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Abstract

In this paper, we explore the cross-modal adaptation of
pre-trained Vision Transformers (ViTs) for the audio-visual
domain by incorporating a limited set of trainable param-
eters. To this end, we propose a Spatial-Temporal-Global
Cross-Modal Adaptation (STG-CMA) to gradually equip
the frozen ViTs with the capability for learning audio-visual
representation, consisting of the modality-specific tempo-
ral adaptation for temporal reasoning of each modality,
the cross-modal spatial adaptation for refining the spa-
tial information with the cue from counterpart modality,
and the cross-modal global adaptation for global inter-
action between audio and visual modalities. Our STG-
CMA presents a meaningful finding that only leveraging the
shared pre-trained image model with inserted lightweight
adapters is enough for spatial-temporal modeling and fea-
ture interaction of audio-visual modality. Extensive experi-
ments indicate that our STG-CMA achieves state-of-the-art
performance on various audio-visual understanding tasks
including AVE, AVS, and AVQA while containing signifi-
cantly reduced tunable parameters. The code is available
at https://github.com/kaiw7/STG-CMA.

1. Introduction

Audio-visual learning emerges as a flourishing field to si-
multaneously learn from both visual and auditory modal-
ities, enabling the intelligent systems to imitate human
perception for hearing and seeing the surrounding envi-
ronment [50]. Generally, most audio-visual models sepa-
rately encode audio and visual features and then aggregate
them for various understanding tasks including audio-visual
event localization (AVE) [37], audio-visual segmentation
(AVS) [47], audio-visual question answering (AVQA) [19],
etc. To obtain promising performance, most works either
perform self-supervised learning on massive synchronized
audio-visual pairs [11, 14, 41] or leverage individual au-
dio and visual encoders pre-trained on the modality-specific
data [19, 37, 40, 45, 47]. However, pre-training modality-

specific encoders commonly consumes massive paired data,
expensive computing resources, and unaffordable training
burden. Meanwhile, retraining such pre-trained parameters
further increases the extra training budget and potentially
causes the degradation of well-generalized knowledge and
overfitting problems on small downstream datasets.

Recently, transformer-based foundation models pre-
trained on massive data are considered as the foundation
for various downstream tasks, facilitating various research
fields like natural language processing (NLP) [2, 5, 31],
computer vision (CV) [1, 6, 27, 38], and multimodal learn-
ing [10, 20, 21, 34]. Inspired by the remarkable gen-
eralization ability of such transformer-based architectures
[39], some works [4, 9, 22, 32, 36, 43, 48] explore the
knowledge transfer from pre-trained foundation models into
different downstream tasks by parameter-efficient transfer
learning (PETL) [12, 13, 15], where only newly-introduced
lightweight parameters are tunable while maintaining the
pre-trained weights frozen. However, most of them concen-
trate on either close-domain (i.e. image-to-image or image-
to-video) [4, 32, 43] or vision-language domain [16, 17, 36,
49], neglecting the audio-visual multimodal scenario due to
the lack of pre-trained audio-visual foundation models. To
bridge this gap, LAVISH is proposed to leverage the pre-
trained vision models to learn from audio and visual modal-
ities by only keeping the newly-added lightweight param-
eters trainable. Differs from LAVISH only interacts with
the audio-visual spatial features, Duan et al. [8] incorpo-
rated learnable attention modules into pre-trained vision-
and audio-specific encoders for cross-modal feature interac-
tion along spatial, temporal, and channel dimension, yield-
ing impressive performance in downstream tasks while in-
troducing audio-specific pre-training and more model com-
plexity. Hence, an important question arises: Is it possi-
ble to adapt pre-trained image-only foundation models for
interacting spatial and temporal features of audio-visual
modality towards efficient audio-visual representation? Our
findings yield an affirmative response to this question.

In this paper, we propose a spatial-temporal-global
cross-modal adaptation (STG-CMA) to directly general-
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ize the frozen vision foundation models (i.e. ViTs) into
the audio-visual domain while only involving partial train-
able parameters. To achieve this objective, our STG-CMA
adopts modality-specific temporal adaptation, cross-modal
spatial adaptation, and cross-modal global adaptation to
gradually equip the pre-trained ViTs with the capability of
temporal, spatial, and global reasoning. First, in the tem-
poral adaptation, the pre-trained image self-attention layer
is reused and combined with the T-adapter to model the
relationship across different frames of audio-visual input
along the temporal dimension. Then for the spatial adap-
tation, the pre-trained image self-attention layer followed
by the proposed AV-Adapter is adopted to interact with au-
dio and visual modalities for refining the spatial information
with the cue from the counterpart modality. Finally, global
adaptation further adds the global cross-modal interaction
of audio-visual modality by equipping the pre-trained im-
age feed-forward layer with the proposed AV-Adapter. To
summarize, this work makes the following contributions:

1. We propose an Audio-Visual Adapter to interact with
audio and visual modalities by implementing parameter-
free cross-modal attention on compressed hidden features.
2. We propose a spatial-temporal-global cross-modal
adaptation (STG-CMA) to empower the frozen ViTs to
efficiently learn spatial, temporal, and global information
of audio-visual modality, overcoming the challenges of
spatial-temporal reasoning and feature interaction by exclu-
sively relying on the vision backbone.
3. Experimental results on three audio-visual understand-
ing tasks including AVE, AVS, and AVQA demonstrate that
our proposed STG-CMA outperforms the state-of-the-art
methods while involving the reduced trainable parameters.

2. Related Works

2.1. Audio-visual Understanding

Audio-visual understanding tasks aim to explore both audio
and visual modalities for perceiving the audio-visual sce-
narios. For instance, audio-visual event localization (AVE)
requires models to localize joint audio-visual events [37].
Previous works [7, 23, 40, 46] mainly rely on pre-trained
modality-specific models to extract visual and audio fea-
tures which are then aggregated by a fusion module for pre-
diction. Audio-visual segmentation (AVS) is a new task
to predict masks corresponding to sounding objects in vi-
sual scenes [26, 29, 47]. Authors of [47] introduce the
audio semantics into the visual branch via an interaction
module for guiding the visual segmentation. Moreover,
the task of audio-visual question answering (AVQA) has
recently been proposed to answer human-generated ques-
tions about audio-visual events by learning both audio and
visual modalities [19, 35, 45]. Most existing methods lever-
age individual pre-trained audio and visual encoders to ex-

tract modality-specific features, which are then aggregated
by spatial and temporal grounding modules [19, 35, 45].
Differing from prior methods relying on modality-specific
audio and visual encoders, we study how to leverage the
frozen pre-trained vision models for audio-visual data with-
out audio-specific encoders.

2.2. Parameter-efficient Transfer Learning

Parameter-efficient transfer learning (PETL) fine-tunes the
pre-trained foundation models into various tasks by updat-
ing newly inserted parameters while keeping pre-trained
models frozen. In general, PETL technologies can be cat-
egorized into adapter tuning for introducing lightweight
adapter layers into pre-trained models [12], prompt tun-
ing for injecting tunable prompt tokens at input space [15],
and low-rank adaptation for learning a low-rank factor-
ization to approximate the model weights [13]. Lin et
al. [25] proposed LAVISH to adapt the frozen pre-trained
ViTs into audio-visual tasks, where the inserted adapters
only perform the interaction between audio and visual fea-
tures while neglecting the spatial-temporal adaptation of
modality-specific signals. Besides, one concurrent work [8]
considers the semantic interaction of spatial, temporal and
channel information while relying on the audio-specific pre-
training and involving more model complexity. However,
our STG-CMA directly adapts the frozen pre-trained ViTs
to perform the spatial-temporal-global reasoning while in-
teracting across audio and visual modalities with reduced
tunable parameters, where lightweight adapters constructed
from bottleneck fully connected layers are adopted due to
their simplicity and efficiency.

3. Proposed Methodology

We propose a spatial-temporal-global cross-modal adapta-
tion (STG-CMA) to adapt frozen ViTs into audio-visual
data as shown in Fig. 1, consisting of the modality-specific
temporal adaptation, the cross-modal spatial adaptation,
and the cross-modal global adaptation.

3.1. Visual and Audio Input

For visual modality, M RGB frames are first uniformly
sampled from each video clip and are then concatenated
along the time dimension, yielding the video frames V ∈
RM×H×W×3. Then, RGB frames are projected into
patch embedding as ViTs to attain the visual input Vin ∈
RM×(Nv+1)×D including a prepended class token, where
Nv is the number of image patches. For audio modality,
the waveform is first split into K short segments, where
each one is processed by the Hanning window to obtain
fbank features. Then, fbank features of all audio segments
are stacked along temporal dimension to form the audio
spectrogram A ∈ RK×T×F×1, where T and F mean the
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Figure 1. 1. Audio-visual inputs; 2. Overview of proposed STG-CMA; 3. Details of AV-Adapter; 4. Downstream audio-visual tasks. The
LN, MHSA and FFN mean the layer normalization, multi-head self-attention, and feed-forward network in the ViT block. Note that, both
audio and visual branches in each adaptation stage share the same weights of frozen pre-trained ViT. During training, only added adapters
and task-specific downstream modules are trainable while all other layers are frozen.

temporal and frequency dimension. Like visual modal-
ity, the audio spectrogram is converted into audio inputs
Ain ∈ RK×(Na+1)×D including an inserted class token
by patching projection, where Na is the number of audio
patches. In our implementation, we directly reuse the patch
embedding layer of frozen ViTs for the visual input. How-
ever, for audio input, we average the weights of the frozen
patch embedding layer along the channel dimension to ac-
commodate the layout of the audio spectrogram.

3.2. Audio-Visual Adapter

The audio-visual adapter (AV-Adapter) is proposed to
achieve the interaction between audio and visual modalities,
which consists of two parallelly connected vanilla adapters
and the cross-attention interaction module (CAIM) in be-
tween as shown in Fig. 1. Different from the work [16]
using adapters with weight-sharing mechanisms for multi-
modal interaction, our AV-Adapter adopts the parameter-
free CAIM on the compressed hidden features, involving
less computation complexity and model parameters. First,
AV-Adapter maps the input audio Ã and visual features
Ṽ into compressed hidden features Ãh and Ṽh, respec-
tively, by using down-sampling projection layer followed
by GELU non-linear activation operation. Then, the Ãh

and Ṽh undergo the CAIM for information interaction be-
tween audio and visual modalities, leading to the refined au-
dio hidden features Ã

′

h with visual information and refined
visual hidden features Ṽ

′

h with audio information. Next, Ã
′

h

and Ṽ
′

h separately pass through two different up-sampling

projection layers to generate the output audio feature Ãout

and visual feature Ṽout, where the residual connection is in-
jected into each modality branch for avoiding the overfitting
issue. The whole procedure of AV-Adapter can be written
as:

Ãout, Ṽout = AV -Adapter(Ã, Ṽ ) (1)

Ãh = GELU(ÃW a
d ), Ṽh = GELU(Ṽ W v

d ) (2)

Ṽ
′

h = Ṽh + α · Softmax(ṼhÃ
T
h )Ãh (3)

Ã
′

h = Ãh + β · Softmax(ÃhṼ
T
h )Ṽh (4)

Ãout = Ã+ Ã
′

hW
a
u , Ṽout = Ṽ + Ṽ

′

hW
v
u (5)

where α and β are the trainable weights to control the
information flow from one modality from the other one,
W a

d ,W
v
d ∈ RD×r are down-sampling weights for audio

and visual branches, and W a
u ,W

v
u ∈ Rr×D are up-sampling

weights for audio and visual branches, r is the dimension of
compressed hidden features.

3.3. Modality-specific Temporal Adaptation

The modality-specific temporal adaptation is proposed to
adapt the frozen ViTs to capture the temporal information
of audio and visual signals as shown in Fig 1. First, the au-
dio Ain and visual inputs Vin are first reshaped into At ∈
R(Na+1)×K×D and visual input Vt ∈ R(Nv+1)×M×D.
Then, the temporal adaptation is applied in At and Vt to
learn temporal dependency by a shared frozen LN, a shared
frozen MHSA, and an individually tunable T-Adapter, op-
erating on the dimension K and M . The whole operation is
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defined as:

Al−1
t,o = Al−1

t + T -Adapter(MHSA(LN(Al−1
t ))) (6)

V l−1
t,o = V l−1

t + T -Adapter(MHSA(LN(V l−1
t ))) (7)

where Al−1
t,o and V l−1

t,o are output features of modality-
specific temporal adaptation in (l-1)th ViT blocks, and
T -Adapter(·) denotes the operation of temporal adapter,
whose structure is the same as vanilla adapter constructing
from bottleneck MLP.

3.4. Cross-modal Spatial Adaptation

The cross-modal spatial adaptation is proposed to adapt the
frozen ViTs to interact with audio and visual modalities for
learning the refined spatial information with the cue from
the counterpart modality. First, the output audio and vi-
sual features from temporal adaptation are permuted into
As ∈ RK×(Na+1)×D and Vs ∈ RM×(Nv+1)×D, respec-
tively. Then, the shared frozen LN and MHSA followed by
a learnable AV-adapter are implemented on As and Vs to
attain the refined audio spatial features Ãs and refined vi-
sual spatial features Ṽs, where the CAIM is used to perform
the interaction between audio and visual modalities on com-
pressed feature level. The procedure can be formulated as:

Al−1
s,med = MHSA(LN(Al−1

s )) (8)

V l−1
s,med = MHSA(LN(V l−1

s )) (9)

Ãl−1
s , Ṽ l−1

s = AV -Adapter(Al−1
s,med, V

l−1
s,med) (10)

Al−1
s,o = Al−1

s + Ãl−1
s , V l−1

s,o = V l−1
s + Ṽ l−1

s (11)

where Al−1
s,med and V l−1

s,med are intermediate audio and vi-
sual features from frozen MHSA in (l-1)th ViT block, and
Al−1

s,o and V l−1
s,o are output features from spatial adaptation

in (l-1)th ViT block.

3.5. Cross-modal Global Adaptation

Cross-modal global adaptation aims to add the capability of
global interaction into frozen ViTs. After temporal and spa-
tial adaptations, we attain the spatial-temporal global fea-
tures from both audio and visual modalities (i.e., Aglobal

and Vglobal). Afterwards, the global audio and visual fea-
tures are successively processed by a frozen LN, a frozen
FFN and a tunable AV-Adapter for interacting with the
spatial-temporal information between the audio and visual
branches. The computation of cross-modal global adapta-
tion can be written as:

Al−1
global,med = FFN(LN(Al−1

global)) (12)

V l−1
global,med = FFN(LN(V l−1

global)) (13)

Ãl−1
global, Ṽ

l−1
global = AV -Adapter(Al−1

global,med, V
l−1
global,med)

(14)

Al = Al−1
global + Ãl−1

global, V l = V l−1
global + Ṽ l−1

global (15)

where Al−1
global,med and V l−1

global,med mean the output audio
and visual features from frozen FFN in (l-1)th ViT block,
Al and V l denote the final audio and visual output of (l-1)th
ViT block, respectively.

4. Experiments
4.1. Downstream Tasks and Datasets

The audio-visual event localization (AVE) task aims to
predict the audio-visual events across multiple temporal
segments within a video. We evaluate our STG-CMA on
the AVE dataset [37] comprising 4, 143 video clips with
the audio stream, where each one has a duration of 10 sec-
onds and is labelled with events every second. The audio-
visual segmentation (AVS) task is to predict the pixel-level
segmentation map of sounding objects at the image frame.
We conduct the experiments on the AVSBench-S4 dataset
[47], including 4, 932 videos with the manual annotations
of audible objects. The audio-visual question answer-
ing (AVQA) task is recently proposed to answer questions
based on the objects and their associated sounds. We val-
idate our STG-CMA on the MUSIC-AVQA dataset [19],
containing 9, 288 video clips and 45, 867 question-answer
pairs. For all audio-visual tasks, we report the performance
score on the testing split.

Table 1. Bottleneck ratios in ‘Tiny’ and ‘Base’ adapter configu-
rations. The CLIP ViT blocks use the same ratio value while the
Swin ViT assigns a separate value in its four blocks

Backbone Bottleneck Ratio (α)
Tiny Base

ClLIP-based ViT 1/32 1/16
Swin-based ViT [1/8, 1/8, 1/16, 1/16] [1/2, 1/4, 1/8, 1/16]

4.2. Experimental Setups

To adapt our proposed framework to the audio-visual un-
derstanding tasks, we adopt the frozen pre-trained CLIP or
Swin vision transformers as the backbone equipped with
our STG-CMA to extract audio and visual features. Mean-
while, our STG-CMA has two variants (i.e., Base and
Tiny) by setting the different bottleneck ratios of introduced
adapters as referred in Table 1. For the AVE task, both CLIP
[34] and Swin transformer [27] backbone attached with our
STG-CMA are used to extract audio and visual features
which are concatenated to undergo a classifier for a final
event prediction. To assess the performance on the AVE,
we follow existing works [25, 40] to employ the classifi-
cation accuracy of multi-class events over the entire video.
For the AVS task, we replace the pre-trained visual and au-
dio encoders of original baseline models with a frozen Swin
vision transformer equipped with our proposed STG-CMA.
We follow the evaluation metrics of baseline model [47]
to calculate the mean Intersection-over-Union (mIoU) be-
tween the predicted segmentation mask and ground truth
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Table 2. Comparison with SOTA methods on AVE dataset. The and denote the frozen and trainable parameters of visual or audio
encoder, respectively. The ✘ indicates that the datasets are not used for pre-training. The ∗ represents the method re-implemented by [25].

Method Encoder Pretrain Dataset Trainable
Param ↓

Total
Param ↓ Acc ↑Visual Audio Visual Audio

PSP [46] VGG-19 VGGish ImageNet AudioSet 1.7M 217.4M 77.8%
AVT [23] VGG-19 VGGish ImageNet AudioSet 15.8M 231.5M 76.8%
RFJC [7] VGG-19 VGGish ImageNet AudioSet 22.8M 238.5M 76.2%

AVEL [37] ResNet-152 VGGish ImageNet AudioSet 3.7M 136.0M 74.0%
CMRAN [42] ResNet-152 VGGish ImageNet AudioSet 15.9M 148.2M 78.3%

MM-Pyramid [44] ResNet-152 VGGish ImageNet AudioSet 44.0M 176.3M 77.8%
CMBS [40] ResNet-152 VGGish ImageNet AudioSet 14.4M 216.7M 79.7%

AVSDN [24] ResNet-152 VGGish ImageNet AudioSet 8.0M 140.3M 75.4%
MBT∗ [30] ViT-B-16 AST ImageNet AudioSet 172.0M 172.0M 77.8%
DG-SCT [8] Swin-L HTS-AT ImageNet AudioSet 43.6M 461.3M 82.2%

LAVISH [25] ViT-B-16 , shared ImageNet ✘ 4.7M 107.2M 75.3%
ViT-L-16 , shared ImageNet ✘ 14.5M 340.1M 78.1%

STG-CMA (Tiny), ours ViT-B-16 , shared CLIP ✘ 3.5M 89.6M 76.3%
ViT-L-14 , shared CLIP ✘ 10.7M 324.1M 82.2%

STG-CMA (Base), ours ViT-B-16 , shared CLIP ✘ 11.5M 97.5M 78.7%
ViT-L-14 , shared CLIP ✘ 20.1M 323.6M 83.3%

LAVISH [25] Swin-B , shared ImageNet ✘ 5.0M 114.2M 78.8%
Swin-L , shared ImageNet ✘ 10.1M 238.8M 81.1%

STG-CMA (Tiny), ours Swin-B , shared ImageNet ✘ 5.6M 92.3M 81.1%
Swin-L , shared ImageNet ✘ 11.7M 206.7M 82.0%

STG-CMA (Base), ours Swin-B , shared ImageNet ✘ 10.1M 96.8M 81.4%
Swin-L , shared ImageNet ✘ 19.0M 214.0M 82.5%

mask. For the AVQA task, we substitute the audio-visual
feature extractor of baseline model [19] with a frozen Swin
vision transformer augmented by our proposed STG-CMA
while maintaining the original text encoder and pre-trained
grounding modules. Following the baseline AVQA work,
we adopt the answer prediction accuracy as the assessment
criteria. For training, We utilize the Adam optimizer [18]
to train our proposed framework for 20 epochs, where the
weight decay is set as 5e-7 and the momentum parame-
ter is configured as (0.95, 0.999). Meanwhile, we use the
CrossEntropy loss (for AVE and AVQA) and IoU loss (for
AVS) as the objective functions and the Cosine Decay [28]
as the learning rate scheduling. More implementation de-
tails are discussed in the Supplementary Material.

4.3. Experimental Results

Audio-visual Event Localization: As shown in Table 2,
we compare our STG-CMA with existing state-of-the-art
methods on the AVE dataset. In summary, our STG-
CMA achieves superior performance than existing meth-
ods while involving significantly reduced trainable parame-
ters. First, the ViT-B-16 backbone equipped with our Tiny
STG-CMA attains a comparable accuracy performance
(76.3%) while having significantly fewer trainable param-
eters (3.5M) than most existing methods. When adopting
Base adapter configuration, our STG-CMA with ViT-B-16
backbone achieves 78.7% accuracy, outperforming most ex-
isting methods like MBT∗ [30] (77.8%) and LAVISH [25]
(78.1%) using the same ViT structure. It is worth mention-
ing that the MBT∗ follows a full finetuning pipeline and
involves more parameters than ours (172.0M vs 11.5M).

Next, when switching to a larger ViT-L-14 backbone, our
STG-CMA (Tiny) yields better accuracy than LAVISH us-
ing Swin-L (82.2% vs 81.1%). Although DG-SCT achieves
the same performance as ours, it adopts audio-specific pre-
training and contains much more tunable parameters than
ours (43.6M vs 10.7M). Furthermore, when using the Base
adapter configuration, our STG-CMA improves the accu-
racy from 82.2% to 83.3%, achieving a new SOTA on the
AVE dataset.

Second, our proposed STG-CMA also presents an im-
pressive performance on the AVE dataset when switching
to adopt the Swin ViT as the frozen backbone as indicated
in Table 2. For instance, our STG-CMA (Tiny) with Swin-
B achieves 81.1% accuracy on AVE showing a competitive
or even better performance than existing methods. Further-
more, LAVISH with Swin-L setting obtains the same per-
formance, but it possesses about 2 times more tunable pa-
rameters (10.1M vs 5.6M). When replacing the tiny con-
figuration with base one for proposed adapters, our Swin-
B based model further achieves a 0.03% absolute accu-
racy improvement, indicating that the capacity of adaptation
has a crucial influence on performance. Once a large and
powerful Swin-L backbone is applied to our method, our
Swin-B with Tiny and Base adapter configuration can at-
tain 82.0% and 82.5% accuracy, respectively, showing that
our parameter-efficient adaptation is benefited by powerful
foundation ViT models. Compared with STG-CMA (Base)
using ViT-L-14, our STG-CMA (Base) employing Swin-L
presents a slight performance drop (from 83.3% to 82.5%)
while possessing fewer trainable parameters (19.0M) and
fewer total parameter (214.0M), achieving a good trade-off
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Table 3. Comparison with state-of-the-art AVS methods.

Method Encoder Pretrain Dataset Trainable
Param ↓

Total
Param ↓ mIoU ↑Visual Audio Visual Audio

LVS [3] ResNet-18 ResNet-18 ImageNet AudioSet N/A N/A 37.8%
MMSL [33] ResNet-18 CRNN ImageNet AudioSet N/A N/A 44.9%

AVS [47] PVT-V2 VGGish ImageNet AudioSet 102.4M 174.5M 78.7%
LAVISH [25] ResNet-152 VGGish ImageNet AudioSet 8.0M 140.3M 75.4%
LAVISH [25] Swin-L , shared ImageNet ✘ 37.2M 266.4M 80.1%
DG-SCT [8] Swin-L HTS-AT ImageNet AudioSet 61.5M 594.8M 80.9%

STG-CMA (Base), ours Swin-B , shared ImageNet ✘ 29.7M 116.5M 81.0%
Swin-L , shared ImageNet ✘ 38.6M 233.6M 81.8%

Table 4. Comparison with state-of-the-art AVQA methods.

Method Encoder Pretrain Dataset Trainable
Param ↓

Total
Param ↓

Question ↑
Visual Audio Visual Audio AQ VQ AVQ Avg

AVSD [35] VGG-19 ResNet-18 ImageNet AudioSet N/A N/A 68.5% 70.8% 65.5% 67.4%
Pano-AVQA [45] Faster RCNN VGGish ImageNet AudioSet N/A N/A 70.7% 72.6% 66.6% 68.9%
ST-AVQA [19] ResNet-18 VGGish ImageNet AudioSet 10.6N 94.4M 74.1% 74.0% 69.5% 71.5%
LAVISH [25] Swin-L , shared ImageNet ✘ 21.1M 249.8M 75.7% 80.4% 70.4% 74.0%

STG-CMA-B (ours) Swin-L , shared ImageNet ✘ 26.9M 221.9M 77.1% 80.8% 70.7% 74.5%
DG-SCT [8] Swin-L HTS-AT ImageNet AudioSet 110.4M 520.2M 77.4% 81.9% 70.7% 74.8%

STG-CMA-L (ours) Swin-L , shared ImageNet ✘ 83.1M 278.1M 78.7% 83.0% 72.3% 76.2%

between performance and model complexity.
Audio-visual Segmentation: We also compare our

STG-CMA with existing AVS methods on the AVSBench-
S4 dataset, where the Swin transformers adapted by the
proposed adaptation are adopted for extracting audio-visual
features. As indicated in Table 3, we observe that our
proposed framework outperforms all existing state-of-the-
art methods. First, our STG-CMA (Base) using Swin-B
or Swin-L backbones achieves an impressive performance
on AVS (81.0% vs 81.8%), showing our proposed adap-
tation can efficiently adapt the frozen ViTs into complex
dense prediction tasks like segmentation. Second, our pro-
posed STG-CMA (Base) with Swin-L backbone attains a
better performance than the previous best method (81.8% vs
80.9%) while involving fewer trainable parameters (38.6M
vs 61.5M). In addition, compared with DG-SCT using the
extra audio-specific pre-training, our STG-CMA adopts the
same vision transformer backbone in both visual and audio
encoders, achieving efficient knowledge transfer from pre-
trained image models into the audio-visual domain.

Audio-visual Question Answering: Finally, we com-
pare our STG-CMA with existing AVQA methods on the
MUSIC-AVQA dataset, including audio questions (AQ),
visual questions (VQ), and audio-visual questions (AVQ).
We adopt a frozen Swin-L backbone equipped with our
STG-CMA (Base) as the audio-visual feature extractor and
utilize the same grounding modules from LAVISH and
DG-SCT, yielding two different model variants (i.e. STG-
CMA-B and STG-CMA-L) for fair comparisons. As shown
in Table 4, our STG-CMA-B achieves better performance
than LAVISH on all question types including AQ (77.1%
vs 75.7%), VQ (80.8% vs 80.4%), and AVQ (70.7% vs
70.4%). Besides, our proposed STG-CMA-L outperforms

Table 5. Comparison with reference models using various configu-
rations on AVE dataset. ‘A2V’ and ‘V2A’ mean ‘Audio-to-Visual’
and ‘Visual-to-Audio’, respectively.

Model Audio
Adapt

Visual
Adapt

A2V
Fusion

V2A
Fusion

Trainable
Param Acc

Single-Modality Branch
Audio-only ✔ ✘ ✘ ✘ 9.6M 63.7%
Visual-only ✘ ✔ ✘ ✘ 9.6M 80.8%

Audio-Visual Branch with Signal-Modality Adaptation
Audio-only ✔ ✘ ✘ ✘ 10.6M 64.3%
Visual-only ✘ ✔ ✘ ✘ 10.6M 82.1%

Interaction Variants in AV-Adapter
Audio-to-Visual ✔ ✔ ✔ ✘ 20.1M 82.9%
Visual-to-Audio ✔ ✔ ✘ ✔ 20.1M 82.2%

Without Interaction ✔ ✔ ✘ ✘ 20.1M 82.4%
Finetuning Scheme

Full Finetuning ✘ ✘ ✘ ✘ 606.8M 57.6%
STG-CMA (ours) ✔ ✔ ✔ ✔ 20.1M 83.3%

the leading DG-SCT baseline on AQ (78.7% vs 77.4%), VQ
(83.0% vs 81.9%), and AVQ (72.3% vs 70.7%) question
types, respectively, achieving a new state-of-the-art perfor-
mance on AVQA task. Moreover, our proposed STG-CMA
contains significantly fewer tunable parameters than DG-
SCT (83.1M vs 110.4 M) and avoids the specific audio pre-
training, revealing the proposed adaptation can efficiently
equip the frozen vision transformers with the capability of
audio-visual learning.

4.4. Ablation Studies

In this section, we conduct some ablation studies to inves-
tigate how the performance of our proposed STG-CMA is
affected by various configurations.

Configuration Variants. In Table 5, we present some
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Table 6. Comparision results with different AVQA methods on the MUSIC-AVQA dataset, where different types of questions are presented,
like audio-only, visual-only, and audio-visual questions

Method

Audio Question (%) Visual Question (%) Audio-Visual Question (%)

Overall
Avg. (%)

Cou
ntin

g

Com
par

ati
ve

Avg
.

Cou
ntin

g

Loc
ati

on

Avg
.

Exis
ten

tia
l

Loc
ati

on

Cou
ntin

g

Com
par

ati
ve

Tem
por

al

Avg
.

AVSD [35] 72.4 61.9 68.5 67.4 74.2 70.8 81.6 58.8 63.9 61.5 61.4 65.5 67.4
Pano-AVQA [45] 74.4 64.6 70.7 69.4 75.7 72.6 81.2 59.3 64.9 64.2 63.2 66.6 68.9
ST-AVQA [19] 78.2 67.1 74.1 71.6 76.4 74.0 81.8 64.5 70.8 66.0 63.2 69.5 71.5

STG-CMA-B (ours) 83.1 67.1 77.1 80.4 81.1 80.8 81.6 65.9 74.4 64.0 66.4 70.7 74.5
STG-CMA-L (ours) 84.8 68.2 78.7 81.5 84.5 83.0 81.3 68.5 76.8 65.8 67.4 72.3 76.2

findings to verify the effectiveness of our STG-CMA with
various configurations, where all experiments are conducted
on the AVE dataset using our STG-CMA (Base) with CLIP
ViT-L-14 backbone. First, to investigate the importance of
audio-visual multimodal features on performance, we de-
sign two reference models with audio-only or visual-only
branches, respectively. From Table 5, we observe that re-
moving either the audio or visual branch may lead to an ap-
parent drop in performance, showing that audio-visual fea-
tures are crucial for promising performance. Meanwhile,
the model with a visual-only branch (80.8%) obtains a bet-
ter performance than the one with an audio-only branch
(63.7%), implying that the visual modality dominates the
performance on the event localization. Second, we ex-
ploit the effect of our proposed adaptations on the perfor-
mance by only removing all adapters from the visual or au-
dio branch. As shown in Table 5, we can find that either
visual-only or audio-only adaptation based models degrade
the performance of our STG-CMA using both audio and vi-
sual adaptation from 83.3% into 82.1% and 64.3%, respec-
tively, revealing that visual adapters can efficiently adapt the
frozen ViTs to learn the spatial-temporal visual features due
to the modality consistency.

Third, to explore the benefits of audio-visual interac-
tion in our AV-Adapter, we compare our STG-CMA with
three reference models using audio-to-visual fusion, visual-
to-audio fusion, and fusion-free choices as shown in Ta-
ble 5. We can observe that our STG-CMA with cross-
modality fusion outperforms other comparison models by
efficiently refining the audio and visual features. After
omitting the cross-modal attention from all AV-Adapters,
the performance will be dropped from 83.3% to 82.4%, pre-
senting that the cross-modal interaction is crucial for cap-
turing the audio-visual representation. In addition, the ref-
erence models with unidirectional fusion present a slight ac-
curacy drop when compared with our STG-CMA with bidi-
rectional fusion. Especially, the model with visual-to-audio
fusion is slightly inferior to the one with audio-to-visual
fusion (82.2% vs 82.9%), exhibiting that the audio guid-
ance benefits the visual branch more than visual guidance
helps the audio branch. In the end, we compare our adapta-

Table 7. Ablation study of our different adapters in modality-
specific temporal adaptation, cross-modal spatial adaptation, and
cross-modal global adaptation.

Adaptation Trainable Param mIoUTemporal Spatial Global
✘ ✘ ✘ 21.2M 55.9%
✔ ✘ ✘ 24.7M 80.8%
✘ ✔ ✘ 28.1M 76.6%
✘ ✘ ✔ 28.1M 76.1%
✔ ✔ ✘ 31.6M 81.4%
✘ ✔ ✔ 35.1M 77.0%
✔ ✘ ✔ 31.6M 81.5%
✔ ✔ ✔ 38.6M 81.8%

tion scheme with a full finetuning paradigm. From table 5,
we find that our proposed STG-CMA performs much bet-
ter than the full finetuning scheme (83.3% vs 57.6%) while
involving significantly fewer tunable parameters (20.1M vs
606.8M). It demonstrates that our spatial-temporal-global
cross-modal adaptation can efficiently generalize the frozen
ViTs to enhance audio-visual learning with reduced train-
able parameters while tackling the knowledge degradation
brought by full fine-tuning.

Performance in AVQA with Different Questions. In
Table 6, we present more comparison results between our
proposed method and existing AVQA methods on the dif-
ferent types of questions in the MUSIC-AVQA dataset. We
can find that our proposed STG-CMA-L achieves the best
performance in most types of questions, yielding the re-
markable efficiency of our proposed adaptation scheme in
empowering the frozen image models to solve the question-
answering task. Meanwhile, it is interesting that our STG-
CMA-B with a smaller configuration still attains competi-
tive performance in answering different sorts of questions
in the MUSIC-AVQA dataset.

Adaptation Design. In Table 7, we further conduct
more ablation studies to investigate the effect of different
components of our proposed adaptation on performance.
More specifically, we design different reference models by
removing the inserted adapters (i.e. T-Adapter in tempo-
ral adaptation, AV-Adapters in spatial or global adapta-
tions) to explore the effectiveness of our proposed adap-
tation modules as shown in Table 7. All experiments are
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Figure 2. Qualititive examples of our STG-CMA approach and the baseline model (without our STG-CMA) evaluated on the AVS task

implemented in the AVS task by using the Swin-L back-
bone and Base adapter configuration. First, we observe that
the STG-CMA adopting all adaptation modules attains the
best mIoU score (81.8%) in the AVE task. Instead, omit-
ting all adaptation modules will lead to the worst perfor-
mance (66.9%) of STG-CMA on segmentation. It shows
that all the proposed adaptation stages are indispensable
for adapting frozen image models into the audio-visual do-
main. Next, when introducing any proposed adaptation
module, the STG-CMA will present varying degrees of per-
formance improvement compared with the adaptation-free
one. Especially, the STG-CMA with temporal-only adapta-
tion (80.8%) obtains better performance than the one with
spatial-only (76.6%) or global-only (76.1%) adaptations,
showing that it is crucial to adapt the frozen image models
to learn the temporal dependency of video and audio sig-
nals. Moreover, the performance will be further improved
when inserting any two adaptation modules into the frozen
ViT backbone. For instance, the STG-CMA equipped with
temporal-spatial or temporal-global adaptations performs
better than the one with spatial-global adaptation, indicat-
ing that modality-specific temporal adaptation plays an im-
portant role in achieving the knowledge transfer from image
models into the audio-visual domain.

4.5. Qualitative Results

In this section, we provide some visualization examples
of our proposed STG-CMA implemented on AVS task,
where the frozen pre-trained Swin-L vision transformer
augmented with our proposed adaptations is used for ex-
tracting audio-visual features. To evaluate the effective-
ness of the proposed STG-CMA, we also design a base-

line model by removing the temporal adaptation stage and
inserted adapters in spatial-global adaptation. It means
that the baseline model only adopts the frozen pre-trained
Swin vision transformer and downstream task-specific lay-
ers without our proposed STG-CMA. As shown in Fig. 2,
we observe that our STG-CMA can segment better shapes
of sounding objects than the baseline model. For example,
in the right part of Fig. 2, our proposed STG-CMA cor-
rectly locates a laughing baby across whole video frames.
However, the baseline model cannot completely outline the
region representing baby laughter in each video frame. It in-
dicates that our STG-CMA efficiently empowers the frozen
image models to extract the audio-visual features for better
segmentation performance.

5. Conclusion
In this paper, we studied how to leverage frozen ViTs
pre-trained on image-only data to generalize their learned
knowledge into the audio-visual domain. Thereby, we pro-
pose a Spatial-Temporal-Global Cross-Modal Adaptation
(STG-CMA) to adapt the frozen pre-trained ViTs to ef-
ficiently learn the audio-visual representation without full
fine-tuning paradigm and audio-specific pre-training. Ex-
tensive experiments on audio-visual understanding tasks,
including AVE, AVS, and AVQA, indicate that our proposed
STG-CMA outperforms the state-of-the-art methods while
involving significantly reduced tunable parameters. In the
future, we will explore the robust generalization ability of
our model in more audio-visual scenarios.
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