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Abstract

An important task for intelligent systems is affordance
grounding, where the goal is to locate regions on an object
where an action can be performed. Past weakly supervised
approaches learn from human-object interaction (HOI) by
transferring grounding knowledge from exocentric to ego-
centric views of an object. The use of HOI priors is inher-
ently noisy and thus provides a limited source of supervi-
sion. To address this challenge, we identify that recent foun-
dational models (i.e. VLMs and LLMs) can serve as auxil-
iary sources of knowledge for frameworks due to their vast
world knowledge. In this work, we propose strategies to ex-
tract and leverage foundational model knowledge related to
attributes and object parts to enhance an HOI-based affor-
dance grounding framework. In particular, we propose to
combine HOI and foundational model priors through (1) a
spatial consistency loss and (2) heatmap aggregation. Our
strategies result in mKLD and mNSS improvements, and
insights suggest future directions for improving affordance
grounding capabilities.

1. Introduction
Robust object understanding is an important goal for com-
puter vision systems and is primarily evaluated using tasks
like image recognition, object detection, and semantic seg-
mentation. A higher-level problem that receives less atten-
tion is affordance understanding, which involves deter-
mining the actions afforded by an object or object part and
localizing specific regions in an image where the action can
be performed. For example, a knife blade is said to afford
cutting and a knife handle affords holding. Affordance un-
derstanding is a hallmark of human intelligence, as a person
can naturally recognize how to use objects through their ap-
pearance. Such understanding has essential implications as
AI moves towards embodied interaction, where an agent in
an environment needs similar capabilities to use objects.

*These authors contributed equally.

Figure 1. Weakly supervised affordance grounding with aux-
iliary foundational model knowledge. Our work’s premise is
that foundational model knowledge (attribute/part signals from
VLMs/LLMs) can address noise in weak supervision. We par-
ticularly address noise in LOCATE [16], a framework that uses
human-object interaction (exocentric views) to guide the learn-
ing of grounding in egocentric views. We add foundational model
views to further enhance the learning of grounding.

A specific subtask is affordance grounding, where given
an action label, a model should produce probabilities (i.e.
heatmaps) over regions in an image to represent where an
action can be performed on an object. While collecting
densely annotated grounding masks for training is possible,
such data acquisition is expensive. Common approaches
have thus been weakly supervised, specifically leveraging
human-object interaction (HOI) priors from widely avail-
able exocentric views (i.e. images of objects in action from
a third-person viewpoint) to learn to ground in egocentric
views (i.e. images of objects as if from one own’s view-
point) [16, 20]. Grounding is inferred from the point(s) of
contact between a human and an object (e.g. where the hu-
man holds the tennis racket). This process can be notably
noisy due to occlusion from hands and imperfect attention
to affordance-specific features. In addition, grounding mod-
els tend to struggle to generalize to unseen objects.

To address these challenges, we hypothesize that the
combination of vision-language models (VLMs) and large-
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language models (LLMs) can provide affordance grounding
support due to the broad world knowledge that the models
capture. Motivated by past work which shows the value of
LLMs to generate useful affordance knowledge (of key at-
tributes/parts) for task-driven object detection [34], we aim
to use both VLMs and LLMs to generate auxiliary affor-
dance views (e.g. heatmap masks) for the grounding task.
Our idea to generate views is shown in Fig. 1, where knowl-
edge of the attributes and parts that give rise to affordances
(e.g. thin, grippy, long handle for holding) is probed from
ChatGPT (gpt-3.5-turbo [25]). This information is com-
bined with the zero-shot capability of CLIP [28] to generate
auxiliary heatmap masks.

We then test whether foundational model knowledge and
HOI recognition knowledge are complementary by integrat-
ing the auxiliary affordance views with LOCATE [16], the
current state-of-the-art affordance grounding framework.
We propose two strategies to improve affordance ground-
ing: (1) a spatial consistency loss to encourage egocen-
tric views to consider CLIP’s knowledge and (2) heatmap
aggregation to guide exocentric combination of HOI and
foundational model knowledge. Motivated by the need to
address different types of noise, we empirically evaluate
union-based and intersection-based forms of aggregation.
Using a union-based strategy with a spatial consistency loss,
we achieve an improvement of +2.7% in mKLD and +1.9%
in mNSS in the seen setting vs. LOCATE.

To summarize the contributions of this work:
• We provide a baseline evaluation of CLIP’s zero-shot af-

fordance grounding capability using a variety of prompts
(e.g. with parts, attributes, the affordance/action). LLM
knowledge leads to improvements versus using default af-
fordance baseline prompts.

• We propose a unique mechanism to leverage LLM and
VLM knowledge in the form of auxiliary affordance
grounding masks.

• We show that use of a spatial consistency loss between
egocentric views from LOCATE and CLIP groundings is
effective especially for improving mKLD.

• We show that aggregating HOI-based and VLM-based su-
pervision in exocentric views is most effective in a union-
based strategy, especially in tandem with the spatial loss.

2. Background and Related Work
Visual affordance learning. The goal of visual affordance
understanding is to infer details about the actions that can be
performed with objects in a visual input that represents the
current state of the environment. Affordance understanding
has motivation in robotics, as an agent needs to determine
the set of actions that an environment allows. There is a
close relationship to the functionality of an object, though
object function is considered an immutable property of an
object while affordances depend on the existing state of the

environment [11] and can capture social aspects [8]. There
is similarity to human-object interaction, as affordances
represent what interactions can take place [12]. Affordance
datasets [9, 10, 20, 21, 24, 30] have been proposed at var-
ious granularities (e.g. masks, image labels, and bounding
boxes) to cover tasks such as segmentation/grounding, cate-
gorization, and detection. Affordance understanding is also
involved in higher-level reasoning tasks such as task-driven
object detection [32], e.g. “open a beer bottle”. Our work is
in weakly supervised affordance grounding, in particular.

Affordance grounding. Our main task of interest, affor-
dance grounding, involves producing pixel-level heatmaps
representing a set of action possiblities for a given object
and its affordance. While it is possible to learn dense pre-
dictions with supervised masks, a goal has been to use
weak supervision or self-supervision to avoid high annota-
tion costs associated with collecting boxes or masks [31].
Another goal has been to encourage models to general-
ize affordance grounding from “seen” to “unseen” objects
[20]. Many recent approaches opt to use human-object in-
teractions to guide affordance grounding as these signals
demonstrate where an action can take place. For exam-
ple, [21] captures interactive affinity cues (i.e. contact re-
gions) between a human and an object in images of interac-
tions to learn to produce groundings in images with just ob-
jects. [7] alternatively uses affordances in video demonstra-
tions, along with a novel transformer architecture and self-
supervised pretraining strategy, to scalably learn grounding.
[16] proposes an unsupervised part selection method to ex-
tract affordance cues from multiple exocentric views and
guide weakly supervised learning of grounding in egocen-
tric images. Across each of these methods, the potential for
noise is high, due to issues like occlusion and high diversity
in HOI demonstrations. Our work hypothesizes that founda-
tional model knowledge can address this noise. We specif-
ically propose to leverage the world knowledge of LLMs
and VLMs, in the form of parts and attribute signals which
have an important relationship with affordances [18]. We
evaluate the effectiveness of this knowledge by building on
the exocentric-egocentric affordance grounding knowledge
transfer framework of [16].

Knowledge probing of foundational models. Benefiting
from a large amount of text and paired image-caption data
on the Internet, there has been a rise in large foundational
models capable of zero-shot and/or few-shot transfer to var-
ious unimodal and multimodal tasks. For computer vision
applications, vision-language models (VLMs) have become
especially popular with notable zero-shot classification suc-
cess demonstrated by CLIP [28], ALIGN [15], CoCa [36],
and LiT [37]. Such VLMs have traditionally been used in
tasks like classification, detection, and segmentation. Vari-
ous facets of tasks like affordance understanding remain to
be studied. Our study addresses this gap through presenting
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Figure 2. Overview of our method to integrate auxiliary affordance views (heatmap masks produced with foundational model
knowledge), within LOCATE, an existing affordance grounding framework. An affordance label, object label, and LLM context
of attributes/parts serve as components in a prompt used as input to the interpretability method of [6] to gather CLIP heatmaps. We
follow LOCATE’s exocentric-egocentric knowledge transfer and produce auxiliary views in both exocentric and egocentric processing
(PCLIP

exo /PCLIP
ego ). We particularly propose (1) heatmap aggregation and (2) a spatial consistency loss (Lsp), respectively. Shown are

relevant thresholds needed for mask creation (tagg/tsp) and LOCATE’s own cosine embedding loss (Lcos); see [16] for more details.

insights into various prompting mechanisms for affordance
grounding. To gather prompt details, we use LLMs, which
have shown impressive world and commonsense knowledge
[1, 13, 22]. Further research has shown that LLM knowl-
edge of objects, in the form of attribute, part, and material
context, can be combined with VLMs (e.g. CLIP) to im-
prove zero-shot recognition [23, 27]. With respect to af-
fordances, knowledge from LLMs has been used to condi-
tion task-driven object detection [34], but not directly for
the grounding task. We specifically explore grounding and
analyze strategies to integrate auxiliary knowledge.
Explicitly leveraging attribute signals in learning. Re-
cent works have incorporated explicit mechanisms to lever-
age attributes in the text of captions and scene graphs
and improve in object-based tasks. [35] imposes a loss
between hierarchical relationships in captions to improve
visual grounding. For detection, [14] directly entangles
attribute-object learning with textual scene graphs, and [2]
enhances attention to attribute meaning in contrastive learn-
ing through sampling of adjective-perturbed negative cap-
tions. Our mechanism is unique in that we use LLM and
VLM attribute and part knowledge in a spatial consistency
loss to improve affordance grounding.

3. Approach

The main problem that we identify is that existing weakly
supervised pipelines for learning affordance grounding have
a limited and noisy source of supervision with human-

object interaction (HOI) priors. Our overall idea is to probe
key attribute and part information about affordances us-
ing an LLM (ChatGPT [25]) and then produce auxiliary
heatmaps through integrating such knowledge with CLIP
[28]. These heatmaps serve as auxiliary views (i.e. super-
vision) for the LOCATE framework [16], for which we ex-
plore various strategies to best integrate knowledge (i.e. a
spatial consistency loss, heatmap aggregation). Fig. 2 pro-
vides an overall view of our experimental approach.

3.1. Preliminaries: LOCATE

Our work builds on top of LOCATE [16], the current
state-of-the-art for weakly supervised affordance ground-
ing. In this approach, the goal is to learn grounding for
a set of affordances A of size C. The approach follows
an exocentric-to-egocentric knowledge transfer methodol-
ogy, where human-object interaction (i.e. exocentric) im-
ages guide the learning of affordance grounding in egocen-
tric images (i.e. images where objects are depicted alone
without interaction). Formally, given an affordance label y
and object label o for an egocentric image xego, k exocen-
tric object-affordance images xexo

0 , ..., xexo
k are sampled to

supervise egocentric grounding in training. Specifically, the
contact points in human-object interaction serve as weak
localization for affordances. A pretrained DINO-ViT [4]
is used to extract deep feature descriptors for all images.
The features for the exocentric images get concatenated to-
gether as fexo, while fego represents features for the ego-
centric image. A class-activation map layer (a projection
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Affordance Object Attributes Part

hold tennis racket long, grippy, straight handle
knife long, grip, curved handle

baseball bat long, grip, thin handle
ride bicycle soft, saddle-shaped, comfortable bicycle seat
beat drum flat, round, hard drum surface

cut with knife sharp, pointed, metallic blade
scissors sharp, pointy, curved blades

look out binoculars clear, round, glass lenses
hit tennis racket thin, stringy, crisscrossed racket strings

Table 1. Example knowledge gathered from an LLM (ChatGPT). Given an object and affordance input, the LLM produces attributes
and parts that are relevant to the affordance. Observe the similarity between attributes for the same affordance, but different objects.

layer followed by two convolutions) is further trained to
learn affordance-discriminative heatmaps (Pexo and Pego).
Due to the weak supervisory signal of HOI priors, these
regions can be imprecise and noisy. LOCATE introduces
a PartSelect module that leverages unsupervised k-means
clustering to isolate object parts (fop) from background and
human clusters (unused) in the exocentric features for ego-
centric guidance. Overall, the framework’s loss function is
shown in Eq. 1:

L = Lcls + λcosLcos + λcLc (1)

Lcls is a cross-entropy loss over the set of affordance
classes, Lc is a loss to encourage concentrated connected
components in grounding, and Lcos is a cosine embedding
loss that is used to align egocentric features with the fea-
tures of the parts collected with PartSelect.

Our approach to improve LOCATE is to provide aux-
iliary views using foundational model knowledge. These
views are represented in the form of heatmaps. As such,
our improvements primarily impact which parts are used to
learn grounding (fop), and consequently Lcos. We therefore
further outline this loss in Eq. 2, with α being a margin:

Lcos = max(1− fopḟego
|fop||fego|

− α, 0) (2)

We refer the reader to [16] for more specific details about
the LOCATE framework.

3.2. Foundational Model Knowledge Probing

This section outlines our approach to gather foundational
model knowledge for grounding. We first probe affordance
information from an LLM, and then extract heatmaps from
a VLM using various prompting strategies.
Gathering LLM attribute and part knowledge. Intu-
itively, the reason an object affords an action is because it

possesses key properties to enable that action. For instance,
for the affordance cut with to be in an image, there should
be something sharp, which is often metallic, like a blade.
[34] shows that such information can help in task-driven
object detection, but we alternatively wish to see if it can
address noise in weakly supervised affordance grounding.
As such, the first part of our approach is to gather knowl-
edge about which attributes and/or parts enable an affor-
dance. We prompt ChatGPT (gpt-3.5-turbo) for object part
and attribute information using the following template:

Output a text string that answers: ”What part
of the object affords this action?”. Answer the
question with just the answer, concisely. The
answer should be understandable by a ten year
old. It is possible for the entire object to afford
the action, so use the exact original object term
in such case. On the line following your answer,
please add 3-5 concise visual attributes/words
that would allow a ten year old to point to that
object part in an image.
EX: What part of ping pong paddle affords
hitting?
A: “paddle head”
Attributes: “flat”, “round”, “slim”
Q: What part of {object} affords {affordance}?

Notably, we provide an example to stimulate the in-context
learning ability of the language model. We ask for 3-5 at-
tributes since multiple attributes may contribute to an affor-
dance. In general, we find the outputs to be fairly reason-
able. We show examples (for AGD20K [20]) in Table 1.
Combining affordance knowledge with CLIP. We lever-
age LLM knowledge in concert with the CLIP VLM by
prompting CLIP and producing grounding maps. We test
a variety of different prompt templates to thoroughly evalu-
ate how to best extract CLIP’s knowledge:
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• “{affordance}”
• “{object}”
• “the region of {object} which allows the action
{affordance}”

• “{part}”
• “{attributes}”
• “{part} of {object}”
• “{part} of {object} which is {attributes}”
• “{part} of {object} which allows the action:
{affordance}”

• “{part} of {object} which is {attributes} and allows the
action: {affordance}”

Our motivation for testing the various prompts is to gauge
some naive ways of probing affordance knowledge (e.g. just
using the affordance and object names) vs. more specified
versions with attribute and part knowledge.

We specifically use the ViT-B/32 version of CLIP for in-
ference. To produce grounding maps, we leverage the strat-
egy of [6], which produces visual explanations (relevancy
map outputs) by considering modality interactions through
attention layers. Notably this extraction approach is com-
petitive vs. gradient approaches like GradCAM [33].

3.3. Integrating Auxiliary Views with LOCATE

We leverage the LLM knowledge-based maps probed with
CLIP as auxiliary affordance views within the LOCATE
framework. We identify that these views may be able to
help as auxiliary supervision for both exocentric and ego-
centric images. In this section, we outline the two main
approaches we use to explore integration: a spatial consis-
tency loss and heatmap aggregation.
Spatial consistency loss. We design a spatial consis-
tency loss to improve the learning of egocentric affordance
grounding. We reason that part and attribute knowledge can
be effective as part of a direct constraint with egocentric
images, for example, due to object properties like “sharp”
and “blade” being clearly visible for objects like “knife”.
To construct this loss, we define FCLIP

ego as the normal-
ized CLIP relevance map extracted for an egocentric image
by using the approach [6] with a prompt textaff . We use
“{part} of {object} which is {attributes} and allows the ac-
tion: {affordance}” as textaff due to its high performance
in the zero-shot setting. PCLIP

ego is further defined as the rel-
evance map thresholded by a spatial parameter tsp, shown
in Equation 3:

PCLIP
ego = FCLIP

ego ≥ tsp (3)

As the LOCATE framework similarly produces a thresh-
olded map Pego of size N×N , our goal is to enforce a level
of consistency between these two maps. Specifically, we
want Pego to ground at least the same regions as PCLIP

ego ,
as PCLIP

ego is precise, but can have low recall over the entire

Figure 3. Heatmap aggregation strategies of exploration.
Shown is the affordance “hit” with human-object interaction
(HOI) class-activation maps as produced by [16] and CLIP rele-
vance heatmaps computed with [6]. The CLIP heatmaps can be
precise but often lack coverage of the full affordance region.

affordance region. For this goal, we compute binary cross-
entropy (BCE) over each feature map element of the learned
Pego and auxiliary PCLIP

ego . We soften BCE to not penalize
Pego unfairly for correct predictions; thus we compute only
the positive term of binary-cross entropy in Eq. 4:

Lsp =− 1

∥PCLIP
ego ∥1

×

N−1∑
i=0

N−1∑
j=0

PCLIP,(i,j)
ego log(P (i,j)

ego ) (4)

This loss serves as an auxiliary constraint in LOCATE to
ensure the parts and attributes get adequate attention in ego-
centric grounding.
Heatmap aggregation. Exocentric-to-egocentric knowl-
edge transfer is an important source of supervision in af-
fordance grounding [16, 20] due to wide availability of in-
teraction vs. egocentric images. However, this process can
introduce errors because it depends on using imperfect class
activation maps (CAMs) from the exocentric view to iden-
tify areas related to an affordance. These CAMs may ac-
cidentally include unrelated background areas or might not
be accurate due to commonly encountered hand occlusion.

We experiment with heatmap guidance, as we reason
that attribute and part knowledge can complement knowl-
edge transfer from exocentric views. By default, for a given
affordance a, an exocentric localization map Pexo is pro-
duced by thresholding the min-max normalized activations
produced by DINO (Fexo). The width and height dimen-
sions of these features make up a 14×14 grid. For addi-
tional supervision, we also produce PCLIP , which is the
min-max normalized and thresholded relevance heatmap
gathered from CLIP using a fully specified prompt (with af-
fordance, object, part, and attributes info). We average pool
features to the same size as DINO (14×14). We further de-
fine a threshold tagg as a parameter to specify the activation
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CLIP Prompt mKLD↓ mSIM↑ mNSS↑
{affordance} 1.713 0.297 0.688
EX: cut with
{object} 1.534 0.333 0.875
EX: knife

the region of {object} which allows the action: {affordance} 1.510 0.337 0.904
EX: the region of knife which allows the action: cut with

{part} 1.581 0.319 0.854
EX: blade
{attributes} 1.662 0.305 0.768

EX: sharp, pointed, metallic
{part} of {object} 1.478 0.341 0.967

EX: blade of a knife
{part} of {object} which is {attributes} 1.483 0.341 0.973

EX: blade of a knife which is sharp, pointed, metallic
{part} of {object} which allows the action: {affordance} 1.484 0.340 0.950

EX: blade of a knife which allows the action: cut with
{part} of {object} which is {attributes} and allows the action: {affordance} 1.479 0.342 0.972

EX: blade of a knife which is sharp, pointed, metallic and allows the action: cut with

Table 2. Zero-shot affordance grounding with CLIP, using groundings extracted with [6] for ViT-B/32. AGD20k-Seen test (Egocen-
tric). Lower mKLD is better, and higher mSIM/mNSS is better. Bold = top. Underlined = 2nd best.

level needed from CLIP relevance maps (similar to Eq. 3).
To investigate potentially complementary benefits of

auxiliary affordance knowledge and HOI knowledge, we
specifically test taking the union (PCLIP ∪ Pexo) and in-
tersection (PCLIP ∩ Pexo) between the two heatmaps. We
reason that union can provide more coverage over the affor-
dance region, while intersection may be able to isolate spe-
cific regions on object parts that are relevant to affordances.
Both aggregation methods have potential drawbacks: (1)
union runs the risk of adding noise from either heatmap,
and (2) intersection might lack coverage of the affordance
region. Therefore, experimentation with both strategies can
capture tradeoffs. We notably also test a simple baseline
replacing LOCATE’s map (i.e. CLIP-guidance only) to test
CLIP’s effects alone. Figure 3 shows each of these methods.

4. Experimental Results
4.1. Setup

Dataset. We evaluate on AGD20K [20], consisting of
20,061 exocentric interaction images drawn from HICO [5]
and COCO [19], and 3,755 egocentric images. The goal
is to learn with exocentric knowledge to perform infer-
ence on egocentric views. There are two class settings for
evaluation: “seen”/“unseen”. In the “seen” split, there are
36 affordance classes, with potentially multiple objects for
each class. Every affordance-object combination is used for
training and testing. In the “unseen” split, there are 25 af-
fordance classes, though certain object classes are reserved
for training and others for testing. The “unseen” setting is
thus used to test grounding generalizability across objects.

For all images, ground-truth maps are produced by apply-
ing Gaussian blur to keypoints in densely annotated maps
of affordance regions, followed by image normalization.
Evaluation metrics. Like prior work [3, 16, 20], we use
three commonly used metrics: Kullback-Leibler divergence
(KLD) [3], similarity or histogram intersection (SIM) [17,
29], and normalized scanpath saliency (NSS) [26].
Training. Each model is trained on 1 NVIDIA RTX
A5000 GPU with 24 GB of memory. Notably, testing on
seen/unseen splits requires training separate models. All
models are trained for 15 epochs and use LOCATE’s default
settings. Python 3.7.1, PyTorch version 1.7.1, and Cuda
11.0 are relevant software versions. Reproduced results dif-
fer from reported results in [16], so we report both sets.
Modeling. ChatGPT outputs are gathered with gpt-3.5-
turbo, at settings of max tokens 100 and temperature 0.7.
The ViT-B/32 version of CLIP is used for grounding.

4.2. Results and Analysis

In this section, we outline results for how we optimize
CLIP’s utility in affordance grounding, as well as the strate-
gies used to integrate auxiliary knowledge within LOCATE.
How can affordance groundings effectively be probed
from CLIP? We establish a baseline for CLIP’s zero-shot
grounding capabilities, across a variety of prompting strate-
gies. As outlined in Sec. 3.2, we gather part and attribute in-
formation from an LLM to complement known affordance
and object information, and use the map extraction method
of [6] to produce groundings with the ViT-B/32 encoder. Ta-
ble 2 demonstrates the results on AGD20k-Seen, for which
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Strategy tsp Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Reported [16] - 1.226 0.401 1.177 1.405 0.372 1.157
Reproduced [16] - 1.227 0.400 1.200 1.417 0.367 1.153

SP Loss 0.2 1.211 0.398 1.197 1.420 0.362 1.144
0.4 1.198 0.403 1.210 1.402 0.369 1.151
0.6 1.203 0.403 1.206 1.402 0.369 1.159

Table 3. Spatial consistency loss in LOCATE. Spatial consistency loss is tested at various threshold values for tsp. The prompt used in
heatmap extraction is “{part} of {object} which is {attributes} and allows the action: {affordance}”. Bold = top in column. Underlined =
2nd best. Spatial consistency is most effective in seen setting with respect to mKLD.

Strategy SP Loss tagg Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Reported [16] - 1.226 0.401 1.177 1.405 0.372 1.157
Reproduced [16] - 1.227 0.400 1.200 1.417 0.367 1.153
SP Loss (tsp=0.4) ✓ - 1.198 0.403 1.210 1.402 0.369 1.151

Union 0.2 1.224 0.397 1.209 1.422 0.361 1.161
0.4 1.226 0.398 1.205 1.423 0.365 1.152

✓ 0.2 1.194 0.400 1.223 1.407 0.362 1.170
✓ 0.4 1.200 0.401 1.209 1.402 0.367 1.159

Intersection 0.2 1.225 0.401 1.199 1.435 0.367 1.124
0.4 1.232 0.401 1.189 1.465 0.365 1.087

✓ 0.2 1.206 0.402 1.197 1.423 0.367 1.121
✓ 0.4 1.205 0.403 1.192 1.440 0.363 1.105

Replace 0.2 1.223 0.402 1.170 1.420 0.362 1.152
0.4 1.223 0.400 1.198 1.437 0.365 1.120

✓ 0.2 1.199 0.400 1.216 1.404 0.362 1.171
✓ 0.4 1.201 0.402 1.201 1.426 0.363 1.128

Table 4. Aggregation strategies and spatial consistency loss in LOCATE. Spatial consistency loss is at threshold 0.4, while the aggre-
gration strategies are tested over values of tagg . Highlighted in light gray are notable combinations with multiple top/second-best values
overall in terms of mKLD and/or mNSS. Bold = top in column. Underlined = 2nd best.

we make the following general observations: (1) Specify-
ing just the affordance (e.g. “cut with”) is the least suc-
cessful approach. (2) The object name (e.g. “knife”) pro-
vides a strong prior for grounding. Part information is fur-
ther helpful, especially in combination with the object name
(e.g. “blade of knife”), reaching the top mKLD (1.478). (3)
Attribute information can be complementary to object and
part knowledge, as shown in the approach with top mNSS
(0.973). (4) The approach with all information is either the
best or second-best across all metrics, demonstrating bene-
fits to a high level of specification. Overall, the benefits of
the full specification are shown in improvements of 0.234
mKLD, 0.045 mSIM, and 0.284 mNSS vs. the default af-
fordance prompt.

How effective is an explicit spatial consistency loss as an
enhancement strategy? We experiment with a spatial con-
sistency loss to facilitate additional supervision from CLIP
for egocentric affordance grounding. We present results in

Table 3 over three threshold values for tsp, and compare to
the reproduced and reported LOCATE baselines. We ob-
serve the most significant differences in mKLD, where we
maximally see 0.029 mKLD improvement over the repro-
duced baseline in the seen setting (row 4 vs. 2). Using a
threshold of tsp of 0.4 offers improvements over the repro-
duced setting in 5 out of 6 metric settings. The spatial con-
sistency loss therefore shows added benefit from founda-
tional model knowledge. The gains are more pronounced in
the seen setting, perhaps since the attribute and part knowl-
edge used in training is tailored towards objects, and objects
at test time are seen in training. Still, since objects for the
same affordance can share attributes (e.g. one can hold a
golf club and a tennis racket with its long, grippy handle),
the added object, attribute, and part guidance still benefits
unseen mKLD despite an object not being seen in training.

How effective is heatmap aggregation as an enhance-
ment strategy? As outlined in Sec. 3.3, the aggrega-
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tion strategy used to combine CLIP and the HOI heatmaps
can either alleviate undercoverage of an affordance region
(union) or eliminate background noise (intersection). There
can be tradeoffs with these strategies as shown earlier in
Figure 3. To investigate potential tradeoffs, we perform ex-
periments over various forms of aggregation, including a
CLIP-only replace strategy to test CLIP’s effects alone. We
also test aggregation strategies in tandem with the spatial
consistency loss strategy. Table 4 demonstrates these re-
sults over thresholds for tagg . We find that the overall best
setting in terms of seen mKLD and mNSS is union-based
(tagg=0.2, with spatial consistency loss). In particular, this
union strategy achieves seen improvements over the repro-
duced baseline of 0.033 mKLD and 0.023 mNSS, while
maintaining SIM. There are thus mKLD and mNSS benefits
to the foundational model knowledge enhancement. In un-
seen, the improvements are 0.010 mKLD and 0.017 mNSS,
though there is a 0.005 drop in SIM.

Comparing this method’s numbers (row 6) to just using
a spatial loss (row 3), the effects, especially in mNSS, can
be complementary: there are gains of +0.013 mNSS (1.210
to 1.223) in seen and +0.017 mNSS (1.153 to 1.170) in un-
seen. The replace strategy (tagg=0.2, with spatial consis-
tency loss) is similarly effective, indicating CLIP’s coverage
of parts and attributes is beneficial to affordance ground-
ing and that lacking coverage of the affordance region is a
problem in exo-to-ego knowledge transfer. We reason that
LOCATE’s PartSelect module reduces the impact of over-
coverage decently.

We find that aggregation strategies alone have limited ef-
fectiveness. Union (row 4/5) helps slightly vs. the repro-
duced baseline in mNSS (row 2), but the benefits are more
noticeable in conjunction with the spatial consistency loss
(row 6/7). We find that intersection does not add benefits
vs. the baselines in both the seen and unseen setting. These
results indicate that there is likely a lack of coverage of the
key parts for an affordance in this scenario.
How do results compare to a model with a CLIP back-
bone? One relevant comparison is to replace the DINO
backbone with CLIP, specifically to test if the combination
of extracting foundational knowledge plus using the DINO
pretrained model (our approach) is more effective than just
using the foundational model (CLIP backbone). In Table 5,
we compare a CLIP backbone model (CLIP BB) with our
approach using spatial consistency loss and the union strat-
egy. We find a considerable drop when swapping the DINO
backbone with CLIP; this may be because self-supervised
vision transformers (ViTs) like DINO contain explicit
semantic segmentation information [4]. We speculate that
this capability may be an artifact of visual self-supervision
in ViTs compared to CLIP’s language supervision. Overall,
there is value in combining DINO and CLIP.

Strategy Seen Unseen
mKLD↓ mSIM↑ mNSS↑ mKLD↓ mSIM↑ mNSS↑

Repo. [16] 1.226 0.401 1.177 1.405 0.372 1.157
Repr. [16] 1.227 0.400 1.200 1.417 0.367 1.153
CLIP BB 1.432 0.352 0.980 1.594 0.313 1.019

Ours 1.194 0.400 1.223 1.407 0.362 1.170

Table 5. Overall comparison, including LOCATE with CLIP
backbone. We show the benefits of our HOI and founda-
tional knowledge combination. Ours is with spatial consistency
loss (tsp=0.4) and union aggregation (tagg=0.2). The prompt
used in heatmap extraction is “{part} of {object} which is
{attributes} and allows the action: {affordance}”. BB=backbone,
Repo=reported, Repro=reproduced.

Which affordance classes are best aided by foundation
model knowledge? We conduct a classwise analysis to
see which affordances are most aided by the foundational
knowledge. We find that in the seen setting for the method
with union heatmap aggregation (tagg=0.2) and spatial con-
sistency loss (tsp=0.4), the following classes have greater
than 0.1 KLD improvements (which are decreases) vs. the
reproduced baselines: brush with (+0.160), drag (+0.568),
pick up (0.207), push (+0.429), ride (+0.128), text on
(+0.143), and write (+0.249). Some notable affordance-
object combinations are: brush with toothbrush (+0.568),
lie on surfboard (+0.402), open bottle (+0.281), open suit-
case (+0.353), push bicycle (+0.515), push motorcycle
(+0.292), ride bicycle (+0.277), sit on bicycle (+0.247),
and write pen (+0.249). Auxiliary information, like “bris-
tles” for brush with toothbrush, appears especially helpful
in these cases.

5. Conclusion

Conclusions. We have provided insights into affordance
grounding with LLMs+VLMs and shown benefits from in-
corporating foundational knowledge of affordances into an
existing pipeline. Such insights can inspire future methods
to ensure robust, scalable, and generalizable grounding.

Future work. While we demonstrate improvements with
foundational model knowledge, there can be more effective
ways to integrate the knowledge. Attributes and parts are of-
ten shared across objects for the same affordance. A method
that strongly conditions predictions on attribute/part infor-
mation may achieve better seen-to-unseen generalization. It
may be desirable to extend past the use of exocentric-to-
egocentric knowledge transfer. VLMs can also be adapted
themselves for better zero-shot affordance grounding.
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