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Figure 1. Matting Anything Model (MAM) offers a versatile framework capable of addressing various types of image matting scenarios
with a single model. Compared to previous specialized models for (A) Semantic Matting, which outputs a single alpha matte of all instances
in the foreground; (B) Instance Matting, which returns alpha mattes of all human instances; (C) Matting Anything Model can estimate the
alpha matte of any target instance with user prompts as boxes, points, or text descriptions for interactive use by incorporating SAM [22].
It further reaches comparable performance to the specialized matting models on multiple benchmarks, and shows superior generalization

ability with fewer parameters as a unified image matting model.

Abstract

In this paper, we propose the Matting Anything Model
(MAM), an efficient and versatile framework for estimat-
ing the alpha matte of any instance in an image with flex-
ible and interactive visual or linguistic user prompt guid-
ance. MAM offers several significant advantages over pre-
vious specialized image matting networks: (i) MAM is ca-
pable of dealing with various types of image matting, in-
cluding semantic, instance, and referring image matting
with only a single model; (ii) MAM leverages the feature
maps from the Segment Anything Model (SAM) [22] and
adopts a lightweight Mask-to-Matte (M2M) module to pre-
dict the alpha matte through iterative refinement, which has
only 2.7 million trainable parameters. (iii) By incorporat-
ing SAM, MAM simplifies the user intervention required for
the interactive use of image matting from the trimap to the

box, point, or text prompt. We evaluate the performance
of MAM on various image matting benchmarks, and the
experimental results demonstrate that MAM achieves com-
parable performance to the state-of-the-art specialized im-
age matting models under different metrics on each bench-
mark. Overall, MAM shows superior generalization ability
and can effectively handle various image matting tasks with
fewer parameters, making it a practical solution for unified
image matting. Our code and models are open-sourced at
https://github.com/SHI-Labs/Matting-Anything.

1. Introduction

Image Matting, as a long-standing computer vision task,
aims to estimate the alpha matte o given an input image
I [46]. The matting target is mainly around human beings
or other objects at the semantic level [23, 42, 50]. Recent
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works have extended the scope of image matting to more
complex scenarios like image instance matting [44], which
requires instance-aware alpha matte predictions and refer-
ring image matting [29], which extracts the alpha matte
given natural language description.

Previous deep learning-based image matting meth-
ods [29, 30, 37, 38, 44, 48, 52, 55, 60] have been pro-
posed to address specific image matting tasks on corre-
sponding benchmarks. These methods are tailored to in-
dividual datasets and lack the flexibility to handle various
image matting tasks due to their fixed model designs. This
limitation has hindered the development of more general-
ized and versatile image matting models. As a result, there
is a growing interest in developing more adaptive and ef-
ficient image matting frameworks that can handle different
types of image matting tasks with a single model.

Furthermore, previous image matting methods have re-
lied on user-guided trimaps as auxiliary inputs to achieve
accurate alpha matte predictions. Although some trimap-
free methods have been proposed that use mask guidance
or background images instead [40, 56], they are unable to
estimate the alpha matte of the target instance based on the
user request for interactive use. Therefore, it is crucial to
develop a model that can achieve accurate alpha matte es-
timation without relying on user-guided trimaps, while also
being capable of handling simple user requests in a flexi-
ble and efficient manner for interactive use. Such a model
would significantly enhance the user experience by reduc-
ing the extra need for manual intervention.

Motivated by these limitations of image matting, we pro-
pose the Matting Anything Model (MAM), a versatile net-
work that can estimate the alpha matte of any target in-
stance with prompt-based user guidance in an image as
shown in Figure 1. MAM leverages the recent Segment
Anything Model (SAM) framework [22], which supports
flexible prompting and outputs segmentation masks of any
target instance for interactive use. Specifically, MAM takes
the feature maps and mask outputs from SAM as inputs and
adds a lightweight Mask-to-Matte (M2M) module to predict
the alpha matte of the target instance. We trained MAM on a
combination of five image matting datasets that cover differ-
ent classes of instances, allowing the M2M module to learn
generalizable features for image matting. During training,
we randomly place target instances onto background im-
ages and use a pre-trained SAM to output mask predictions
of the corresponding instances. The trainable M2M mod-
ule then refines the mask by predicting multi-scale alpha
mattes. Through an iterative refinement process based on
the mask or the alpha matte, the multi-scale predictions are
merged to obtain the final meticulous alpha matte.

We conducted extensive evaluations of MAM on six im-

age matting benchmarks, including semantic image mat-
ting benchmark PPM-100 [41], AM2K [25] PM-10K [25],

the instance image matting benchmark RWP636 [56],
HIM2K [44], and the referring image matting benchmark
RefMatte-RW100 [29]. Our results demonstrate that MAM
achieves performance comparable to that of state-of-the-art
image matting models across all benchmarks under differ-
ent evaluation metrics. The experimental results highlight
the versatility and effectiveness of our proposed approach
for handling various image matting tasks in an interactive
and efficient manner.

2. Related Works
2.1. Image Matting

Given an image I, which can be view as a combination of
foreground image F' and background image B with coeffi-
cient alpha matte c,

I=aF+(1-a)B (1)

Image Matting is to estimate « given only I as inputs.
Traditional methods rely on a user-guided trimap, which
explicitly annotates the absolute foreground area, absolute
background area, and transition area. Then, sampling-
based image matting solutions use low-level features to
distinguish the transition areas by measuring the similar-
ities between foreground and background neighbors [2,

, 5, 9, 10, 12]. Recently, deep learning-based meth-
ods [28, 30, 37, 38, 48, 52, 55, 60] adopt neural networks
to estimate the alpha matte in an end-to-end manner with
trimap as auxiliary inputs. Some trimap-free methods use
background image [40], mask guidance [33, 56], or seg-
mentation data [0, 31] to make up the absence of trimap.
When the image I contains multiple instances, the compo-
sition turns to

N N
I=> aiF;+(1-)Y a;)B )

«; represents the alpha matte of instance ¢ and InstMatt [44]
adopt the target and reference mask as guidance to pre-
diction instance-aware alpha matte prediction. Interactive
matting methods [29, 49, 53] develop specialized models
that use point, boxes, or text input to estimate the alpha
matte of the target instance. MatAny [54] is a concurrent
work that also adopts SAM for semantic image matting.
SegAny [ 1] is an open-sourced project to improve the qual-
ity of image matting. In terms of video matting, trimap-
free [24, 26, 27, 31, 41] methods are explored for real-time
inference while the per-frame prediction quality is not com-
parable to image matting methods. However, these meth-
ods are designed for a certain scenario with corresponding
benchmarks, which limits their potential to handle various
image matting tasks and benchmarks.
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Figure 2. Matting Anything Model Architecture. The MAM architecture consists of a pre-trained SAM and an M2M module. Given an
input image I, SAM generates the mask prediction for the target instance based on the box or point user prompt. The M2M module takes
the concatenated inputs, including the image, mask, and feature maps, and produces multi-scale predictions coss, os4, and cps1. The
iterative refinement process, detailed in Section 3, progressively improves the precision of the final meticulous alpha matte «, incorporating

information from the multi-scale outputs.

2.2. Image Segmentation

Image segmentation is a close research area to image mat-
ting, while it predicts the binary mask of different in-
stances in the image. Similar to image matting, many im-
age segmentation methods are tailored for a specific im-
age segmentation task, like semantic segmentation [4, 16],
instance segmentation [14, 47], and panoptic segmenta-
tion [21, 45]. Recent works started to explore transformer-
based frameworks [7, 13, 17, 18] for unified image segmen-
tation. Language-guided segmentation frameworks [51, 59]
look for text supervision to segment instance-aware masks.
OneFormer [ 18] adopts a single transformer model to learn
with a joint training strategy and performs universal seg-
mentation across semantic, instance and panoptic segmen-
tation and outperforms specialized models. SAM [22] takes
a further step recently, which supports flexible prompting
from users to segment any instance in an image for inter-
active use. Grounded-SAM [34] incorporates DINO with
SAM to add text prompt support. Foundation models like
SAM offer opportunities for other areas to develop versatile
frameworks to support a range of applications.

3. Matting Anything

In this section, we provide an overview of the Matting Any-
thing Model (MAM) architecture, which consists of two
main components: the frozen Segment Anything Model
(SAM) and the trainable Mask-to-Matte (M2M) module.
We first provide a brief review of the SAM, which is de-
signed to produce high-quality instance segmentation given

user-guided prompts. We then introduce the M2M mod-
ule, which enables the transformation of the binary masks
into high-quality alpha mattes. Finally, we describe how we
connect the M2M module with the SAM to gradually build
the end-to-end MAM.

3.1. Segment Anything Model

Segment Anything is a recently proposed foundation model
for segmentation. Given an image I € R3*HxW SAM
uses a ViT-based image encoder to obtain deep feature maps
F € RE%16* 16 Then, a variety of N input prompts are
encoded by the prompt encoder and sent to the mask de-
coder with the feature maps. The mask decoder returns a
set of mask candidates m; € R™>H>W i ¢ N indicated by
the input prompts. With its flexible prompting mechanism,
SAM allows for interactive use and is easily adaptable for
downstream tasks.

3.2. Mask-to-Matte

The Mask-to-Matte (M2M) module is an integral compo-
nent of our Matting Anything Model (MAM) and is de-
signed to convert instance-aware mask predictions from
SAM into instance-aware alpha matte predictions efficiently
and smoothly. To achieve this, we utilize the feature maps
and mask predictions generated by SAM as auxiliary inputs
to M2M. To improve the accuracy of our predictions, we
adopt multi-scale branches for predicting the alpha matte
and merge these predictions through an iterative refinement
schedule.

Multi-Scale Prediction: Given an input image I €
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Task Semantic Matting Instance Matting Referring Matting
Benchmark AM2K | PM-10K | PPM-100 HIM2K RWP636 RefMatte-RW100
Metric SADall\L MADallxI/ MSEall\L IMQ:;La{de IMQ?nasfg IMQmadT IMQ'mseT SADalle MSEall\L
Specialized Models
GFM-R [25] 10.89 6.7 - - - - - - -
GFM-D [25] 10.26 6.9 - - - - - - -
MODNet [20] - - 4.4 : - ; } ) }
MGMatting [56] - - - 57.98 71.12 30.64 53.16 - -
InstMatt [44] - - - 70.26 81.34 51.10 73.09 - -
CLIPMat-B [29] - - - - - - - 107.81 59.5
CLIPMat-L [29] - - - - - - - 85.83 47.4
Generalized Models
SAM [22] 25.00 25.7 10.8 61.15 74.01 49.87 56.92 33.51 17.9
MAM 17.30 15.4 4.6 68.78 81.67 54.40 76.45 29.24 15.1

Table 1. Comparisons between specialized matting models and MAM on various benchmarks. 1/ | means higher / lower values indicate
better performance for the corresponding metric. Gray text refers to models specifically designed for these benchmarks. MAM shows clear
improvements over SAM and superior generalization ability as a unified image matting model.

R3*HXW " the pre-trained SAM model produces feature

maps F € RC*16 %16 and mask prediction m € R1XHxW
on the target instance with prompt guidance. We concate-
nate the rescaled image, mask, and feature maps to form the
input o, € R(E+HHX FX% to the M2M module. M2M
employs several refinement blocks [8, 56], which contain
connected self-attention layer [57], batchnorm layer, and
activation layer, to generate alpha matte predictions at 1/8
resolution, denoted as w55 € RIX§X% . The feature
maps are then upsampled to higher resolutions to make al-
pha matte predictions at 1/4 and full resolution, denoted
as Qugq € R X and Qg1 € RHXW regpectively.
The multi-scale predictions enable MAM to handle objects
of varying scales and provide finer-grained alpha mattes for
detailed object extraction.

Iterative Refinement To improve the accuracy of global
and local predictions, we use an iterative refinement pro-
cess. We first compute weight maps wyss, Wos4, and Wes1
that highlight different areas of the image during training
like trimaps. These weight maps are used to compute losses
for each scale of prediction, with w,ss emphasizing the en-
tire image for a,sg predictions, w,s4 filtering out the back-
ground for a,¢4 predictions, and w,s1 focusing only on the
transition areas. During inference, we gradually merge the
predictions of a,s8, (psq, and g1 With the mask predic-

tions m from SAM to obtain the final alpha matte prediction
a € Rl X HxW .

3.3. Matting Anything Model

After the development of the Mask-to-Matte (M2M) mod-
ule, we integrate it with the Segment Anything Model
(SAM) to enable end-to-end training and inference for the
Matting Anything Model (MAM). This integration allows
for a comprehensive and unified framework that handles

the entire matting process, from feature extraction to alpha
matte prediction.

Multi-Dataset Training To ensure the robustness and ver-
satility of our Matting Anything Model (MAM), we adopt
a multi-dataset training approach that encompasses diverse
foreground instances and background images from various
image matting datasets. This selection allows us to cover
a wide range of instance classes and background scenar-
ios, enhancing the model’s ability to handle different types
of instances and backgrounds effectively. During the train-
ing process, we create composite images by combining a
foreground instance F' € R3*H*W with its correspond-
ing ground truth alpha matte vy, € R *W and a back-
ground image B € R3*H*W _ The composition is per-
formed using the equation I = oy F + (1 — ag)B. We
then extract the bounding box (xg, Yo, x1,y1) that encap-
sulates the instance of interest within the composite im-
age. Then, we send the image I and the bounding box as
a prompt to the pre-trained SAM, which returns the mask
prediction of the instance. Then, we concatenate the image,
mask and feature maps, and send them to the M2M mod-
ule, which further returns the multi-scale alpha matte pre-
dictions s, Qpsa, Qos1- The loss L is computed between
the multi-scale predictions and ground truth oy as

‘C(O‘gt; Qps1y Npsd, aosS) = )\ﬁl El + )\CLap‘CLap (3)

Ly is L1 loss and L1,4p is Laplacian loss used in [15, 31,

]. The coefficients Az; and ALp4, control the contribu-
tion of each loss term, respectively. Both loss terms are
computed on multi-scale predictions as

Elz Z [fl(agtaaosi) (4)
i=1,4,8

£Lap: Z ‘CLap(agt;aosi) (5)
i=1,4,8
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AM2K / PM-10K

Method SADalli MSEa”J/ MADalli Grada”¢ SADtm\L
SHM [6] 17.81/16.64 6.8/6.9 10.2/9.7 12.54/14.54 10.26/8.53
LFM [58] 36.12/37.51 11.6/152 21.0/15.2 21.06/21.82 19.68/16.36
HATT [38] | 28.01/22.66 5.5/3.8 16.1/13.1 18.29/15.16 13.36/9.32
SHMC [33] | 61.50/57.85 27.0/29.1 35.6/34.0 37.00/37.28 35.23/23.04
GFM-R [25] | 10.89/11.52 29/3.8 6.4/6.7 10.00 / 13.07 9.15/8.00
GFM-D [25] | 10.26/11.89 29741 5.9/6.9 8.82/12.90 8.24 /7.80
SAM [22] 25.00/44.11 10.8/28.8 14.8/25.7 60.01/24.56 20.72/31.96
MAM 17.30/25.82 3.5/9.2 10.1/154 10.65/14.22 15.67/23.99

Table 2. Results on the semantic image matting benchmark AM2K and PM-10K. Metrics with al/l and #ri as subscript indicates the
evaluation of the whole image and the transition area, separately. | means lower values indicate better performance for the metric.

Method MSE.; 1l MADy; |
DIM [52] 11.5 17.8
FDMPA [60] 10.1 16.0
LFM [58] 9.4 15.8
SHM [6] 7.2 15.2
HATT [38] 6.7 13.7
BSHM [33] 6.3 114
MODNet [20] 4.4 8.6
SAM [22] 10.8 13.8
MAM 4.6 9.9

Table 3. Results on the semantic image matting benchmark PPM-
100.

Multi-Benchmark Inference During the inference phase,
we conducted extensive evaluations of the Matting Any-
thing Model (MAM) on multiple image matting bench-
marks to assess its generality and adaptability. Given an
input image I, SAM produced the initial mask prediction
m € R>HXW “which captured the rough delineation of
the instance. Subsequently, M2M contributed to the refine-
ment of the alpha matte prediction by providing multi-scale
predictions s, (tps4, and a,s1. Then, following the itera-
tive refinements, we progressively updated the predictions
by replacing the corresponding regions in the mask pre-
diction m with the respective multi-scale predictions that
demonstrated positive weight maps, while in some simple
cases the replacement is directly done upon «,sg instead of
m. This iterative refinement allowed us to refine the alpha
matte estimation iteratively and enhance the precision of the
final prediction v € R *H*W,

4. Experiments
4.1. Implementation Details

Training Datasets During the training process, we ran-
domly select foreground instances from several image mat-
ting datasets, including Adobe Image Matting dataset [52],
Distinctions-646 [55], AM2K [25], Human-2K [35], and
RefMatte [29], to ensure a diverse range of instance classes.
For background images, we select them from two datasets:

COCO [32] and BG20K [25] to provide a mix of both real-
world and synthetic backgrounds.

Evaluation Benchmarks To evaluate the adaptive ability
of MAM, we test it on a variety of image matting bench-
marks including the semantic image matting benchmarks
PPM-100 [41], AM2K [25], PM-10K [25], the instance im-
age matting benchmark RWP636 [56], HIM2K [44], and the
referring image matting benchmark RefMatte-RW100 [29].
The box prompt is used for all benchmarks and the point
prompt is only used in RefMatte-RW100. This comprehen-
sive evaluation allows us to assess the generalization ca-
pability of MAM across various image matting tasks and
benchmarks.

Evaluation Metrics We evaluate the accuracy of predicted
alpha matte for MAM with commonly adopted evaluation
metrics. Specifically, we employ Mean Absolute Differ-
ence (MAD), Sum of Absolute Difference (SAD), Mean
Squared Error (MSE), Gradient (Grad), and Connectivity
(Conn) [39] as corresponding evaluation metrics. We scale
MAD, MSE, Grad, and Conn by 103, 103, 10~3, and 1073,
respectively. Lower values indicate better performance for
these metrics. Additionally, for instance-aware matting, we
utilize Instance Matting Quality (IMQ) [44], which takes
recognition and matting accuracy into consideration simul-
taneously. Higher values indicate better performance for the
IMQ metric.

Experimental Settings We trained MAM on a combina-
tion of training datasets using 8 RTX A6000 GPUs, with
a batch size of 10 images per GPU. Each image was a
combination of a randomly selected foreground instance
and a background image. Images were cropped to a size
of 1024 x 1024 and sent to a pre-trained ViT-B based
SAM [22] with a bounding box prompt of the target in-
stance. The feature maps and masks output by SAM were
then fed into the M2M module for alpha matte predic-
tion. We employed the Adam optimizer with 5; = 0.5
and B2 = 0.99, trained for 20,000 iterations with warm-
up for the first 4,000 iterations. The weight map w,sg is
always 1 at all pixels during training, while w,s4 changes to
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Model Synthetic Subset Natural Subset 1

Method Size IMQmad IMQmse IMQgrad IMQconn IMQmad IMQmse IMQgrad IMQconn
Mask RCNN [14] | 443 M 18.37 25.65 0.45 19.07 24.22 33.74 2.27 26.65
CascadePSP [8] 67.7M 40.85 51.64 29.59 43.37 64.58 74.66 60.02 67.20
GCA [30] 252 M 37.76 51.56 38.33 39.90 45.72 61.40 44.77 48.81
SIM [42] 46.5M 43.02 52.90 40.63 44.29 54.43 66.67 49.56 58.12
FBA [11] 347M 36.01 51.44 37.86 38.81 34.81 48.32 36.29 37.23
MGMatting [56] | +29.6 M 51.67 67.08 53.03 55.38 57.98 71.12 66.53 60.86
InstMatt [44] +29.7M 63.59 78.14 64.50 67.71 70.26 81.34 74.90 72.60
SAM [22] 93.7TM 49.69 61.44 4.34 51.84 61.15 74.01 13.64 65.85
MAM +27M 54.15 68.01 30.47 55.40 68.78 81.67 51.79 72.62

Table 4. Results on the instance image matting benchmark HIM2K. Metrics with mad, mse, grad, and conn as subscript indicates the
similarity metrics for IMQ are MAD, MSE, Gradient, and Connectivity, separately. T means higher values indicate better performance for
the IMQ metric. MAM shows clear improvements over SAM under different metrics with only 2.7M extra trainable parameters, much

lighter compared to other mask-guided methods like MGMatting and InstMatt.

Method IMQinaaT IMQpset Method Prompt | SADg;;, MSE.;l MADg;l
Mask RCNN [14] 20.26 25.36 MDETR [19] text 131.58 67.5 75.1
CascadePSP [8] 42.20 52.91 CLIPSeg [36] text 211.86 117.8 122.2
GCA [30] 33.87 46.47 CLIPMat [29] text 107.81 59.5 62.0
SIM [42] 34.66 46.60 SAM [22] text 122.76 67.9 69.0
FBA[11] 35.00 47.54 MAM text 120.10 65.9 67.5
MGMatting [56] 30.64 53.16 SAM [22] point 214.19 123.8 124.9
InstMatt [44] 51.10 73.09 MAM point 168.82 89.6 97.7
SAM [22] 49.87 56.92 SAM [22] box 33.51 17.9 19.0
MAM 54.40 76.45 MAM box 29.24 15.1 16.6
Table 5. Results on the instance matting benchmark RWP636. Table 6. Results on the referring image matting benchmark

the mask guidance from SAM after the 4,000 iterations and
W,s1 changes to the boundary of o4 after the 4,000 itera-
tions as well. We set 3 refinement blocks for the prediction
of av,ss, 3 refinement blocks for the prediction of 44, and
2 refinement blocks for the prediction of «,s1. As a result,
the total trainable parameters of MAM is 2.7 million param-
eters. We applied cosine learning rate decay with an initial
learning rate of 0.001 during training. During inference, we
used a single GPU with a batch size of 1. Each image was
resized to have its longer side at 1024 pixels and its shorter
side was padded to 1024 pixels before being sent to MAM
for alpha matte prediction of the target instance.

4.2. Main Results

Specialized vs Unified Model We present a high-level
comparison between specialized image matting models and
MAM on the semantic, instance, and referring image mat-
ting benchmarks in Table 1. It shows that MAM has clear
improvements over SAM on all benchmarks. Furthermore,
MAM shows comparable performance to each specialized
image matting model and even reaches better performance
on the HIM2K, RWP635, and RefMatte-RW100, which
makes it a practical and feasible solution to unified image
matting.

RefMatte-RW100. MAM with box prompt can reach significantly
better performance than with the text prompt.

Model Natural Subset

Method Size IMQyad IMQpse
SAM [22] 93.7M 50.47 61.66
+ Mask-Select 93.7M 61.15 74.01
MAM Baseline 1.0M 52.82 71.82
+ Multi-Scale Prediction | 2.7 M 60.11 74.74
+ Iterative Refinement 27M 65.44 78.93
+ Multi-Dataset Training | 2.7 M 68.37 81.56

Table 7. Ablation study of MAM on the HIM2K benchmark. The
MAM Baseline is built upon the SAM model with the box prompt.

Semantic Image Matting We evaluate the performance of
MAM on three semantic image matting benchmarks: PPM-
100 [41], AM2K [25], and PM-10K [25], as presented in
Table 3 and Table 2. The iterative refinement process is
based on the «,¢g prediction for all three benchmarks. On
the PPM-100 benchmark, MAM achieves improvements of
6.2 MSE,;; and 3.9 MAD,;; over SAM. Similarly, on the
AM2K benchmark, MAM outperforms SAM with enhance-
ments of 7.64 SAD,;;, 4.4 MSE,;, 4.5 MAD,;;, 41.54
Grad;;, and 7.59 SADy,.;.

Instance Image Matting In Table 4 and Table 5, We eval-

1780



uate MAM on two instance image matting benchmarks:
HIM2K [44] and RWP636 [56]. For HIM2K, the iterative
refinement is based on prediction mask m since it contains
multiple instances per image and starting from m removes
false positive predictions. Compared to other state-of-the-
art methods on HIM2K, MAM reaches comparable perfor-
mance with only 2.7 M extra trainable parameters, which
is only 10% of the specialized models like MGMatting and
InstMatt, which use the mask guidance from Mask RCNN.
On the RWP636 benchmark, we apply the iterative refine-
ment from «,.s and MAM reaches the new state-of-the-art
with 54.40 IMQ,;,4q and 76.45 IMQ;sc.-

Referring Image Matting In Table 6, we present the eval-
uation of MAM on the RefMatte-RW 100 benchmark [29],
a recently introduced referring image matting benchmark.
While previous methods rely on text prompts for refer-
ring image matting, we leverage the bounding boxes and
text descriptions as the prompts for SAM. Considering the
text prompt for SAM has not been released yet, we use
Grounded-SAM [34] to support text prompt guidance. Re-
markably, MAM achieves superior performance when uti-
lizing the bounding box as the prompt for SAM, surpassing
the text-based methods CLIPSeg and CLIPMat by a signif-
icant margin.

4.3. Ablation Study

We conduct comprehensive ablation studies on the M2M
module of MAM, considering that SAM remains frozen
during the training process. To assess the performance
of MAM, we select the real-world subset of the HIM2K
benchmark.

SAM on HIM2K We begin by evaluating the pre-trained
ViT-B-based SAM using bounding boxes and points as
prompts for the target instance. SAM with box-based
prompts significantly outperforms the point-based prompts
and the final mask output is selected based on the mask
with the highest Intersection over Union (IoU) score with
the bounding box. SAM demonstrates strong performance
on the HIM2K benchmark, achieving 61.15 IMQ,,,,4 and
74.01 IMQ,,,s¢ on the natural subset.

Building MAM We then construct the M2M baseline by
integrating the M2M module, which takes SAM’s mask and
feature maps, as well as the image, as inputs. This base-
line, comprising 3 connected refinement blocks and pre-
dicting at 1/16 resolution, yields inferior performance com-
pared to SAM, as the low-resolution predictions lack fine
details of the alpha matte. However, by gradually incor-
porating multi-scale predictions and iterative refinement, as
described in Section 3.2, the performance of MAM im-
proves. Additionally, the adoption of multi-dataset training,
as outlined in Section 3.3, further enhances performance,
resulting in 68.37 IMQ,,,44 and 81.56 IMQ,,,s on the nat-
ural subset. Subsequently, we assess MAM’s performance

MAM

Image GT

MG[51]

Figure 3. Visualizations of alpha matte predictions from MGMat-
ting and MAM. Improvements are highlighted in the red boxes.

on other benchmarks without retraining to validate its gen-
erality and adaptability.

4.4. Visualization

In Figure 3, we compare matting performance between
MGMatting and MAM of images that contain multiple in-
stances. They both leverage mask guidance from SAM.
It shows that MAM is able to give more accurate alpha
matte predictions with only 10% parameters compared to
MGMatting under the same mask guidance. It also has
fewer false positive predictions in other instances. In Fig-
ure 4, we further provide visualizations of the mask and al-
pha matte predictions from SAM and MAM. These images
are selected from the semantic image matting benchmarks
and contain a single instance that can be a person, animal,
or transparent object. The visualizations demonstrate that
MAM achieves significantly improved predictions in the
transition areas without the trimap guidance, which high-
lights the superior performance of MAM in refining and en-
hancing the quality of alpha matte predictions.

4.5. Limitation

One limitation of MAM is its dependence on the feature
maps and mask predictions generated by SAM. If SAM
produces incorrect mask predictions, such as returning the
mask of an irrelevant instance like the bottom left case in
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Figure 4. Visualizations of mask and alpha matte predictions from SAM and MAM. Improvements are highlighted in the red boxes.

Figure 4, MAM faces challenges in rectifying these errors.
The iterative refinement process may inadvertently prop-
agate such errors, leading to inaccurate final predictions.
Therefore, addressing the issue of enabling MAM to ef-
fectively correct instance-level prediction errors remains an
open question that requires further investigation.

5. Conclusion

In this paper, we introduce Matting Anything Model
(MAM), which uses the Segment Anything Model (SAM)

as a guidance module with a lightweight Mask-to-Matte
(M2M) module to refine the mask output into the alpha
matte of the target instance. M2M is designed to handle
various image matting tasks, including semantic, instance,
and referring image matting, using a single model based on
user prompts including points, boxes, and text. We evaluate
MAM on six image matting benchmarks and demonstrate
that it achieves comparable performance to the specialized
state-of-the-art methods under various evaluation metrics.
Our proposed model offers a more versatile and efficient
solution for interactive and unified image matting.
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