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Abstract

This paper presents novel benchmarks for evaluating
vision-language models (VLMs) in zero-shot recognition,
focusing on granularity and specificity. Although VLMs ex-
cel in tasks like image captioning, they face challenges in
open-world settings. Our benchmarks test VLMs’ consis-
tency in understanding concepts across semantic granularity
levels and their response to varying text specificity. Find-
ings show that VLMs favor moderately fine-grained concepts
and struggle with specificity, often misjudging texts that dif-
fer from their training data. Extensive evaluations reveal
limitations in current VLMs, particularly in distinguishing
between correct and subtly incorrect descriptions. While
fine-tuning offers some improvements, it doesn’t fully address
these issues, highlighting the need for VLMs with enhanced
generalization capabilities for real-world applications. This
study provides insights into VLM limitations and suggests
directions for developing more robust models.

1. Introduction
Vision-language models (VLMs) have shown impressive ca-
pabilities in a wide range of tasks, including image caption-
ing [28, 31], visual question answering [1], and notably, zero-
shot visual recognition [8, 18, 29, 35]. Models pretrained
on large-scale image-caption datasets [10, 21, 22, 32], like
CLIP [18], have been at the forefront. These models achieve
this by mapping visual and linguistic inputs to a shared latent
space, enabling the recognition of novel objects or concepts
in a zero-shot manner—a capability critical for developing
versatile and intelligent visual systems.

While current VLMs perform well in various tasks, their
application in open-world scenarios poses unique challenges.
An ideal open-world zero-shot model would recognize any
language-defined input, from simple concepts like “an im-
age of flowers” to more complex descriptions like “a person
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playing with a dog on the beach”, and output scores indicat-
ing whether the visual input correctly implies the semantics
of the language input. Existing works often evaluate the
zero-shot capability on various classification dataset like Im-
ageNet [19] and domain specific datasets [11] without the
notion of granularity of concepts, as well as image and text
retrieval on Flickr30K [15] and COCO [13] that are not able
to reveal the general failure pattern. These benchmark fall
short of replicating the complexities of a realistic open-world
setting, leaving a substantial gap in our understanding of the
effectiveness of VLMs in such scenarios.

This paper present new benchmarks on the pivotal prop-
erties when deploying VLMs for real-world zero-shot recog-
nition: granularity and specificity. The first benchmark ex-
amines VLMs’ ability to consistently understand concepts at
different levels of granularity. For instance, a model should
recognize an image of a leopard both when presented with a
fine-grained query like “an image of a leopard” and a more
coarse-grained query such as “an image of a feline.” This
consistency is crucial, not just as an indicator of the model’s
comprehension of concept relationships but also for practical
applications. A pertinent example is in autonomous driv-
ing, where recognizing “road cone” but failing to identify
“barrier” could be problematic. To assess this, we employ
an evaluation protocol where we measure the performance
discrepancy in recognizing a coarse-grained class, both by
directly using the coarse-grained class prompt and by ag-
gregating predictions from its fine-grained children classes.
We leverage a dataset with hierarchical labels, adapting Ima-
geNet and its semantic hierarchy from WordNet.

The second benchmark evaluates how the specificity of
language inputs affects VLM outputs, even when visual and
linguistic inputs align. For example, a simple prompt like
“a picture with a dog” may receive a lower score compared
to a more detailed but incorrect caption “a dog and cow ly-
ing together on an orange couch.” This distinction is key
in determining whether VLMs can accurately reflect the
correctness of the alignment between visual and language
inputs, rather than just overall similarity. To test this, we
use an image-to-text retrieval task on the MS-COCO dataset,
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Figure 1. Left: Zero-shot models should recognize images with fine-grained (FG) concepts such as “Leopard”, as well as coarse-grained
(CG) concepts like “Feline” However, they often exhibit performance discrepancies on concepts at different levels of granularity. Right:
Zero-shot models should recognize whether the text correctly describe the given image. However, vision-language models could be sensitive
to the specificity of text and struggle to distinguish between the challenging positive like single-label prompts and hard negatives like
poisoned captions with small changes.

designing challenging positive texts with varying levels of
specificity, such as single-label prompts with limited infor-
mation, and hard negative texts like slightly modified but
incorrect captions.

Our carefully designed benchmarks led to an exten-
sive evaluation of state-of-the-art vision-language models
(VLMs). We focus on contrastive models like CLIP, covering
various aspects, including pretraining datasets, architectural
designs, cross-modality interactions, and learning objectives.
We discovered that VLMs face significant challenges in both
benchmarks.

In the granularity evaluation, we find that VLMs prefer
moderately fine-grained concepts over more abstract, coarse-
grained ones. This tendency seems closely tied to the nature
of the training data. A detailed analysis of the LAION dataset
revealed a higher presence of moderately fine-grained con-
cepts in image alt-text, suggesting that data distribution plays
a critical role. In the specificity evaluation, VLMs showed
sensitivity to text specificity: texts that differ in specificity
from the training data, such as straightforward single-label
prompts or overly detailed captions, often received lower
scores than more precisely detailed but slightly erroneous
captions. This challenges the VLMs’ ability to accurately
distinguish between correct and subtly incorrect descriptions,
complicating the retrieval of hard positive texts from hard
negatives. The implication is that VLMs’ scoring does not
always reliably reflect the true alignment between visual and
textual inputs. Our exploration into fine-tuning VLMs with
these hard text samples revealed that while it offers some
improvements, it does not fully resolve the challenges as a
complete solution.

To our best knowledge, this is the first comprehensive
study that evaluating VLMs from the perspective of seman-
tic granularity and specificity. We believe that the carefully
designed benchmark provide a valuable tool to the com-
munity to better quantitatively evaluate VLMs. With the
proposed benchmark, we observed that all models surpris-
ingly performs significantly worse than what we may hope.
The findings and insights from our analysis may shed lights
on better understanding the limitations of current VLMs

and the challenges of using it for zero-shot recognition, and
inspire new models with better generalization.

2. Related Works
Zero-shot visual recognition CLIP-like vision-language
foundation models have enabled open vocabulary visual
recognition by mapping images with their corresponding
language descriptions. Early methods [10, 18] demonstrate
the effectiveness of this paradigm on the image classification
tasks. For example, CLIP is able to achieve decent zero-
shot accuracy on 27 image classification datasets. Given its
potential, the language-driven visual recognition paradigm
has been extended to tasks including object detection [35],
semantic segmentation [29], video action recognition [27],
depth estimation [34], etc. Such language guided visual
recognition has become the new paradigm in the field of
computer vision since it can recognition new objects without
any training data. In this paper, we would like to stress
test these VLMs in terms of zero-shot visual recognition to
better understand their capability and limitation in realistic
open-world setting.

Benchmarking vision-language models Thanks to the
larger datasets and larger transformer models, many power-
ful vision-language models have been developed and shown
great capability [1, 28, 31]. At the same time, these mod-
els are being studied from various perspectives, such as
robustness, bias, and other limitations [3, 5–7, 14]. [17]
investigates the robustness of nine open-sourced image-text
models under common perturbations on five tasks, while
[20] studies the robustness of video-text models. [4] fur-
ther analyzes the robustness of VLMs under challenging
natural distribution shifts and show that the more diverse
training distribution is the main cause for the robustness
gains. [26, 33] systematically evaluates the ability to encode
compositional information of the VLMs. [2] investigates
the visual reasoning capabilities and social biases of differ-
ent text-to-image models. To improve transferability, [24]
designs an efficient and scalable approach that leverages
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external knowledge to learn image representations. In this
paper, we study VLMs from two new perspectives: gran-
ularity and specificity through the lens of zero-shot visual
recognition.

Table 1. An overview of the differences between the vision-
language models evaluated in our study by the architecture, pretrain-
ing datasets, learning objectives, and if using cross-modality fusion
modules. ITC, ITM, MIM, MTM, MMM stands for image-text
contrastive, image-text matchng, masked image modeling, masked
text modeling and masked multimodal modeling losses.

Model Architecture Datasets Objectives Fusion

CLIP ViT-B-32
Private400M ITC -ViT-L-14

OpenCLIP

ViT-B-32 LAION400M

ITC -ViT-B-32
LAION2BViT-L-14

VIT-H-14

UniCL Swin-B

YFCC14M

ITC -IN21K

IN21K+YFCC14M

IN21K+YFCC14M+GCC15M

KLITE Swin-B IN21K+YFCC14M+GCC15M ITC -

BLIP ViT-B-16 COCO+VG+CC+SBU
+LAION+CapFilt-L

ITC + ITM
+ Captioning

-
✓

FLAVA ViT-B/16 PMD70M
ITC+ITM

+MMM+MIM
+MTM

-

3. Zero-shot Visual Recognition With Vision-
Language Models

In this study, we focus on two-stream contrastive vision-
language models, such as CLIP, which leverage contrastive
pre-training on a large dataset of paired image-text samples
to learn cross-modal alignment. These models typically
consist of a visual encoder Ev and a text encoder Et, for
encoding visual inputs xv and textual inputs xt into aligned
representation spaces.

The zero-shot visual recognition task with a vision-
language model can be formulated as computing the cross-
modality score:

f(xv, xt) = Ev(xv)⊙ Et(xt) (1)

Here, the ⊙ operator computes the score between visual and
language embeddings, with cosine similarity being the com-
mon choice while some models like FLAVA use an additional
module to fuse the multi-modal embeddings. For classifica-
tion tasks, xt can be a class prompt, such as “a photo of a
car”, or it can incorporate additional class-specific knowl-
edge to improve performance. In our subsequent studies, we
adopt the prompt templates used in [18] for classification
tasks. We simplify Et(xt) and f(xv, xt) for a class y to
Et(y) and fcls(xv, y), respectively.

In our study, we evaluate various contrastive vision-
language models, each with distinct backbone architectures,
training data, and learning objectives, shown in Tab. 1. These
variants include CLIP [18], OpenCLIP [9] (trained on the
public LAION dataset [23]), UniCL [30] (which incorpo-
rates classification annotations into the contrastive learning
objective), KLITE [24] (which augments alt-text with extra
knowledge during training), FLAVA [25] (trained with both
cross-modal and uni-modal data and losses), and BLIP [12]
(which includes uni-modal and cross-modal training, along
with a captioning head for data bootstrapping). By examin-
ing these models, we aim to gain insights into the zero-shot
visual recognition capabilities of vision-language models.

4. Granularity Consistency of Vision-Language
Models

In this section, we investigate whether vision-language mod-
els (VLMs) perform consistently on visual concepts across
different levels of granularity, which indicates their under-
standing of the relationships between concepts. We propose
a benchmark to quantitatively evaluate the performance dis-
crepancy of VLMs on concepts at different granularity levels.
Our results show that models trained on image-text pairs
exhibit significant performance discrepancies, with better
recognition of moderately fine-grained concepts compared
to coarse-grained ones. Further analysis suggests that the
distribution of training data may account for this discrep-
ancy, with models trained on datasets having more balanced
representation across granularity levels showing smaller dis-
crepancies.

4.1. Measure performance discrepancy on a seman-
tic hierarchy

To assess the understanding of vision-language models
across different levels of semantic granularity, we use zero-
shot classification as our evaluation tool. Directly comparing
classification metrics across granularities is not appropri-
ate, as finer-grained classification inherently presents more
challenges. Our benchmark focuses on measuring the dis-
crepancy in zero-shot classification performance when using
coarse-grained (CG) class prompts directly versus deriv-
ing predictions from using finer-grained (FG) children class
prompts.

Dataset We expand the popular ImageNet-1K dataset with
multi-level label hierarchy. Each of the 1000 fine-grained
labels is assigned its ancestor labels based on the WordNet
hierarchy, adding 820 ancestor labels. For example, “leop-
ard” images are also labeled as “big cat,” “feline,” “mammal,”
“animal,” and so on. his expansion allows us to thoroughly
investigate how well VLMs perform across varying granu-
larities.
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(a) Raw scores (b) Max of direct children (c) Max of leaves

Figure 2. Illustrations on the two ways to propagate scores on
the semantic hierarchy. (a) Raw scores without propagation. (b)
Propagate the max score from direct children classes. For example,
0.35 = max(0.17, 0.35) (c) Propagate the max score from leaf
classes. For example, 0.48 = max(0.16, 0.10, 0.13, 0.48, 0.31)

Evaluation Protocol Given the hierarchical nature of our
dataset, each image is associated with multiple labels, trans-
forming our task into a multi-label classification setting.
Here, each label is considered for binary classification inde-
pendently. For ancestor (CG) labels, we employ two distinct
methods for score prediction:
1. Direct prediction: Utilize the text prompt of the CG label

for cross-modality score with the image.
2. Propagated prediction: Compute the aggregate scores

from the FG children class prompts. For instance, the
“feline” label score can be derived by aggregating scores
from “lion”, “tiger”, “leopard”, etc.
For a class y, the raw cross-modality score between

an image x and the textual prompt of y is computed by
Sraw(y) = f(x, y). For an ancestor class yi, we design two
specific approaches for score propagation, as illustrated in
Figure 2 and formulated below:
1. Propagate the maximum score from direct children

classes.
Schild(yi) = max

yj∈Y i
C

Sraw(yj) (2)

2. Propagate the maximum score from leaf (most fine-
grained) chidren classes.

Sleaf(yi) = max
yj∈Y i

C

Sleaf(yj) (3)

The key idea is that if a VLM has a consistent under-
standing of concepts across granularities, its performance on
directly classifying coarse-grained labels should be similar
to the performance obtained by propagating predictions from
the fine-grained children labels. We use mean Average Preci-
sion (mAP) as the evaluation metric, which does not require
score threshold selection. In Tab. 2, we report mAP of leaf
classes and ancestor classes. The performance of ancestor
classes is evaluated with the raw scores, and scores using
propagated from children classes using the two approaches
presented above. The critical metric in our analysis is the
difference (∆) between raw scores and propagated scores,
serving as an indicator of how well the VLMs bridges the
understanding between CG and FG concepts.

Table 2. Zero-shot multi-label classification performance of la-
bels at different levels of granularity on ImageNet. We reported
the mean average precision (mAP) of ImageNet-1K fine-grained
classes (leaves), and their coarse-grained ancestor classes with raw
predictions (Ancraw) and two propagated predictions. The differ-
ences (∆) between the raw and propagated performance of ancestor
classes presents the performance discrepancy of vision-language
models on concepts at different granularity. Propagating from leaf
classes gives the best performance.

Config Leaves Ancraw Ancchild (∆) Ancleaf (∆)

CLIP

B-400M 50.10 24.91 45.35 (+20.44) 58.73 (+33.83)
L-400M 65.06 33.64 57.72 (+24.08) 72.25 (+38.61)

OpenCLIP

B-400M 47.10 20.12 40.66 (+20.54) 54.50 (+34.38)
B-2B 54.97 24.95 47.64 (+22.69) 62.66 (+37.70)
L-2B 65.79 31.59 56.65 (+25.07) 72.53 (+40.94)
H-2B 68.28 32.70 58.70 (+26.00) 74.93 (+42.23)

UniCL(Swin-B)

YFCC 35.75 20.13 35.90 (+15.77) 47.55 (+27.42)
IN21K 26.28 38.15 39.30 (+1.15) 41.23 (+3.08)
YFCC+IN21K 37.84 35.18 44.84 (+9.65) 51.55 (+16.37)
All 54.49 37.54 54.58 (+17.04) 65.85 (+28.32)

K-LITE 48.40 31.50 49.63 (+18.14) 61.58 (+30.08)

BLIP 41.87 20.31 39.44 (+19.13) 52.08 (+31.77)
BLIPft-coco 42.83 22.07 41.45 (+19.38) 54.00 (+31.93)

FLAVA 40.91 21.36 39.32 (+17.96) 51.89 (+30.53)

4.2. Results and Analysis

Tab. 2 displays our granularity benchmark. The ∆ values,
highlighted in the last two columns, quantify the perfor-
mance discrepancy between direct predictions using coarse-
grained (CG) class prompts and predictions derived from
prompts of their finer-grained (FG) children classes.

General Trend Across Models: Our analysis spans a
diverse range of models, varying in scale and design. A
significant trend emerges across all these models: direct pre-
dictions with CG labels consistently yield inferior results
compared to those obtained from FG labels. Most notably,
score propagation from the leaf (most fine-grained) classes
leads to the most substantial performance improvements, de-
cisively outperforming the propagation from direct children
classes. This finding robustly indicates that VLMs demon-
strate greater reliability and produce more accurate outputs
when interacting with more specific, finer-grained concepts.

Granularity-Level Performance Analysis: Delving
deeper into how VLMs perform at different granularity lev-
els, we observe distinct patterns in their raw performance.
These levels are defined based on the WordNet hierarchy,
where level 0 represents the most abstract level “entity”
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Figure 3. Left: The box-plot of zero-shot classification performance (mAP) for leaf class over the level in the semantic hierarchy. Middle:
The box-plot of classification performance (mAP) for ancestor classes over the level in the semantic tree. Note that level 0 and level 1 have
1 and 2 classes respectively and easy to get high mAP. Right:The box-plot of improved zero-shot classification performance (mAP) for
ancestor class by propagating from leaf classes, over the level in the semantic tree.

where all images are labeled with, and higher numbers in-
dicate increasingly finer-grained concepts. For instance, at
Level 3, a class might be as broad as “signal” or “location”.
At a middle level, such as Level 7, you might find classes
like “instrument” or “vehicle.” At even deeper levels, say
Level 15, the classes are highly specific, like “tiger shark”
or “cougar”. According to Figure 3-Left and Middle, we
find that VLMs are more adept at recognizing higher-level
concepts for both leaf and ancestor classes. However, an
intriguing dip in performance is noticed at the deepest level
e.g. level 17 for leaf classes which consists of extremely fine-
grained and likely rare concepts in the training data. These
might be specific breeds of animals or types of vehicles not
commonly encountered. Interestingly, despite the challenges
at the deepest level, propagating scores from leaf classes gen-
erally improves performance for the majority of CG ancestor
classes. This improvement holds for 775 out of the 820 an-
cestor classes. The exception is noted at level 16, which does
not benefit from propagation due to the underperformance
of the level 17 child classes. The results in Figure 3-Right
highlight these findings, illustrating that VLMs are best at
recognizing moderatly finegrained concepts

Influence of Pre-training Data on Granularity Dis-
crepancy: Contrary to expectations, scaling up the alt-text
training data or increasing model sizes, such as in the case of
OpenCLIP-H-2B, does not seem to effectively address the
granularity discrepancy. In fact, such scaling might worsen
it. The distribution of training data content is a more crit-
ical factor than its volume in influencing the granularity
discrepancy. This becomes evident when comparing the
performance of UniCL models trained on different datasets,
such as ImageNet21K, YFCC-14M, and GCC-15M.
1. UniCL models trained on image alt-text data

(UniCLYFCC) significantly outperform those trained
on ImageNet21K (UniCLIN21K) in FG leaf label
classification (35.75 vs. 26.28 mAP).

2. UniCLIN21K excels in CG ancestor raw performance due

to the comprehensive inclusion of CG classes in IN21K,
even surpassing CLIP and OpenCLIP models trained on
larger-scale alt-text datasets.

3. However, integrating alt-text data (YFCC14M and
GCC15M) with IN21K for UniCL training enhances FG
classification at the cost of CG performance, leading to a
larger CG-FG discrepancy.

Granularity Bias in Pre-training Data: The distribu-
tion of alt-text data, skewed towards fine-grained concepts,
appears to contribute significantly to the observed perfor-
mance discrepancy. The natural inclination to use precise
concepts in language descriptions appears to be a driving
factor behind this bias. In our further analysis of the Open-
CLIP models trained on LAION-2B, we investigate how
the distribution of visual concepts in alt-text data correlates
with the granularity discrepancy. We use ImageNet samples
from each leaf class to find similar images in LAION-2B,
determining the frequency of each class name in the training
captions. This frequency distribution in Figure 4-Left shows
that higher-level (more fine-grained) classes are mentioned
more frequently except for the overly fine-grained classes
(level≥16), aligning with the performance trends observed
in Figure 3. Moreover, we examine the correlation between
each ancestor class’s performance discrepancy (∆leaf) and
its frequency gap with its leaf children (∆freq). Our findings,
shown in Figure 4-Right, demonstrate a positive correlation
(coefficient 0.43 with a significant p-value of 3.4e − 39),
reinforcing the notion that the distribution of training data
significantly influences the VLMs’ granularity bias.

In conclusion, the insights from our granularity bench-
mark shed light on the significant challenges and limitations
inherent in current VLMs, particularly their inconsistent
performance across different levels of semantic granularity.
These results highlight the imperative for more balanced
and diverse training datasets in developing VLMs capable
of robust
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Figure 4. Left: The scatter-plot of the frequency of class names in pre-training captions over the level in the semantic tree. Course-grained
and overly fine-grained concepts are less presented in captions. Right: The scatter-plot of performance discrepancy over the frequency gap
between ancestor class names and their leaf children. A positive correlation exists between the performance discrepancy and frequency gap
(coefficient 0.43 with p-value 3.4e-39).

5. Evaluate Specificity Robustness

When using vision-language models for open-world zero-
shot recognition, the textual describes the visual concepts to
recognize and the output score should indicate the chance
that the described concepts exist in the visual input. In other
words, it is critical to measure the correctness of textual
inputs given visual inputs. However, as the example in Fig-
ure 1-Right illustrates, the scores of visual language models
and do not strictly reflect the correctness of the textual input
and thus make it challenging to be useful for open-world
visual recognition. Since contrastive vision-language mod-
els have been trained on image alt-text pairs, the scores are
biased toward the specificity of text as in the pretraining data.
In our study, we demonstrated that the specificity of text can
distract vision-language scores that VLMs struggle to reflect
the correctness faithfully.

Evaluation protocol and dataset We use image-to-text
retrieval as the proxy task to demonstrate that the scores of
contrastive vision language models can easily be distracted.
We build our experiments on images of the MSCOCO2017
dataset and their annotation of captions and bounding boxes.
The setup of the image-to-text retrieval task is following.
Given a query image and a set of positive and negative text,
the score between the query image and each text is used
for retrieving the positive text. Average Precision (AP) is
the metric for evaluating the performance of each image
and we report the mean Average Precision (mAP) of the
whole dataset. Typically, the positive text are the captions
annotated for the query images (Cap+), and the negative text
is the captions of other images in the data (Cap−

rd). To test
our hypothesis, we design the following hard positives and
hard negatives.

• Prompts of a single label (Prompt+s ): apply the classifica-
tion prompts on one label of the query image. For example,
“a photo of a dog”.

• Prompts of multiple labels (Prompt+m): apply the classi-
fication prompts on all labels in the query image. For
example, “a photo of dog, person, ball”.

• Captions from Localized narratives[16] (Cap+l n): the text
descriptions that are much longer and more informative
than typical captions in MSCOCO and pretraining data.

• Captions of relevant images (Cap−
rl): COCO captions of

relevant images that have overlapping labels with the query
image.

• Captions with errors (Cap−
er): modifying true COCO cap-

tions of query images with errors by replacing a noun
entity in the text with the name of a label that does not exit
in the image. We use spaCy 1 for entity recognition.
The hard positives Prompt+s , Prompt+m and Cap+

l n con-
tain less or more information, although still correct, than the
true captions Cap+. They can examine if different specificity
of the positive text can reduce the score. The hard negatives
Cap−

rl and Cap−
er are similar to true captions but are wrong

descriptions. They can examine whether the model can be
robust to specificity and indicate the correctness of text input.
Note that we use randomly chosen 100 negative texts for
each query image for all image-text retrieval experiments
and report results of CLIP ViT-B/32.

Results and implications We first plot a normalized his-
togram of visual-language scores between query images and
various textual inputs in Figure 5. Figure 5-Left compares
the scores from different types of positive texts. True COCO
captions generate higher score than classification prompts

1https://spacy.io/
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Figure 5. Left: Distribution of cross-modality scores with positive text: COCO captions, Localized-narratives captions, single-label, and
multi-label prompts. Mismatched specificity in text (either too low or high) results in reduced scores. Middle: Distribution of scores with
negative text: captions from random images, relevant images, and subtly altered captions. The altered captions attain high scores, similar
to positive texts. Right: Score differences between single-label prompts and various negative texts, highlighting that correct single-label
prompts often score lower than incorrect altered captions.

Table 3. Performance of image-to-text retrieval measured by mean Average Precision (mAP). Columns differentiate between positive and
negative text types: Cap+ (true COCO captions), Cap+

ln (localized-narratives captions), Prompt+s and Prompt+m (single/multi-label prompts)
for positives; Cap−

rd, Cap−
rl, Cap−

er (captions from random images, relevant images, and error-modified true captions) for negatives. This
shows how hard positives and negatives can distort vision-language models’ similarity scores.

Model Cap+ Prompt+m Prompt+s Cap+ln

Cap−rd Cap−rl Cap−er Cap−rd Cap−rl Cap−er Cap−rd Cap−rl Cap−er Cap−rd Cap−rl Cap−er

CLIP-B 94.78 82.77 28.10 74.39 50.12 7.19 55.69 30.17 4.47 81.29 60.00 13.57
CLIP-L 95.64 84.66 30.59 79.84 56.76 8.51 58.18 33.52 4.94 85.51 66.74 16.63

OpenCLIPB-400M 95.28 84.62 29.61 64.66 39.1 4.49 50.9 25.93 3.63 83.48 63.07 13.85
OpenCLIPB-2B 96.28 86.73 28.96 75.84 51.83 6.32 61.39 35.89 4.42 88.83 71.76 18.91
OpenCLIPL-2B 97.09 88.81 33.03 79.22 56.00 6.90 65.44 39.97 4.96 89.50 72.78 18.63
OpenCLIPH-2B 97.45 89.85 35.82 79.2 57.64 7.49 65.67 42.19 5.75 89.74 73.28 18.09

UniCLAll 94.37 81.76 20.74 82.58 62.33 9.94 82.45 60.02 8.71 81.96 62.33 12.99

KLITE 92.47 77.67 16.45 75.71 53.60 9.03 69.98 47.06 8.47 79.81 59.24 11.16

BLIP 97.68 90.89 48.53 57.64 32.21 3.13 43.24 20.07 2.81 82.26 63.62 17.94
BLIPft-coco 99.07 95.15 56.44 74.65 51.02 4.86 65.96 41.77 4.02 89.99 75.92 23.13
BLIPft-coco-fusion 99.26 96.08 38.57 76.59 54.97 3.35 81.62 58.41 2.97 92.51 82.59 22.72

FLAVA 97.73 89.31 29.49 86.52 69.29 13.22 78.35 58.33 11.22 94.83 82.87 35.09

NegCLIP 96.6 87.37 51.88 65.32 39.91 6.7 61.32 34.52 6.09 76.70 53.93 13.33

(multiple-label prompts get higher scores than single-label
prompts), and Localized-narratives who are overly-detailed
captions surprisingly lead to lower scores than normal cap-
tions. The observations confirms our hypothesis that the
amount of information (specificity) in text can distort the
scores and the specificity that is closer to the training text
leads to higher scores. Shown by Figure 5-Middle, rele-
vant image captions score slightly higher than random ones
among negative texts. However, captions with modified
errors score as high as true captions, undermining the ef-
fectiveness of VL scores. The result verifies our hypothesis
that the similarity scores cannot distinguish the correctness.
When comparing the positive single-label prompts with dif-
ferent types of negative text in Figure 5-Right, single label
positives Prompt+s are even lower than hard negatives Cap−

er,
which is not desired.

Then, we report the image-to-text retrieval results in
Tab. 3 when combining different positive and negative text.
We can see that using harder positives or harder negatives can
degrade image-to-text retrieval performance, and retrieving
label prompts from captions with small errors is extremely
hard. Comparing the performance of different models, we
can see that the BLIP model with the fusion design fine-
tuned on COCO is the best when the positive text are true
captions which is nature since it is trained on the same data.
however, results in worse performance when distinguishing
poisoned captions. When the positive text is label prompts,
FLAVA is the best or the second best model, probabally due
to its additional uni-modal training data/loss. UniCL is the
best when single-label prompts are the positives, which we
think can be explained by the ImageNet21K classification
dataset in its training data.
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Table 4. Performance of fine-tuned CLIP-B models in MSCOCO-2017’s image-to-text retrieval, measured by mean Average Precision.

Model Cap+ Prompt+m Prompt+s Cap+ln

Cap−rd Cap−rl Cap−er Cap−rd Cap−rl Cap−er Cap−rd Cap−rl Cap−er Cap−rd Cap−rl Cap−er

CLIP-B 94.78 82.77 28.1 74.39 50.12 7.19 55.69 30.17 4.47 81.29 60.00 13.57
CLIP-Bft-coco 96.98 88.15 35.04 71.65 47.16 5.41 60.4 33.53 4.09 80.52 57.96 10.66
NegCLIP 96.6 87.37 51.88 65.32 39.91 6.7 61.32 34.52 6.09 76.70 53.93 13.33
Ours 96.21 85.9 75.74 93.37 75.46 55.95 83.22 57.98 29.05 78.54 55.11 31.74

6. Limitations of Fine-Tuning VLMs with Hard
Samples

In our study, we generate both hard positive and negative text
samples to examine whether vision-and-language models
(VLMs) accurately interpret text that aptly describes images.
In this section, we explore the efficacy of using these hard
text samples for training or fine-tuning VLMs. Drawing in-
spiration from NegCLIP in a recent study [33], which delves
into understanding compositional relationships in VLMs, we
fine-tune the CLIP-B model using these challenging sam-
ples on MSCOCO training data. Our approach differs from
NegCLIP in that we focus exclusively on hard text samples
for fine-tuning. These include complex positives such as
single/multi-label prompts and difficult negatives like cap-
tions from relevant images or true captions subtly modified
with errors, forming part of our benchmarking strategy. No-
tably, NegCLIP also uses modified true captions with errors
to test compositional understanding.

Following the default fine-tuning hyperparameters cited
in [33], we additionally fine-tune CLIP-B with original
MSCOCO captions (CLIP-Bft-coco) to establish a fairer
baseline. The performance of our models, alongside Neg-
CLIP, is detailed in Table 4. Our findings indicate that fine-
tuning with original MSCOCO data without hard samples
shows superior performance in distinguishing true captions
from simpler negative ones, such as Cap+ vs Cap−

rd or Cap−
rl.

NegCLIP surpasses the COCO-fine-tuned CLIP only in tasks
aligned with its data augmentation strategy, e.g., Cap+ vs
Cap−

er, but shows similar or even reduced effectiveness in
other tasks. Importantly, our fine-tuned model demonstrates
superior performance compared to the baselines and Neg-
CLIP in the most challenging scenarios, Prompt+s vs Cap−

er,
owing to a broader coverage of harder text sample types.

Despite these enhancements, challenges remain. Neg-
CLIP and our fine-tuned model struggle in complex scenar-
ios like single/multi-label prompts (Prompt+s and Prompt+m)
against subtly altered captions Cap−

er. For tasks with unseen
hard text types, like long captions Cap+ln vs Cap−

rd and Cap−
rl,

all fine-tuned models underperform compared to the original
CLIP. This indicates that while fine-tuning with hard sam-
ples enhances performance on familiar challenging cases,
it falls short in addressing the full spectrum of difficulties,

especially when encountering cases outside our augmenta-
tion strategy. These findings underscore the limitations of
solely relying on fine-tuning with hard samples and highlight
the urgency for a more comprehensive solution capable of
encompassing a wider variety of potential scenarios, as our
current methods do not completely resolve the issue.

7. Conclusion and Discussion

As interest in vision-language models grows, we present a
novel benchmark and comprehensive study on the behaviors
that create challenges to be useful in the open-world settings.
First, we demonstrate that VLMs perform inconsistently
on concepts of different semantic granularity. Based on
our experiments, the performance discrepancy is due to the
biased distribution of training data. Second, we show that
vision language scores mostly measure similarity rather than
correctness and can be distracted by the specificity of text.
The scores are higher when the specificity of text are closer
to the captions in the training data. This issue cannot be
systematically solved by fine-tuning wit hard text mining.

While our study doesn’t offer complete solutions for the
identified issues, we suggest several promising avenues for
improvement. Firstly, addressing the granularity discrepancy
and specificity sensitivity could involve enhancing the train-
ing data. This can be achieved by augmenting text with a
more balanced concept distribution and incorporating hard
negatives and positives, possibly using large language mod-
els for assistance. Secondly, the dual encoder and embedding
similarity approach inherently complicates correct recogni-
tion. For instance, true captions and slightly erroneous ones
may have similar embeddings from a uni-modal view, re-
sulting in close scores with identical image embeddings. A
more advanced cross-modality fusion module could be key in
discerning between visual and textual features, enabling dis-
tinct outputs for similar textual inputs. Lastly, large language
models (LLMs) trained on more diverse text data might help
mitigate the challenges we’ve noted. Our language-only ex-
periment in the Appendix illustrates the potential of using
generative LLMs in this context. Exploring and evaluating
VLMs integrated with generative LLMs, e.g. vision-LLM,
for recognition tasks represents an exciting future direction.
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