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Abstract

Large language models (LLMs) have achieved a great

success in natural language processing, and have a signif-

icant potential for multi-modal applications. Despite the

surprising zero-shot or few-shot ability, it is also required

to effectively fine-tune pre-trained language models for spe-

cific downstream tasks. In this paper, we introduce Cap-

tionT5, a video captioning model that fine-tunes T5 towards

understanding videos and generating descriptive captions.

To generate a more corespondent caption, CaptionT5 in-

troduces thought-augmented fine-tuning for video caption-

ing, in which a pre-trained language model is fine-tuned on

thought-augmented video inputs. This resembles the pro-

cess that human see a video, think of visual concepts such

as objects and actions, and then tell a correct and natural

sentence based on the thoughts. To automatically gener-

ate thoughts, we propose (1) CLIP-guided thought sampling

that samples thoughts based on the similarity in an image-

text multimodal embedding space by leveraging CLIP. We

also propose (2) CLIP-guided caption ranking during de-

coding for further performance gains. Through experimen-

tation on VATEX, MSRVTT, and YC2 datasets, we empir-

ically demonstrate that CaptionT5 performs competitively

against prior-art video captioning approaches without us-

ing encoders specialized for video data. Further exper-

iments show that CaptionT5 is especially effective under

small number of sampled video frames.

1. Introduction

Video captioning is a fundamental video-and-language task
where the model is asked to generate a textual description
that accurately describes the contents of an input video. De-
spite great potential in many applications including social
media, robot vision, and surveillance [16], the task itself
remains a big challenge as it requires the model to jointly
detect visual cues in the given video and generate natural
text from its spatio-temporal interpretation of the content,

Figure 1. Main idea of CaptionT5. CaptionT5 learns to generate
video captions by using a pre-trained large language models (T5)
and a vision-language model (CLIP). By combining pre-traiend
foundation models, CaptionT5 simply achievs human-level per-
formance. In addition to a simple baseline, we introduce thought-

augmented fine-tuning for video captioning, in which a pre-trained
language model is fine-tuned on a dataset consisting of thought-
augmented video inputs and corresponding captions. Using the
standard benchmarks such as VATEX and YC2, we show that
thought-augmented fine-tuning can effectively improve the perfor-
mance of caption generation.

similar to the “Show and Tell” [33] or “Show, Attend, and
Tell” [39] frameworks in image captioning.

While there has been various advances for video cap-
tioning, existing work suffer from different drawbacks that
limit applicability. For instance, video-and-text multimodal
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approaches such as HERO [15] and VL-Adapter [30] pro-
posed using subtitles alongside video inputs [15, 30], but
these require that human-annotated subtitles are available
at hand, which is not the case with in-the-wild video data.
An alternative would be to train and use a video-to-text
retriever to extract related text from a large textual cor-
pus [45], but any mismatch between the retrieved text and
given video may lead to inaccurate captioning, limiting its
performance and generalizability. More recently, Swin-
BERT [18] proposed employing a large-scale pre-trained
Video Swin Transformer [20] to extract useful video frame
features for video captioning, which led to state-of-the-art
performance without the help of auxiliary textual input.
However, this approach requires a video encoder pre-trained
on large-scale general-purpose video datasets as well as
dense video frame sampling for high quality inference, both
of which incur lack of accessibility and high computational
burden for practitioners.

Considering wide accessibility of large language models
(LLMs) [3, 6, 25, 27] that can generate plausible text based
on rich knowledge learned through training on large textual
corpora, leveraging LLMs towards video captioning is rela-
tively less explored. As video captioning requires accurate
reasoning of interactions between objects and its surround-
ing in the video, it is evident that the power of LLMs in
few-shot in-context learning [3] and prompt-based reason-
ing [35, 40, 42] would be of great use. The main challenge
then resides in how to effectively tune pre-trained LLMs
into understanding video data, as they are not previously
trained on visual inputs.

In light of such challenge, we propose CaptionT5, a
video captioning model that fine-tunes T5 [27] to under-
stand video input and generate its corresponding caption
(Figure 2). To generate a more corespondent caption, Cap-
tionT5 introduces thought-augmented fine-tuning for video

captioning, in which a pre-trained language model is fine-
tuned on a dataset consisting of thought-augmented video
inputs and corresponding captions. To automatically gener-
ate thoughts, we propose (1) CLIP-guided thought sampling

that samples thoughts based on the similarity in an image-
text multimodal embedding space by leveraging CLIP. Cap-
tionT5 overall resembles how humans observe videos by
a) detecting visual cues, b) developing conceptual thoughts
regarding observed objects as well as their behaviors, and
c) constructing a natural sentence that accurately captures
those thoughts, namely a “Show, Think, and Tell” pipeline.
We also propose a post-processing step with (2) CLIP-

guided caption ranking again using CLIP as guidance for
further improvement in inference quality.

Our experiments on standard benchmarks such as VA-
TEX [34], MSRVTT [38], and YC2 [46] show that Cap-
tionT5 achieves comparable or better accuracy than well-
known video captioning models such as HERO [15] and

SwinBERT [18]. More interestingly, CaptionT5 signifi-
cantly outperforms SwinBERT given only a small number
of video frames (2⇠4 frames), demonstrating its high com-
putational efficiency. We also provide comprehensive em-
pirical analyses on how each component of CaptionT5 af-
fects performance as well as how well CaptionT5 performs
in a single-frame setting analogous to image captioning.

In summary, our main contributions are as follows:
• We introduce CaptionT5, a thought-augmented fine-

tuned language model for video captioning. Thought-
augmented fine-tuning aligns a pre-trained language
model on a paired dataset consisting of thought-
augmented video inputs and corresponding captions. (see
Figure 2).

• To automatically generate thoughts, we propose (1)
CLIP-guided thought sampling that samples thoughts
based on the similarity in an image-text multimodal em-
bedding space by leveraging CLIP. We also propose (2)
CLIP-guided caption ranking during decoding for further
performance gains.

• Using standard benchmarks including VATEX,
MSRVTT, and YC2, we empirically show that Cap-
tionT5 can achieve comparable or better accuracy than
well-known video captioning models such as HERO and
SwinBERT. (see Figure 1 and Table 1).

2. Related work
Large language models. Large language models (LLMs)
are Transformer-based [31] models pre-trained on a large-
scale text corpus. LLMs are typically pre-trained via
self-supervised learning such as next token prediction and
masked language modeling, capable of leveraging large-
scale in-the-wild textual data without any human annotated
labels. There are numerous LLMs available, examples of
which include BERT [6], GPT [3, 25], T5 [27], PaLM [4],
and Chinchilla [10]. Pre-trained LLMs exhibit interesting
and unique abilities, such as GPT-3 [3] demonstrating few-
shot in-context learning that can achieve competitive perfor-
mance without fine-tuning to the given task. Recent work
such as Chain-of-Thought [35], STaR [42], and ReAct [40]
have also showed that thought-augmented prompting allows
LLMs to solve complex downstream tasks such as arith-
metic, commonsense, and symbolic reasoning. Inspired
by such success, we introduce a framework that leverage
prompt engineering on LLMs towards video captioning and
explore how to effectively construct video-to-text multi-
modal prompts.

Vision-and-language models. Combining two different
modalities, vision-and-language models (VLMs) [17, 22,
29] aim to jointly learn vision-language representations that
can be used for downstream tasks such as text-based im-
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Figure 2. Overview of CaptionT5. CaptionT5 is a video captioning model that fine-tunes T5 [27] towards understanding video input and
generating its corresponding caption. To generate a more corespondent caption, CaptionT5 introduces thought-augmented fine-tuning for

video captioning, in which a caption is generated conditioned on the thought-augmented video input. To automatically generate thoughts,
we propose (1) CLIP-guided thought sampling that samples thoughts based on the similarity in an image-text multimodal embedding
space by leveraging CLIP [26]. To further improve caption generation, we provide (2) CLIP-guided caption ranking that selects the most
correspondent caption among multiple generations by using the video-text similarity.

age retrieval, visual question answering (VQA), and im-
age captioning. Based on the training mechanism, VLMs
can be categorized into two groups: MLM-based models
and contrastive learning-based models. MLM-based mod-
els include ViLBERT [22], VL-BERT [29], and Oscar [17].
Contrastive learning-based models include CLIP [26] and
ALIGN [11]. Among them, CaptionT5 uses CLIP as the
base VLM to encode video frames and sample contextual
texts due to its strong zero-shot performance.

Video-and-language understanding. Extending VLMs
to video data by viewing videos as a sequence of image
frames, Video-and-language (VidL) models aim to infer
textual information while interpreting spatio-temporal rela-
tions of objects in the video. Previous work include Act-
BERT [47], ClipBERT [13], VideoCLIP [37], Frozen in
Time (FiT) [1], VIOLET [8], and MERLOT [43]. While
these works mainly focus on discriminative downstream
tasks such as video question answering and text-to-video re-
trieval, CaptionT5 tackles the generative task of video cap-
tioning.

Video captioning. Early methods proposed for video cap-
tioning such as Open-Book [45], HERO [14], and VL-

Adapter [30] proposed multimodal frameworks that take
video data as well as related text such as subtitles or sen-
tences retrieved from a text corpus for textual guidance.
These approaches lack applicability to in-the-wild video
data where subtitles or sentences that exactly align with the
contents of the video may not be available. More recently,
SwinBERT [18] proposed leveraging a large pre-trained
video encoder, achieving state-of-the-art performance on
video captioning without any additional text annotations.
However, this comes at a cost of requiring a large-scale
general-purpose video datasets that are not as accessible as
text or image data. Previous work have also shown that
SwinBERT requires a large number of video frames for
high-quality generation. Our CaptionT5, on the other hand,
effectively reduces this computational burden by combin-
ing the image-and-text aligned feature space of CLIP and
the textual reasoning capability of T5 via video-and-thought
prompting.

3. Method

In this section, we describe the problem formulation of
video captioning alongside notations used throughout the
paper, then provide the details of CaptionT5.
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Problem formulation. Video captioning can naturally be
formulated as a sequence-to-sequence generation problem.
We consider each video as a sequence of K images, de-
noted as xi

1:K = [xi
1, ..., x

i
K ], with each image having

height H , width W , and C channels (i.e., x 2 RH⇥W⇥C).
Similarly, a caption is a sequence of words denoted as
yi
1:M = [yi1, ..., y

i
M ] with each word belonging to a set of

possible words Y (i.e. y 2 Y). Given a dataset consisted
of video-caption pairs D = {(xi

,yi)}Ni=1, we can train the
model to generate the caption yi given video xi by using
the next-token prediction objective below:

LLM = �

NX

i=1

MX

j=1

logP✓(y
i
j |x

i
1:K ,yi

1:j�1). (1)

3.1. CaptionT5
Consider how humans would perform the task of video cap-
tioning. While watching the video, we typically think of
answers to conceptual questions in our own language such
as “What objects are shown?” and “What actions do they
take?”. Given those thoughts, we cohesively merge them to-
gether alongside the video, and generate a natural sentence
that describes the overall content. Similar to this “Show,
Think, and Tell” pipeline, our CaptionT5 performs video-

and-thought prompting that extends video frame represen-
tations with contextual text, or thoughts, to be fed into T5
for effective caption generation. The following subsections
describe each of the three steps in detail, and the overall
illustration of CaptionT5 can be found in Figure 2.

3.1.1 Show — Video frame encoding

Given an input video x1:K , CaptionT5 first generates a rep-
resentation for each frame v1:K by using a frozen CLIP im-
age encoder f with feature dimension DCLIP as follows:

v1:K = [v1, ..., vK ] = [f(x1), .., f(xK)], (2)
with f : RH⇥W⇥C

! RDCLIP .
Since image features from CLIP are not aligned with

word embeddings from T5, CaptionT5 trains a linear pro-
jection EV to align the two features. We also add trainable
positional embeddings EV

pos as features from CLIP do not
capture the temporal aspect in videos. The overall video
frame encoding procedure can be written as

zV1:K = [z1, ..., zK ] = [v1E
V
, ..., vKEV ] +EV

pos, (3)

with EV
2 RDCLIP⇥DLM . EV

pos and zV1:K 2 RK⇥DLM

where DLM denotes the feature dimension of T5.

3.1.2 Think — CLIP-guided thought sampling

The next step of CaptionT5 samples contextual text prompts
that represent conceptual thoughts on the video while lever-
aging the multimodal feature space of CLIP.

Specifically, we consider two different types of thought
prompts: object prompts and action prompts. The object
prompt set O = {ok}

Nobj

k=1 contains object prompts of the
form “a photo of {object}” that describe what ob-
jects are present in the video. The action prompt set A =
{ak}

Nact
k=1 contains action prompts of the form “a photo

of {action}” that describe what actions the object is
performing. As one of possible implementations, we con-
struct the object prompt set based on 1,000 object categories
in ImageNet-1K [28] (i.e., Nobj = 1000), and the action
prompt set based on the 700 action categories in Kinet-
ics [12] (i.e., Nact = 700). Note that CaptionT5 is not
limited to these thought prompt sets, but can be extended to
more effective thought prompt sets.

CaptionT5 encodes object prompts ok and action
prompts ak through the frozen CLIP text encoder g to obtain
their respective features h

obj
k = g(ok) and h

act
k = g(ak),

where h
obj
k , h

act
k 2 RDCLIP . It then computes two prob-

ability distributions, one defined on O and another on A

based on the similarity between the thought features and
the given video features. To represent the entire set of
video frames v1:K , we use the mean-pooled image features
v = 1

K

PK
i=1 vi. More formally, the video-thought similar-

ity distribution can be defined as follows:

Pobj(ok|v1:K) ⇡ Pobj(ok|v) =
exp((v · hobj

k ))/⌧)
PNobj

l=1 exp((v · hobj
l ))/⌧)

(4)

Pact(ak|v1:K) ⇡ Pact(ak|v) =
exp((v · hact

k )/⌧)
PNact

l=1 exp((v · hact
l ))/⌧)

.

(5)

Here, ⌧ is a temperature parameter that is set as 10�3 in our
experiments.

Given the two probability distributions, CaptionT5 sam-
ples L number of prompts from each distribution, resulting
in a set of L object prompts and L action prompts, which
we use o1:L ⇢ O and a1:L ⇢ A to denote, respectively.

After sampling object and action thought prompts, we
concatenate all 2L prompts into a single text sequence
[o1:L,a1:L], then tokenize and featurize the sequence
through the learnable T5 embedding layer. As a result, we
obtain word embeddings [zO, zA] 2 RKT⇥DLM as our final
thought representation where KT denotes the total number
of text tokens from all the thoughts.

3.1.3 Tell — Caption generation

CaptionT5 concatenates the video frame embeddings zV1:K
and thought embeddings [zO, zA] together into a single se-
quence z = [zV1:K , zO, zA], and feeds it to the T5 encoder.
Given a video-caption pair dataset D = {(xi

,yi)}N1 , the T5
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model is fine-tuned by using the following loss function:

LV aT = �

NX

i=1

MX

j=1

logP✓(y
i
j |x

i
1:K ,oi

1:L,a
i
1:L,y

i
1:j�1).

(6)
Note that object prompts oi

1:L and action prompts ai1:L are
not part of the dataset D, but are automatically generated by
using the CLIP-guided thought sampling.

3.1.4 Reflect — CLIP-guided caption ranking

During inference after training, we can leverage the fea-
ture space of CLIP once again for similarity-based caption
ranking. Similar to language modeling, the quality of video
captioning is largely affected by which decoding algorithm.
For example, decoding via beam search leads to genera-
tion quality that depends on hyperparameters such as beam
length [5]. To address this issue, we generate multiple cap-
tions from fine-tuned CaptionT5, and rank the generated
captions by using the similarity between the mean-pooled
input video frame features v from the CLIP image encoder
and the features of each generated caption ci 2 RDCLIP

from the CLIP text encoder. Then, CaptionT5 selects the
caption with the largest similarity by

i
⇤ = argmaxi(v · ci). (7)

As later explored in our experiments, we find that this post-
processing step in decoding leads to notable improvements.

4. Experiments
In this section, we provide experimental results on video
captioning of CaptionT5. Firstly, we present our experiment
setup, and then provide main quantitative results. In addi-
tion, we provide a further analysis of the proposed methods.
Finally, we provide some example video captions generated
by CaptionT5.

4.1. Experimental setup
Datasets. We conduct experiments on two standard open-
domain video captioning datasets.
• VATEX [34] is a large open-domain video dataset that

contains about 41.2K video clips. It consists of train, val-
idation, public test, and private test set (for leaderboard),
and each set contains 26.0K, 3.0K, 6.0K, and 6.2K
videos, respectively. Each video clip has 10 ground-truth
captions. We used the official train set (26.0K videos
/ 260.0K captions) for training and the public test set
(6.0K videos) for evaluation.

• MSR-VTT [38] is a open-domain video dataset that con-
tains about 10K video clips. Each video clip has 10
ground-truth captions. We used the split knownd as MSR-
VTT-1kA [41] that contains 9K videos for training and
1K videos for evaluation.

• YC2 [46] is a cooking domain video dataset that contains
about 15.4K video clips. Each video clip has one ground-
truth caption. We used the official train set (10.3K videos
/ 3.5K captions) for training and the validation set (3.5K
videos) for evaluation.

Evaluation metric. Diverse metrics such as BLEU [23],
METEOR [2], and CIDEr [32] are used for evaluating
the quality of generated video captions. In our experi-
ments, we consider CIDEr [32] as our main evaluation
metric, as it is known that semantic similarity-based met-
rics are more correlated with human evaluation than word
matching-based metrics such as BLEU [23]. Furthermore,
we use CIDEr [32] for fair comparison as many works such
as HERO [15] and SwinBERT [18] have mainly used the
metric for video captioning.

Baselines. We compare CaptionT5 against a total of three
baselines, two of which are multimodal approaches that as-
sume each video input is accompanied by an additional tex-
tual input such as subtitles. The remaining baseline is a
video-only approach which does not assume any additional
annotations besides the video itself.
• Open-Book [45] proposes to use similar sentences re-

trieved from training corpus. Since it retrieves similar
sentences, they are not exactly matched with a given
video. Therefore, it can limit the performance and lack
the generalization ability.

• HERO [14] is another multi-modal baseline that uses
subtitles of a video in addition to video frames. Using
a combination of ResNet-152 [9] and SlowFast [7] for
video encoding, and RoBERTa [19] for text decoding,
HERO shows strong performance on various video-and-
language tasks such as video retrieval and question an-
swering [15].

• SwinBERT [18] is a Transformer-based video captioning
model. It employs Video Swin Transformer [20] for en-
coding a sequence of dense video frames, and a Trans-
former encoder for generating captions conditioned on
the encoded video representations.

Implementation details. We implement CaptionT5 us-
ing PyTorch [24], HuggingFace Transformers [36], and
OpenAI CLIP [26]. Following VALUE [15], we use the
AdamW [21] optimizer with a linear learning rate schedul-
ing after 5K warm-up steps. We use a base learning rate
of 1.5e � 3 and batch size of 256. Further details on the
chosen hyperparameters can be found in the supplementary
section.

4.2. Quantitative results
Comparison with other models. Table 1 shows the video
captioning performance measurements in CIDEr from Cap-
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Method
Vision Language Benchmark Score (CIDEr ")

Video Encoder Object Detector # Frames Contextual Text Text Decoder VATEX MSR-VTT YC2

Human [15] - - - - - 62.7 - -

ORG-TRL [44] InceptResnetV2, C3D Faster R-CNN � 8 7 LSTM 49.7 50.9 -

Open-Book [45] InceptResnetV2, C3D 7 � 8 Retrieved sentences LSTM 57.5 52.9 -
HERO [15] ResNet-152, SlowFast 7 � 8 Subtitles ROBERTa 58.1 - 108.5

SwinBERT [18] Video Swin 7 8 7 Transformer Encoder 65.2 47.6 -
SwinBERT [18] Video Swin 7 64 7 Transformer Encoder 72.7 55.3 109.0

CaptionT5 (ours) CLIP-ViT 7 8 Objects & Actions T5-Large 67.5 66.1 128.6
(sampled by CLIP)

Table 1. Comparison of video captioning models. CaptionT5 achieves comparable or better performance, when compared with the state-
of-the-art video captioning models. SwinBERT achieves human-level video captioning performance (CIDEr 62.7) by employing Video
Swin Transformer that can encode better video representations. In contrast, CaptionT5 provides better performance than SwinBERT by
harnessing large language models (T5) and pre-trained vision-and-language models (CLIP).

Components Score (CIDEr ")

(1) VP (2) TP (3) CR VATEX YC2

Human [15] - - - 62.6 -

SwinBERT [18] - - - 65.2 108.0

3 7 7 61.4 122.7
CaptionT5 3 3 7 66.1 126.1

3 3 3 67.5 128.6

Table 2. Effect of thought prompting and caption raking. Each
acronym means the followings: (1) VP: Video Prompting, (2) TC:
Thought Prompting, (3) CR: Caption Ranking

tionT5 and other baselines on VATEX and MSR-VTT.
Comparing multi-modal models that use subtitles or re-
trived sentences against the uni-modal ORG-TRL, we find
that the additional text is indeed helpful in generating
higher quality video captions, but is not sufficient to surpass
human-level performance. On the other hand, CaptionT5
shows performance that exceeds human-level performance.

Effect of thought prompting and caption ranking. Ta-
ble 2 shows the CIDEr results on the VATEX and YC2
test set after incrementally ablating each component in Cap-
tionT5. When removing caption ranking, the performance
decreases by 1.4, and the additional removal of the thought
prompting procedure decreases it further by 4.7, resulting in
sub-human-level performance. This shows that while both
thought prompting and caption ranking are helpful for video
captioning, the “thinking” step of generating contextual text
prompts is more crucial towards high-quality caption gen-
eration.

Method
# Video Frames

2 4 8 16

SwinBERT [18] 47.4 48.2 65.2 68.4
CaptionT5 (ours) 60.0 64.2 67.5 67.5

� +12.6 +16.0 +2.3 -0.9

Table 3. Comparison with SwinBERT on varying number of
video frames. While performing comparably with large number
of video frames, CaptionT5 outperforms SwinBERT significantly
when the number of frames is small.

Effect of the number of video frames. In Table 3, we
further investigate the performance of CaptionT5 under
varying number of video frames, with comparisons against
SwinBERT. As suggested in the original paper, we find
that the performance of SwinBERT consistently decreases
as we reduce the number of sampled video frames [18].
Meanwhile, CaptionT5 retains its performance much bet-
ter, showing a smaller decrease of only 7.5 CIDEr when
reducing the number of frames from 16 to 2. This implies
that leveraging well-aligned image-and-text feature space
leads to more data-efficient video captioning compared to
Transformer-based video encoders, that performs well even
under sparse frame sampling. This is especially useful in
practice as the time and memory cost of Transformer-based
models increase quadratically to the total number of tokens.

4.3. Qualitative results
We provide qualitative results in Figure 3 and 4. The results
are generated by CaptionT5 trained in the setting where 8
video frames are given, and 7 object prompts and 7 action
prompts are retrieved. Note that thought prompts are re-
trieved by similarity sampling for training, but they are re-
trieved by top-k search for inference to generate determin-
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Figure 3. Example captions generated by CaptionT5 on VATEX dataset.

Figure 4. Example captions generated by CaptionT5 on MSR-VTT dataset.

istic results.
In Figure 3, we provide the result on VATEX [34]

dataset. Note that VATEX contains the ground-truth cap-
tions that are descriptive and long. Despite this complexity,
CaptionT5 generates a semantically reasonable caption for
a given video. For example, CaptionT5 generates “A young

boy is demonstraing how to fold a paper airplan”, while the
ground-truth is “A young boy in his bathroom as he explains

how to make a paper airplane”.
To show how effective the sampled thought prompts are,

we also provide object and action prompts that are sam-
pled conditioned on a given video. For example, CaptionT5
samples semantically correct object prompts such as ‘‘A
photo of wing’’. Also, CaptionT5 samples semanti-
cally meaningful action prompts such as ‘‘A photo of
making paper aeroplanes’’.

Figure 4 shows the results on MSR-VTT [38] dataset.
Also, we provide sampled thought prompts for each given
video, to show the semantic relevance of the sampled
thought prompts. CaptionT5 generates a semantically

meaningful caption for each given video. For exam-
ple, CaptionT5 generates “A baseball player is hitting the

ball with his bat”, while the ground-truth is “Baseball

player hits ball”. Also, for the same video, CaptionT5
captures semantically meaningful object prompts such
as ‘‘A photo of baseball’’, and action prompts
such as ‘‘A photo of catching or throwing
baseball’’, respectively

4.4. Ablation study
For further analysis, we perform comprehensive ablation
studies on the VATEX dataset to assess how each major
component of CaptionT5 contributes to its performance and
how different thought retrieval settings and caption sam-
pling methods affect inference quality.

Effect of thought prompt retrieval methods. Next, we
test how the similarity sampling procedure for thought re-
trieval plays a role in caption quality. Note that for the fol-
lowing ablation experiments, we mainly compare against
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Vision Language VATEX

# Frames # Thoughts Thought Retrieval (CIDEr ")

8 - None 61.42
8 7 ⇥ 2 Top-k Search 62.94
8 7 ⇥ 2 Similarity Sampling 66.10

Table 4. Effect of thought prompt retrieval methods.

Vision Language VATEX

# Frames # Thoughts Thought Type (CIDEr ")

8 - None 61.42
8 7 ⇥ 1 Object 65.03
8 7 ⇥ 1 Action 65.93
8 7 ⇥ 2 Object & Action 66.10

Table 5. Effect of thought prompt types.

the CaptionT5 baseline without caption ranking which re-
turns 66.1 CIDEr, in order to compare while disregarding
the effect from additional post-processing. Table 4 shows
that replacing similarity sampling with top-k search leads to
a CIDEr, still outperforms the model without any thought
retrieval, but performs significantly worse (-3.16 CIDEr)
compared to CaptionT5 with similarity sampling. This in-
dicates that the stochasticity from the sampling process acts
as an effective regularizer that renders the model more ro-
bust and generalizable towards previously unseen videos.

Effect of thought prompt types. We compare the effect
of ablating each thought prompt type in Table 5. We find
that not considering object thoughts lead to a slightly worse
performance than not considering action thoughts. We con-
jecture that this may be due to video captions focusing more
on the action being done over time, rather than the object it-
self which can easily be identified by a single frame. One
other possibility is that predicting the correct object given
its action is an easier task for LLMs compared to predict-
ing the action given the object. Nonetheless, considering
at least one type of thought prompts lead to a significant
gain in performance (+3.61), while using both types return
highest-quality video captions.

Effect of the number of thought prompts. Table 6
shows results from varying the number of thought prompts
to sample (i.e. L). Interestingly, we find that sampling
one object and one action thought prompt still returns a
performance of 65.02, which is comparable to SwinBERT
(65.2). This indicates that the “thinking” procedure of vi-
sual concepts through CLIP is highly effective, and the
trained thought prompt distributions are well-trained to-

Vision Language VATEX

# Frames # Tokens # Thoughts (CIDEr ")

8 8 - 61.42
8 8 1 ⇥ 2 65.02
8 8 3 ⇥ 2 65.27
8 8 5 ⇥ 2 66.07
8 8 7 ⇥ 2 66.10

Table 6. Effect of the number of thought prompts.

Vision Language Caption Sampling Method
# Frames # Thoughts Beam Search Similarity Ranking

2 7 ⇥ 2 57.28 60.00
4 7 ⇥ 2 63.83 64.21
8 7 ⇥ 2 66.10 67.52

Table 7. Effect of caption ranking.

wards choosing the correct object and action.

Effect of caption ranking. Finally, we test the effect
of similarity-based caption ranking we proposed for better
caption decoding. Table 7 shows results from decoding with
beam search vs. with caption ranking across various num-
ber of video frames. For beam search, we use a length of
6 tokens. Interestingly, we find that caption ranking consis-
tently outperforms beam search, with a larger performance
gap appearing when less frames are used. This shows that
while a autoregressive decoding can suffer from semantic
errors, leveraging the CLIP feature space and choosing the
caption that best aligns with corresponding video frames is
an effective strategy in narrowing down semantically com-
patible samples from the decoder.

5. Conclusion

We propose CaptionT5, a video captioning model that
fine-tunes a pre-trained language model T5 to understand
video input and generate its corresponding caption. As T5
is not previously trained on visual inputs, CaptionT5 uses
the multimodal feature space of CLIP to provide video-
and-thought prompts to align T5 with visual cues in video
frames. We find that using features in CLIP to rank gen-
erated captions during decoding leads to additional boost
in caption quality. Experiments on VATEX, MSRVTT,
and YC2 datasets show that CaptionT5 outperforms
models that rely on additional annotations such as subtitles
as well as models pre-trained on large-scale video data.
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