zongsheng Yue, Qian Zhao, Lei Zhang, and Deyu Meng.
Dual adversarial network: Toward real-world noise removal
and noise generation. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part X 16, pages 41–58. Springer, 2020. 3

[27] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Learning enriched features for real image restoration
and enhancement. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXV 16, pages 492–511. Springer, 2020.
3, 4, 5, 6

[28] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Cycleisp: Real image restoration via improved data
synthesis. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2696–2705,
2020. 2, 3, 4, 5, 6, 8

[29] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5728–5739,
2022. 3, 4, 5, 6, 8

[30] He Zhang, Vishwanath Sindagi, and Vishal M Patel. Multi-
scale single image dehazing using perceptual pyramid deep
network. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops, pages 902–
911, 2018. 4

[31] Tao Zhang, Ying Fu, and Cheng Li. Deep spatial adap-
tive network for real image demosaicing. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 3326–
3334, 2022. 3

[32] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 3

[33] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with trans-
formers. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6881–6890,
2021. 3

[34] Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming
Cheng, and Qibin Hou. Srformer: Permuted self-attention
for single image super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 12780–12791, 2023. 3

[35] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 3

[36] Yurui Zhu, Xi Wang, Xueyang Fu, and Xiaowei Hu. En-
hanced coarse-to-fine network for image restoration from
under-display cameras. In Computer Vision–ECCV 2022
Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part V, pages 130–146. Springer, 2023. 3, 4, 5

1135


