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Figure 1. Conceptual understanding of an existing V+L model. Here, CLIP failure to understand relational, compositional and con-
textual reasoning is shown. This benchmark presents three datasets to evaluate V+L models on relational, compositional, and contextual
understanding. They utilize image-text matching tasks with predicate, object/subject, compositions, or background swaps.

Abstract

In recent years large visual-language (V+L) models have
achieved great success in various downstream tasks. How-
ever, it is not well studied whether these models have a
conceptual grasp of the visual content. In this work we fo-
cus on conceptual understanding of these large V+L mod-
els. To facilitate this study, we propose novel benchmarking
datasets for probing three different aspects of content un-
derstanding, 1) relations, 2) composition, and 3) context.
Our probes are grounded in cognitive science and help de-
termine if a V+L model can, for example, determine if snow
garnished with a man is implausible, or if it can identify
beach furniture by knowing it is located on a beach. We
experimented with many recent state-of-the-art V+L mod-
els and observe that these models mostly fail to demon-
strate a conceptual understanding. This study reveals sev-
eral interesting insights such as that cross-attention helps
learning conceptual understanding, and that CNNs are bet-
ter with texture and patterns, while Transformers are bet-
ter at color and shape. We further utilize some of these
insights and investigate a simple finetuning technique that
rewards the three conceptual understanding measures with
promising initial results. The proposed benchmarks will
drive the community to delve deeper into conceptual un-
derstanding and foster advancements in the capabilities of

large V+L models. The code and dataset is available at:
https://tinyurl.com/vlm-robustness

1. Introduction
Humans navigate the world by learning an “understanding”
of how it works. Understanding may be defined as the un-
derlying organization of all concepts, including objects, sit-
uations, events, and more [8, 27]. They are organized in our
brains as conceptual maps, which encode structured, rela-
tional information [13]. Conceptual maps highlight major
objects and actions in a system and the causal relations be-
tween them. While deep learning models have impressive
performance in a variety of tasks, it is still unclear if their
impressive performance is due to learnt conceptual maps.
Large visual-language (V+L) models are recently and
greatly successful deep learning models that learn represen-
tations of image and text in a shared space. These represen-
tations are useful for downstream tasks like image classifi-
cation, visual-question answering, image retrieval and more
[1, 31, 32, 43, 47, 53]. However, for use in real-world appli-
cations, it is also vital that models “understand” rather than
memorize to perform on more general tasks [29]. While
large-language models have been shown to have a moder-
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ate amount of “theory of mind,” as measured by conceptual
consistency [35], V+L models have not been investigated
in a similar way using real-world examples. This is partly
because images are more challenging, as shown by prelim-
inary studies [5, 10, 42]. With this in mind, we focus on
probing models on their conceptual maps.
We develop a benchmark by combining insights from well-
known tests such as the Peabody Picture test, semantic
analysis underpinning knowledge bases such as Concept-
Net [39], and comprehension in elementary school educa-
tion [35] to identify three key areas for probing: relations,
composition, and context (Figure 1). Our benchmark could
be seen as a computational instantiation of visual compre-
hension testing along three important fundamental skills.
These skills form a compact set of necessary, but not suf-
ficient, prerequisites for key tasks such as concept transfer,
analysis, evaluation, and generation. They thus provide us
a basis for probing comprehension of large V+L models.
We propose three benchmark datasets, Probe-R, Probe-C,
and Probe-B. Probe-R looks at model understanding of
possible object relations by comparing an image to a cor-
rect prompt and an incorrect prompt where the predicate
is swapped with an unlikely relation. Probe-C looks at
model understanding of possible compositional relations by
comparing two images and two prompts where either the
composition is swapped with an antonym or the object is
swapped. Finally, Probe-B looks at model understanding
of objects and their relationships to their surroundings by
removing background and observing the change in perfor-
mance.
We experimented with several state-of-the-art V+L mod-
els and provide several interesting insights regarding these
models. For compositional understanding, we observe that
(1) models struggle with compositionality, and (2) CNN
based backbones may be better at recognizing texture and
patterns while ViT backbones are better with color and
shape. For relational understanding, we observe that (1)
both modality specific attention and co-attention in parallel
improve relational understanding, and (2) Predicate swap-
ping that violates expectations surfaces the lack of an un-
derlying conceptual model. For contextual understanding
we observe that (1) models tend to not use context in or-
der to recognize most objects, again indicating a lack of
an underlying conceptual model. We further utilize these
findings and develop a simple finetuning approach based on
selective negatives paradigm and observe improvement on
our understanding-related probes.
In summary, we make the following contributions:
• We study the capability of existing large V+L models for

complex visual perception focusing on relational, compo-
sitional, and contextual understanding.

• We propose three benchmark datasets: Probe-R, Probe-
C, and Probe-B focusing on subject-object relations,

Table 1. Comparison of ours with various recent works probing
relational, attribute, and context understanding of models.

Approach Relational Compositional Contextual
VL-CheckList [52] ✓ ✓ ×
ARO [50] ✓ ✓ ×
SVLC [12] ✓ ✓ ×
ControlledImCaps [19] ✓ ✓ ×
CREPE [26] ✓ ✓ ×
SugarCREPE [15] ✓ ✓ ×
Ours ✓ ✓ ✓

composition-object relations, and background-object re-
lations.

• We perform extensive evaluation of existing models and
provide new insights about their capabilities.

• We present a simple approach, based on prompting that
rewards compositionality and preservation of relations
between objects, which yields a more robust performance
on complex visual perception tasks.

2. Related Works
Several works have probed models to understand what mod-
els are learning [10, 12, 15, 18, 19, 26, 28, 42, 49, 50, 52].
Table 1 shows a comparison of our proposed benchmark
against several other existing works that probe the differ-
ent understanding property of V+L models. From the ta-
ble, it is evident that none of the existing works probe the
contextual understanding of V+L models, which our pro-
posed dataset does. Moreover, our proposed benchmark has
more images and is evaluated on more models than most of
the existing methods, which will be discussed later. Even
though SVLC [12] is a large-scale benchmark in terms of
both size of dataset and number of evaluation models than
our proposed benchmark, this is not sufficient for contex-
tual understanding of the V+L models. An extension of
Winoground [10] showed that models perform worse than
humans because it requires both compositional understand-
ing and commonsense reasoning. Without disentangling the
individual skills required to perform well, it limits insights
to why/how they are failing and where to improve. In this
work, we generate a benchmark that isolates components of
understanding into compositional, relational, and context,
allowing for more detailed insights.

3. Benchmark and Evaluation Metrics
We evaluate three discrete concepts: object-relations, com-
positionality, and background context. We have generated
three datasets: Probe-R, Probe-C, and Probe-B. A summary
of each dataset is shown in Table 2 and an overview in Fig-
ure 2. Prompting is typically done in downstream image
classification by forming sentences with each class name in
the prompt, such as “a photo of a dog.” The one with the
highest similarity to the visual features is the predicted class
[31, 38]. These benchmarks heavily rely on “prompting”
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𝑹𝟏: A photo of a sidewalk next to street
𝑹𝟐: A photo of a sidewalk has street
𝑹𝟑: A photo of a hardware next to street
𝑶𝟏: A photo of sidewalk.

“a photo of a small dog”
“a photo of a big dog”

Model

Probe-R: Relational Understanding

Model

“a photo of a small dog” “a photo of a big dog”

Probe-C: Compositional Understanding

Model

“A photo of a dog.”
“A photo of an apple”
“A photo of a train”

“A photo of a <object>”

…

X
“A photo of a dog.”

X
“A photo of a dog.”

Change in  
Confidence

Probe-B: Contextual Understanding

𝑹𝟏 vs. 𝑹𝟐 𝑹𝟏 vs. 𝑹𝟑 𝑹𝟏 vs 𝑶𝟏 𝑶𝟏vs 𝑹𝟏

Figure 2. Overview of proposed benchmarks. Probe-R swaps the real subject or relation with an unlikely one and swaps a set of
subject-only images to a subject-only prompt and the ground-truth relation prompt. Probe-C asks the model to match two images and two
prompts, swapping object or composition. Probe-B compares object recognition performance before and after swapping out context from
background and other surrounding objects.

the model by changing text input as well as image input in
Probe-B.

3.1. Dataset

Probe-R: Relational Understanding To generate a dataset
that can be used to probe for relational understanding, we
collected samples from the Visual Genome [21] dataset.
These samples are used to probe whether models have
learned consistent concepts of objects and their potential
relationships to each other. For each group, we have four
prompts P ∈ {R1, R2, R3, O1}, one anchor image XR1

and 10 images XO1
with the subject present and no other

objects found in the anchor image. For each XR1
, the

ground truth relation R1 = ⟨s1, r1, o1⟩ is compared to
a swap of subject R3 = ⟨s1, r1, o1⟩ or predicate R2 =
⟨s1, r1, o1⟩. We sample s1 uniformly from subjects that do
not occur in the dataset with r1 and o1 and similarly r1 is
sampled uniformly from relations that do not occur with s1
and o1. This swapping of unlikely subjects and predicates
allows us to test whether V+L models have learned consis-
tent conceptual models of what object relations are possible
in a system by comparing existing ones to unlikely ones.
The final comparison is subject-only images XO1 to PR1

and a prompt with only the subject PO1
.

Probe-C: Compositional Understanding To generate a
dataset that can be used to probe for compositional under-
standing, we collected samples from the MS COCO Cap-
tions dataset [24]. These samples are used to probe whether
models have learned an understanding of object attributes
and their relationships to each other. For each group, we
have two images x1 and x2 and two prompts p1 and p2.
This dataset has two splits, one where the compositions are
swapped in the prompts and the other where objects are
swapped. When swapping compositions, antonyms were
manually mapped to each attribute to ensure that the at-
tribute is not present in the image. For example, if there
is a “small dog” in an image, the comparison could be “a
large dog.” When swapping objects, the images must have

the same composition but different objects.
Probe-B: Contextual Understanding To generate a
dataset that probes for model understanding on objects and
their relationship to contextual cues found in an image’s
background, we collected samples from MS COCO [24]
consisting of 80 objects. These samples are used to probe
model reliance on background cues and reliance on co-
occurrence between objects. For each group, there is an
unmodified image x0, an image with a random patch on the
background x̃0, a modified image where the background is
removed x̃1 and 80 or fewer prompts. We have two splits
in this data, the first removing the background but keeping
all objects Probe-BMR and the other removing both back-
ground and all other objects Probe-BR. Probe-BR aims
to probe models on whether they use conceptual maps on
object co-occurrence to improve recognition. Probe-BMR

aims to probe models on whether they have conceptual
maps related to what group of objects are likely to be in
what scenery or possible physical relations to each other.
Poor performance on these tasks would indicate model
use of such conceptual mappings, while good performance
means they are focusing on object recognition only. We ex-
periment with four fillers: black, gray, gaussian noise, or a
random scene. Random scenery was collected from the In-
door Scenes Dataset [30] and the Kaggle Landscape dataset
[34]. These images were manually filtered to ensure none of
the 80 MS COCO classes were present. For single objects,
images were only kept if the size of the object was between
a threshold where the object was not too large and not too
small relative to the image size.

3.2. Evaluation Metrics

We use different evaluation metrics for each of the three
datasets, but with a focus on change in model confidence.
This allows us to relate to the psychological paradigm
“violation-of-expectation” (VoE) [2, 29]. If V+Ls are learn-
ing conceptual models, then a violation of those models
should be easily recognized and confidence should remain
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Table 2. A summary of proposed benchmark datasets. Tasks include Image-Text matching (ITM), multi-label object recognition (MLR),
and object recognition (R). Groups refer to the group of images/text for each comparison being made. Under attributes, we list the dataset
properties, where fillers are the types of replacements we use when removing background pixels.

Dataset Task Description Source Images Group Description Groups Attributes
Probe-R ITM Predicate/ Object Swapping Visual Genome 99,960 1 image, 10 pos. images, 4 prompts 99,960 2,456 Relations, 6,006 Objects

Probe-C ITM Composition Swapping MS COCO 40,681 2 images, 2 prompts 79,925 114 Compositions, 2,462 ObjectsObject Swapping 59,205 375,607

Probe-B MLR Background Removal MS COCO 31,745 3 images, 80 prompts 31,745 4 fillers, 80 objects
R Background+Object Removal 1,484 3 images, <80 prompts 9,375 4 fillers, 76 objects

high when choosing between the correct prompt and the
prompt that is violating expectation. For Probe-R, by prob-
ing models with data that is intended to violate expectation,
we expect the confidence to remain high. For Probe-C, by
probing models with paired opposites, we also expect the
confidence to be high. For Probe-B, by removing visual
information or replacing it with a violation of the original
information, we expect the model to become confused and
therefore the confidence to be low.
Probe-R: We evaluate Probe-R using the mean confidence
µ(c) and mean accuracy (acc) over all groups using equa-
tion 1, 2, and 3. We compare one image x to two prompts
p1 and p2.

(c1, c2) = σ(f(x, p1), f(x, p2)) (1)

µ(c) =
1

N

N∑
i=1

ci1 (2)

acc =

{
1 if c1 > c2
0 otherwise (3)

Logit scores from model f are converted to softmax σ pre-
dictions to measure the confidence ci of prompt pi. Here N
denotes total number of images.
Probe-C: To measure image and text matching between
two images, x1 and x2, and two prompts, p1 and p2, using
logit output from a model f , we adopt metrics from [42]
measuring a text score (t), an image score (i), and a group
score (g). t measures the accuracy of the model selecting
the correct prompt for a given image by equation 4, 5, and
6.

t(p1, x1, p2, x2) =

 1 if f(p1, x1) > f(p2, x1)
and f(p2, x2) > f(p1, x2),

0 otherwise
(4)

i(p1, x1, p2, x2) =

 1 if f(p1, x1) > f(p1, x2)
and f(p2, x2) > f(p2, x1),

0 otherwise
(5)

g(p1, x1, p2, x2) =

 1 if t(p1, x1, p2, x2)
and i(p1, x1, p2, x2),

0 otherwise
(6)

Probe-B: We evaluate model reliance on either the co-
occurrence of objects or background cues. Both tasks com-

pare to both an original image x0 and the original image
with an added patch of the respective filler x̃0 to take into
account general robustness. x̃1 will have either the back-
ground removed and replaced with a filler or have the back-
ground and all other objects replaced. The fillers are one
of: “black,” “gray,” “noise,” or a random “scene” that does
not have objects. The metrics we use for comparisons are
the mean average precision (mAP) for multi-object recogni-
tion precision, relative robustness γr measuring the relative
drop/increase in performance (equation 7, and mean change
in mAP µ(△(c)) (equation 8) for the objects. γr and mAP
evaluates how much the models rely on background context
to accurately describe the scenario. We collect the similar-
ity between the image xn and for each object o placed in a
prompt po ∈ p. This results in a set of similarity scores for
each object prompt which is used to calculate the score of
model’s change in confidence △c.

γr = 1− h(x,p)− h(x̃,p)

h(x,p)
(7)

△c(x, x̃) =
1

o

o∑
i=1

f(x, po)− f(x̃, po) (8)

4. Benchmark Results
Here we go through the models we are evaluating in this
benchmark and then report the results of those models on
the proposed datasets Probe-R, Probe-C, and Probe-B.
Models We perform our experiments on ten recently de-
veloped and publicly available models: CLIP [31], FLAVA
[38], ViLT [20], BridgeTower [47], BLIP [22], BLIP2 [23],
OTTER [45], ALIGN [17], MetaCLIP [46], and SigLIP
[51]. CLIP [31] is a dual-stream, modality specific model
that has a visual and text encoder of equal length and lim-
ited modality interaction. It uses a contrastive loss between
text-image pairs as its only multimodal signal. FLAVA
[38] is also a dual-stream encoder with an additional multi-
modal encoder that takes the ViT based [11] single-stream
encoders, merges them, and co-attends. It performs uni-
modal training for single-stream encoders followed by mul-
timodal training on a global contrastive loss, a masked mul-
timodal modeling task (MMM), and an image-text match-
ing (ITM) loss. ViLT [20] is a single-stream transformer
that uses co-attention between modalities. It concatenates
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word embeddings and linear projections of image patches
as input to a pre-trained ViT [11]. It trains using an ITM
loss, a masked language modeling (MLM) loss, and a
word-patch alignment loss. Bridgetower [47] uses a dual-
stream encoder with a multimodal encoder that incorporates
the single-stream encoders at multiple layers using cross-
attention based “bridge layers.” It uses a pre-trained ViT
from CLIP as visual encoder, RoBERTa [25] as text en-
coder, and is trained with MLM and ITM losses. BLIP
[22] utilizes a mixture of encoder-decoder, and can operate
in three functionalities: unimodal encoder, image-grounded
text encoder, and image-grounded text decoder. BLIP2 [23]
uses a querying transformer that’s at first trained in vision-
language representation learning stage then vision-to lan-
guage generative learning stage. It is a trainable module
bridging the gap between the frozen image encoder and
LLM. OTTER [45] improves upon CLIP by using online
entropic optimal transport to efficiently learn image-text
pairs. ALIGN [17] is a dual-encoder which uses Efficient-
Net as image encoder and BERT as text encoder trained on a
noisy dataset over one-billion image-text pairs. MetaCLIP
[46] follows CLIP by constructing metadata and carefully
curating image-text pairs to imitate their dataset and train-
ing procedure. SigLIP [51] improves upon CLIP by in-
troducing a pairwise Sigmoid loss instead of standard con-
trastive learning.

4.1. Relational Evaluation

Models become confused when predicate is swapped,
but more confident when object is swapped: The over-
all results for the relation evaluation benchmark are shown
in Figure 3 (left) where it shows each model’s accuracy and
mean confidence µ(c) for matching the prompt to the an-
chor image XR1

. When comparing an image to a correct
prompt and an incorrect prompt where the relation/predicate
is swapped with one not likely nor present in the image, the
model’s µ(c) for the correct prompt compared to incorrect
is very low. This may indicated that selected models be-
come “confused” when the relation is switched, even if it is
a highly unlikely relation to even exist between the two ob-
jects. When swapping objects, the object that is swapped s
is one that is highly unlikely, making this task simple if the
model has a consistent understanding of what relationships
are possible. Model confidence is higher when the object is
swapped versus when the predicate is swapped. This may
indicate that models are less confused when the task is spe-
cific to object recognition, focusing more on objects rather
than the relationships between them. This may additionally
indicate they are not understanding prompts as a “whole”
but rather parts to a whole. To visualize the differences be-
tween models, we plot some of their feature space in Figure
3 (right). We see very different structures for BridgeTower
and ViLT which heavily rely on cross-attention and image-

text matching (ITM) when compared to FLAVA and CLIP.
Summary: BridgeTower and ViLT’s performance indicates
that co-attention is a method that can improve relational un-
derstanding. (1) This would indicate that both modality spe-
cific attention and co-attention simultaneously improves re-
lational understanding. (2) When the predicate is swapped
to something that violates expectation, the drop in confi-
dence, regardless of accuracy, indicates that their perfor-
mance may not be due to an underlying conceptual map. (3)
When the subject is swapped, all models show better perfor-
mance compared to predicate swapping, indicating they are
focusing on objects less-so than their relations to each other.

4.2. Compositional Evaluation

Modality-specific attention and co-attention simultane-
ously greatly improves attribute-object relation under-
standing: Overall results for evaluating model understand-
ing of composition-object relationships are shown in Fig-
ure 4 (left) with additional results in the Supplementary.
We show the image, group, and object scores for when the
object (Obj.) is switched and for when the composition
(Comp.) is switched. When presented with two images
and two captions where the composition is the same but
the objects are different, all models other than BridgeTower
and BLIP2 perform on average double the performance
versus when the composition is switched. This discrep-
ancy indicates typically models are relying more on object
recognition when compositions are involved. BridgeTower
and BLIP2’s high performance indicates further support
that a combination of modality-specific attention and cross-
attention in parallel improves the learning of underlying
concepts.
Models stronger with more physical attributes like “ma-
terials” compared to visual-related like “color”: To bet-
ter understand model failures when keeping the objects the
same but swapping an attribute with its antonym, we cate-
gorized each attribute into 11 categories with results shown
in Figure 4 (middle). Attribute details are presented in the
supplementary. All models struggle with “visibility” related
compositions. The best performance was within the “mate-
rial” and “pattern” category.
Transformers and CNNs differ on which attributes they
understand best: To compare backbone models, we av-
erage the image scores over CLIP backbone architectures
in Figure 4 (right). Some noticeable patterns are that the
CNN backbone models are better with “material,” “pattern,”
and “texture” related compositions while ViT’s are better at
“color” and “shape.” This finding aligns with the findings of
[14] where they found ImageNet trained CNNs are biased
towards texture.
Summary: (1) Models struggle with compositionality but
are better with those most associated with objects such as
“materials.” (2) CNN based backbones may be better at
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(c) : PR1 vs. PR3

(c) : PR1 vs. O1

(c) : PR1 vs. PR2

Acc: PR1 vs. PR3

Acc: PR1 vs. O1

Acc: PR1 vs. PR2

.4

.6

.8

CLIP CNN
CLIP ViT
ViLT

BridgeTower
FLAVA

BLIP
BLIP2

OTTER
ALIGN

MetaCLIP
SigLIP

ViLT BridgeTower

CLIP ViT B/32Flava

Image Feats. 𝑃!": Predicate Swapped Text Feats. 𝑃!#: GT Text Feats.

Figure 3. Model’s performance on relational understanding on Probe-R. (left) Radar plot showing accuracy and mean confidence µ(c)
of different models. Here, the anchor image XR1 contains the relation R1 = ⟨s, r, o⟩, image XO1 contains O1 = ⟨s⟩. Prompts contain
either the relation PR1 , PR2 = ⟨s, r, o⟩, PR3 = ⟨s, r, o⟩, or PO1 = ⟨s⟩. (right) TSNE plot of the feature space for image features for
some models where the prompt with the predicate swapped is denoted by PR2 and the ground truth prompt denoted by PR1 .

recognizing texture and patterns while ViT backbones with
color and shape. Surprisingly, (3) these models are typically
better at matching captions given the image rather than text.

4.3. Background Context Evaluation

Models ignore what the background is replaced with,
indicating little use of it: Overall results for evaluating
model context understanding of background-object rela-
tionships are shown in Figure 5 and 6. Figure 5 (left) shows
the results averaged over filler type when only the back-
ground is removed. The most noticeable change is when
comparing the ground truth image to x̃0 and x̃1 as expected.
Overall, models are slightly less robust to when the back-
ground is replaced with either Gaussian noise or scenery.
However, if models had underlying understanding of what
objects belong in what context, models should be less ro-
bust to scenery. This indicates they may not have concep-
tual maps about objects and their relationship to context.
More co-attention may result in greater trade-off be-
tween robustness and performance: Figure 5 (right)
shows the overall results averaged over model type when
only the background is removed. Similar to when looking at
fillers, models are typically robust to background removal,
indicating little use of context. ALIGN tends to improve
when the background is removed. However, ViLT, ALIGN
and MetaCLIP tend to be less robust when a patch is added
to the image, noticeable even more so when the robustness
between x̃0 and x̃1 is so high. This appears to be a trade-off
between robustness and performance. Some objects ben-
efit from the presence of others, but most are better off
without: Figure 6 shows the overall results for when the

background and all other objects but one are removed, av-
eraged over either filler (left) or model (middle). When av-
eraging over filler, models appear to be more robust when
detecting one object as opposed to multiple objects in an
image. When averaging scores over models, γr tends to be
over 1 when comparing to the background removed image
x̃1, indicating models improve when objects are in isolation.
This case is especially prominent for ALIGN. This indicates
that models may be distracted from background information
rather than using it for object recognition. In order to better
understand what objects models are using background with
more than others, we categorize objects into sub-categories
as shown in Figure 8. The object-types that models struggle
with most appear to be large objects used in a common set-
ting, such as “ovens” for appliances and “sink” for fixtures.
This may indicate that there is some context used but for
certain objects more than others.
Summary (1) Models tend to not use context in order to
recognize multiple objects but (2) for some individual ob-
jects, models do use context. (3) These models are typically
robust to a change in background where models like ViLT,
ALIGN, and BridgeTower are more susceptible to a particu-
lar patch being changed. (4) When objects are placed in ran-
dom scenery that violates-expectation, models still perform
similarly to when the original background is there. This
may indicate that overall, models are not learning concep-
tual maps relating objects to their context.

5. Finetuning for better conceptual under-
standing

Dual-stream encoders like CLIP and FLAVA allow uni-
modal feature representations that can be extracted and used
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Comp. Image

Comp. Text

Comp. Group

Obj. Image

Obj. Text

Obj. Group
.2
.4
.6
.8

Probe-C Results

CLIP CNN
CLIP ViT
ViLT
BridgeTower

FLAVA
BLIP
BLIP2
OTTER
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MetaCLIP
SigLIP
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expression
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shape
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CLIP Backbones

CNN ViT

Figure 4. Model’s performance on compositional understanding on Probe-C. (left) The overall results for Probe-C showing the image,
text, and group scores for when the object is swapped (Obj.) or when the composition is swapped (Comp.). (middle) Mean group score
averaged across attribute categories. (right) CLIP scores averaged over different backbones.
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Figure 5. Model’s performance on contextual understanding on Probe-B for only background removal. (left) Mean results for
replacing background with filler and (right) for each model averaged over fillers. Comparisons between the original x0, original+random
patch x̃0 and modified x̃1. The metrics are mAP and γr .

for a variety of downstream tasks. Improving models that
do not require paired input would provide greater value
and stronger representations. To explore this idea, we fine-
tune (FT) CLIP ViT-B/32 on a new dataset inspired by this
benchmark called RelComp. The new dataset RelComp for
attribute-object and object-object relations is based on MS
COCO [24] and VisualGenome [21] and has no overlap be-
tween the benchmark datasets. We propose using selective
negative and positive pairing based on attribute and predi-
cate swaps and finetune using image-text matching (ITM)
loss and a contrastive loss (C) [31, 38] for finetuning (see
Figure 7). We linearly interpolate the original CLIP weights
with our FT weights using an alpha= 0.2 to prevent “catas-
trophic forgetting” [16, 44]. We call this “CLIP Patched”
and finetune visual-encoder only (V), text-encoder only (T),
or both (VT). More details about losses, implementation,
and dataset are in the Supplementary.
Overall results for our exploratory experiment are shown in
Table 3. We observe drift as measured by ImageNet ac-
curacy, even when patching. When finetuning using the

Table 3. Performance on finetuned and patched CLIP on pro-
posed RelComp dataset. ImageNet accuracy is shown to measure
the drift from the original CLIP space. RelComp and Probe-C/R
respectively report image score and mean accuracy for the correct
image-to-prompt matching.

Model ImageNet RelComp Probe-C Probe-R
ViLT – 76.00 90.78 69.00
BridgeTower – 85.00 90.06 82.20
FLAVA 56.83 47.12 83.85 68.29
CLIP ViT B32 63.60 51.93 88.15 53.52
CLIP Patched (T) 57.85 67.85 89.49 71.14
CLIP Patched (V) 61.45 54.66 89.81 61.40
CLIP Patched (VT) 54.61 64.27 90.30 71.20

visual-encoder only, the drift is less pronounced, but so is
the improvement on RelComp. The largest increase is seen
with FT text encoder only. This may indicate that for non-
cross-attention models, text is more important for concep-
tual mapping. Our findings indicate that by using selective
negative sampling we can enforce compositional and rela-
tional learning without extensive co-attention and computa-

1803



Acc x0

Acc x0Acc x1

r(x0, x1)

r(x0, x0) r(x0, x1)

Acc x00.4 0.6 0.8
0.4

0.6

0.8

0.4

0.6

0.8

0.720.961.2

0.72

0.96

1.2

0.72

0.96

1.2

black gray noise scene

a) By Filler

Acc x0

Acc x0Acc x1

r(x0, x1)

r(x0, x0) r(x0, x1)

Acc x00.4 0.6 0.8
0.4

0.6

0.8

0.4

0.6

0.8

0.71.051.4
0.7

1.05

1.4

0.7

1.05

1.4

ALIGN
BLIP
BLIP2

BridgeTower
CLIP CNN

CLIP ViT
FLAVA

MetaCLIP
OTTER

SigLIP
ViLT

b) By Model

Figure 6. Model’s performance on contextual understanding on Probe-B on background and all but one object removal.(Left):
Results for when the background and all other objects are replaced with a filler x̃1, compared to the original x0, and (right) original+random
patch x̃0.
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Figure 7. Exploratory finetuning training scheme for CLIP. Image-text matching (ITM) is used as a triplet loss whose pairings vary
depending on if it is a compositional or a relational task. A contrastive loss is used to maintain general representations.
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Figure 8. Performance on contextual understanding for certain
object categories. Mean change in confidence (µ(△c)) from the
ground truth x0 to the modified x̃1, where the background and
other objects are removed.

tional complexity.

6. Conclusions
In this benchmark we evaluated large visual-language
(V+L) models on relational, compositional, and contextual
understanding with three new datasets: Probe-C, Probe-
R, and Probe-B. For compositional understanding, we
observe (1) models struggle with compositionality. (2)

CNN backbones may be better at recognizing texture and
patterns while ViT backbones are with color and shape.
For relational understanding, we observe (1) both modality
specific attention and co-attention in parallel improves
relational understanding. (2) An expectation violating
predicate swap surfaces the lack of a conceptual map
through drop in confidence. For contextual understanding
we observe (1) models mostly tend to not use context in
order to recognize multiple objects. (2) When objects
are placed in random scenery that violates expectation,
model performance is unchanged, indicating a lack of
conceptual map of context. When trying to improve CLIP,
the dual-encoder with no cross-attention, by finetuning on
our proposed selective negatives training paradigm on the
proposed RelComp dataset, (1) we find that there is a small
drop in classification performance, but (2) an improve-
ment on Probe-R, Probe-C, and RelComp is observed,
indicating an improvement in relational and compositional
learning. We hope these insights will help drive future
work on building V+L models that better “understand.”
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