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Abstract

The significant advances in applications of text-to-image

generation models have prompted the demand of a post-

hoc adaptation algorithms that can efficiently remove un-

wanted concepts (e.g. privacy, copyright, and safety) from

a pretrained models with minimal influence on the exist-

ing knowledge system learned from pretraining. Existing

methods mainly resort to explicitly finetuning unwanted

concepts to be some alternatives such as their hypernyms

or antonyms. Essentially, they are modifying the knowl-

edge system of pretrained models by replacing unwanted

to be something arbitrarily defined by user. Furthermore,

these methods require hundreds of optimization steps, as

they solely rely on denoising loss used for pretraining.

To address above challenges, we propose Forget-Me-Not,

a model-centric and efficient solution designed to remove

identities, objects, or styles from a well-configured text-to-

image model in as little as 30 seconds, without significantly

impairing its ability to generate other content. In con-

trast to existing methods, we introduce attention re-steering

loss to redirect model’s generation from unwanted concepts

to those are learned during pretraining, rather than being

user-defined. Furthermore, our method offers two practical

extensions: a) removal of potentially harmful or NSFW con-

tent, and b) enhancement of model accuracy, inclusion and

diversity through concept correction and disentanglement.

1. Introduction
In recent advancements, text-to-image models [6, 15, 36–
38, 41, 49, 50] have exhibited remarkable capabilities in
generating high-resolution images based on textual de-
scriptions. Notably, diffusion models, exemplified by
DALL-E 2 [37] and Stable Diffusion [38], have satisfied
commercial-grade productization standards, paving the way
for a plethora of applications tailored for end-users.

However, the growing popularity of this domain has con-
currently raised pertinent concerns encompassing security,

*Equal contribution

fairness, regulatory compliance, intellectual property rights,
and overall safety. The community faces pressing chal-
lenges, such as the inadvertent generation of unauthorized,
prejudiced, and potentially hazardous content. This is not
an unprecedented issue, as the academic community has
previously endeavored to address similar concerns [5, 10].

The inherent risks associated with large-scale text-to-
image models predominantly stem from the vast datasets
employed during their training phase. These datasets, which
include public repositories like LAION [43], COYO [3],
CC12M [7], and proprietary data from renowned entities
such as Google [41, 50] and OpenAI [36, 37], present
unique challenges. Public datasets, often sourced from web
scrapes, may lack rigorous quality control measures, es-
pecially concerning bias and safety. Conversely, propri-
etary datasets, while potentially more controlled, are con-
strained by scalability issues due to the inherent costs of an-
notation. Consequently, mitigating issues related to harm-
ful content, privacy breaches, and copyright infringements
through mere data filtration or source attribution becomes
a daunting task. One potential recourse could be domain
adaptation [18, 48, 51]. However, the intricacies of curat-
ing and refining such datasets remain formidable. More-
over, such domain adaptation can inadvertently diminish the
model’s versatility, rendering it inept at synthesizing out-of-
domain images.

Therefore, efficient methods that enable large-scale text-
to-image models to selectively forget specific concepts
emerge as a promising direction. A line of concurrent works
explore this direction by training models to redirect their
predictions of a target concept towards some alternative
concepts. [17, 26]. However, these methods essentially
retrain the model to replace the target concept with user-
defined concept, rather than allowing the model to revert to
what naturally follows based on its inherent knowledge.

Moreover, recent controllable text-to-image synthesis
works [8, 20] have highlighted that cross attention condi-
tioning is a pivotal factor in determining the primary con-
cepts featured in generated images. These insights lead
us to explore solutions centered around the cross attention
mechanism.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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A photo of Elon Musk A dog in Van Gogh Style A photo of an apple

Concept Forgetting

forgetting Liu Yifei as Mulan forgetting Daniel Craig as 007 

Concept Correction & Disentangle

Figure 1. Concept Forgetting: target concepts (denoted in blue text and crossed-out) are successfully removed without compromising
the quality of the output. Concept Correction & Disentangle: our method can be used to correct a dominant or undesired concept of a
prompt. Prior overshadowed concepts reveal in outputs after the dominant concepts are forgotten.

This paper demonstrates: 1) the effect of zeroing out
cross attention scores of target concept at inference time,
in which we observe target concept is diminishing in gener-
ated images; 2) cross attention scores can be directly used
as objectives to optimize diffusion model for attenuating
model’s perception of target concepts. To the best of our
knowledge, we are the first to show cross attention scores
are viable objectives for fine-tuning text-to-image models.
On top of aforementioned techniques, we introduce Forget-
Me-Not, a cost-efficient methodology for concept forget-
ting where models determine what to generate based on its
knowledge, a critical aspect overlooked by existing meth-
ods. In particular, we show Forget-Me-Not achieves com-
parable results to existing methods and outperforms them in
some cases. Furthermore, it facilitates concept correction &
disentanglement, enhancing model precision and diversity.

2. Related Work
2.1. Text-to-Image Synthesis

In the past decade, we have witnessed the rapid advance of it
from unconditional generative models to conditional gener-

ative models with powerful architectures of auto-regressive
model [36, 50], GAN [4, 24, 25, 44, 47] and diffusion pro-
cess [2, 14, 21, 30, 34, 45]. Early works focus on uncondi-
tional, single-category data distribution modeling , such as
hand-written digits, certain species of animals, and human
faces [9, 12, 24, 29]. Though, unconditional models quickly
achieves photo realistic results among single-category data,
it’s shown that mode collapsing issue usually happens when
extending data distributions to multiple-category or real im-
age diversity [1, 4, 31]. To tackle the model collapsing prob-
lem, the conditional generative model has been introduced.
Various types of data have been used as the conditioning for
generative models, e.g. class labels, image instances, and
even networks [4, 32] etc. At the same time, CLIP [23, 35],
a large-scale pretrained image-text contrastive model, pro-
vides a text-image prior of extremely high diversity, which
is discovered to be applicable as the conditioning for gener-
ative model [11, 28, 33]. Nowadays, DALL-E 2 [37] and
Stable Diffusion [38] are capable of generating high qual-
ity images solely conditioning on free-form texts, Subse-
quently, a line of work seeks to efficiently adapt the mas-
sive generative model to generate novel rendition of an un-
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seen concept represented by a small reference set. Dream-
booth [40] adapts the model by finetuning all of its weights,
while it requires enormous storage to save newly adapted
weights. Textual Inversion [16] and LoRA [22] ameliorate
the issue by adapting the model by adding a small set of
extra weights.

2.2. Concept Replacing
Prior works have noticed the inadvertent biased and unsafe
generations from large text-to-images models. They adopt
the denoising loss [13] to steering predicted noise away
from what is used to be for a given concept. Kumari et al.
[26] and Heng and Soh [19] choose to replace target con-
cept with a user-defined concept, usually a hypernym. For
example, it finetunes to replace the generation of “a grumpy
cat” to “a cat”. SLD [42] and ESD [17] utilize the classifier-
free guidance of a pretrained model to steer prediction to
the opposite guidance direction. However, this approach
carries the risk of altering the semantics of the generated
images significantly, potentially deviating from the original
prompts.

3. Method
3.1. Preliminaries
Diffusion models [13, 21, 34] are denoising models that it-
eratively restore data x0 from its Gaussian noise corruption
xT with a total step number T . Such a restoration process is
usually known as the reverse diffusion process p✓(xt�1|xt)
and the opposite is forward diffusion process that blends the
signal with noise q(xt|xt�1):

q(xt|xt�1) = N (xt;
p
1� �txt�1;�tI)

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t);⌃✓(xt, t))

Both forward and reverse processes are presumably Marko-
vian chains, so we can express the likelihood of both pro-
cesses as:

q(x1:T |x0) =
TY

t=1

q(xt|xt�1)

p✓(x0:T ) = p(xT )
TY

t=1

p✓(xt�1|xt)

The loss function for the diffusion process is then to
minimize the variational bound Lvlb of the negative log-
likelihood p✓(x0) (maximize the likelihood of x0 as the fi-
nal denoised result from a model with parameters ✓):

LVLB = E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�

Cross Attention [46] are widely adopted in generative
models as a conditioning technique [37, 38, 41]. The pur-

Original Zero out attention of Elon MuskResult

Figure 2. When the attention scores associated with ”Elon
Musk”(red boxed) are set to zero in a text-to-image generative
model, a prompt like ”a photo of Elon Musk” results in the gener-
ation of an image depicting a person other than Elon Musk.

pose of conditioning is to transfer information of condi-
tional signals to hidden features of generative models. Con-
cretely, hidden features h serve as the query Q and condi-
tional signals serve as key K and value V . Assume Q and
K has the same dimension d, the updated hidden feature h0

is then computed as the following:

h0 = h+ softmax(
QKT

p
d

)V (1)

In text-to-image generative models, h represents visual
features, while V represents conditioning textual features.
The equation involves visual features attend to concepts en-
capsulated within textual features V and update themselves
with softmax(·)V as a residual, in which softmax(·) cal-
culates attention scores of all concepts. It is essentially a
weighted sum of all encapsulated concepts, allowing the vi-
sual representation to be refined and aligned more closely
with the textual input. In practice, manipulating attention
scores of a concept will influence the presence of that con-
cept in generated images. As shown in Figure 2, reducing
attention scores of “Elon Musk” to zero leads to the gener-
ation of other person. We argue the generated anonymous
person is what the model naturally falls back to when “Elon
Musk” has been attenuated.

3.2. Forget-Me-Not
Concept Forgetting A concept is an abstract idea repre-
senting an object of thought, forming the basis of human
perception and understanding. In the context of text-to-
image models, these concepts are embedded within the
words of a prompt. We define concept forgetting in such
models as the process of attenuating the strong correlation
between a target concept and its expected visual representa-
tion. This definition circumvents the need for finetuning the
model to hard overwrite a target concept with a user-defined

1757



A photo of Elon Musk

Attention Map 
of Elon Musk

𝐾𝑄

𝐿𝑜𝑠𝑠 = min(∗)
𝐴 𝑉

Fo
rw

ar
d

…
…

B
ackw

ard

𝐿𝑜𝑠𝑠

(                       )

(                       )

𝐿𝑜𝑠𝑠

…
…

: Cross Attention

Figure 3. This figure shows the Attention Re-steering we proposed
in our Forget-Me-Not method, in which we set the objective func-
tion to minimize the attention maps of target concepts (i.e. Elon
Musk in this case) and correspondingly finetune the network.

alternative. Instead, it allows the model to determine what
to generate once the correlation has been diminished. By
doing so, the model is able to retain its original generative
capabilities to the maximum extent.

To achieve these goals, we have developed two new loss
functions: Attention Re-steering loss and Vsiual Denoising
loss. Additionally, for scenarios where the prompt associ-
ated with a concept is not known, we employ Concept Inver-
sion, a technique designed to extract the textual embeddings
of a concept directly from images.
Attention Re-steering Loss Following the discussion of
cross attention, we are interested in using attention scores of
target concept as a loss to optimize trainable parameters ✓ of
UNet [39]. UNet is the backbone of Stable Diffusion [38].
It consists a series of interleaving convolution and cross at-
tention layers, performing denoising task and conditioning
task respectively. Layers are grouped as down, mid, and up
blocks, in which visual features have gone through dimen-
sion changes. There are 16 cross attention layers in total.
We obtain attention scores from each layer. Let An⇥l be
the attention map of a cross attention layer. It is computed
as the softmax(·) term in Eq. 1. n is the number of visual
features from Q and l is the length of textual tokens from K.
The start and end indices of textual tokens associated with
target concept is denoted as [i, j]. We calculate the loss for
a specific cross attention layer as:

LAttn =
X

a2A[:,i:j]

kak2 (2)

where A[:, i : j] indexes all scores from column i to j. This
corresponds to all the attentions paid to target concept by

visual features. Figure 3 illustrates the idea of Attention Re-
steering loss, minimizing attention scores of target concept.
This redirects the generation process from target concept to
its less prominent alternatives. Algorithm 1 details how the
loss is used in a training loop.

Algorithm 1 Attention Re-steering loss in training
Require: Textual embeddings C containing the target con-

cept, indices I of the target concept, reference images
R of the target concept, UNet U✓, denoising timestep
T , total training step S.

1: repeat
2: t ⇠ Uniform([1 . . . T ]); ✏ ⇠ N (0, I)
3: ri ⇠ R; ci, idxi ⇠ C, I
4: x0  ri
5: xt  

p
↵̄tx0 +

p
1� ↵̄t✏

6: . ↵̄t: noise variance schedule
7: xt�1,At  U✓(xt, cj , t)
8: . At: all attention maps
9: L 

P
A2At

P
a2A[idxi]

kak2
10: ✓  ✓ �r✓L
11: until S steps

Visual Denoising Loss As shown in Figure 2, manipulat-
ing attention scores at inference time naturally becomes an
efficient and low-cost technique for concept forgetting data
generation. Due to the self-attention in text encoder, each
token shares information with every other token. Therefore,
zero attention of target concept won’t lead to completely
loss of its semantics. For example, zeroing out attention
paid to “Elon Musk” still get us an image of mid-aged man,
instead of a woman. This phenomenon represents what we
term the model’s ’natural fallback’. This inspires us to cre-
ate synthetic data as the “ground truth” for concept forget-
ting.

For a training step t, in addition to sampled noise ✏, the
model takes as inputs both a generated image x0 represent-
ing a concept and its counterpart x̃0, where the attention to
the concept is set to zero. It predicts the Gaussian noise
✏✓(xt) that has been added to x0. Subsequently, x0 can be
approximated, as described in [21]:

x0 ⇡ x̂0 = (xt �
p
1� ↵̄t✏✓(xt))/

p
↵̄t

Lvis = MSE(x̂0, x̃0)
(3)

where ↵̄t is predefined noise schedule coefficient. Instead
of computing denoising loss between predicted ✏✓(xt) and
ground truth ✏, we first approximate x̂0 and compute mean
squared error between x̂0 and x̃0. We call it visual denoising
loss.

In practice, we find the two loss can be used either in-
dependently or together. Attention Re-steering loss offers
convenience without the need of generating paired train-
ing data. On the other hand, Visual Denoising loss tends
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to focus the training on the primary concept that needs to
be forgotten. This is due to the similarity in minor image
structures found in the paired synthetic data, as depicted in
Figure 2.
Concept Inversion: Although we usually know the
prompts for a target concept, there are exceptions when
it’s hard or impossible to describe a concept using textual
prompts. For instance, forget a style represented by an im-
age. To overcome this challenge, we include the textual in-
version [16] as an optional component. In practice, we also
notice that such inversion helps text-to-image models more
precisely identify the forgetting concept and thus improves
their performance. Results can be found in Experiments
Section.

4. Experiments
Dataset Our evaluation encompasses a range of concepts
such as identity, object, animal, style. Each concept
comprises pairs of images and their corresponding textual
prompts, with either real images or synthetic images gener-
ated via the Stable Diffusion 2.1 base.
Baselines Our approach is compared against other concur-
rent works, ESD [17] and ACTD [26]. The comparison fo-
cuses on forgetting performance and the influence on re-
lated concepts, as detailed in section 4.1. Our unique capa-
bility for concept correction is highlighted in section 4.3.
Evaluation Metrics Forgetting efficacy is assessed using
both CLIP score [35] and Memorization Score, described in
Sec. 4.2. The CLIP score measures the congruence between
generated images and their textual prompts. A decrease in
the CLIP score signifies effective forgetting, but an exces-
sively low score indicates a loss of overall image semantics,
see Table 1. For instance, after forgetting the “corgi” con-
cept, we anticipate the generated image to still represent a
dog, not an completely different object.
Ablation Studies We delve into the impact of various con-
figurations, including different sets of trainable weights and
the utilization of inverted concepts from images.

4.1. Qualitative Comparison
Figure 4 showcases the experiment results. The multi-
concept model, targeting Elon Musk and Taylor Swift, ex-
emplifies our method’s proficiency in multi-concept forget-
ting. Notably, the first row reveals the successful forgetting
of both target concepts. Our evaluation also considered the
repercussions of forgetting on related concepts, specifically
man, woman, Bill Gates, and Emma Watson. The results
indicate that our Forget-Me-Not method preserves content
and maintains visual quality effectively. However, subtle
changes in pose and style were observed for the man and
Bill Gates concepts. These observations suggest that our
method might influence closely associated concepts more

than distant ones. The final row further highlights the emer-
gence of a new painting style post-forgetting the styles of
Picasso and Van Gogh.

In comparison to [17, 26], our approach exhibits supe-
rior generative capabilities for related concepts, illustrated
in Figure 6. ESD [17], which employs inverse class-free
guidance, adversely affects related concepts. Conversely,
ACTD [26] adjusts the forgetting concept relative to an
user-defined concept, making its performance contingent on
human intervention. This becomes challenging for abstract
concepts where an apt anchor is hard to define.

4.2. Quantitative Analysis

Memorization Score Unlike the CLIP score, which as-
sesses the semantic content of generated images, the Mem-
orization Score offers a model-centric perspective. It eval-
uates the changes in model’s knowledge about a probing
dataset, both before and after concept forgetting.

It start with a small probing set of images representing a
concept. We then employ textual inversion [16] to invert the
probing dataset into embeddings in CLIP space. This inver-
sion is performed twice: once using the original model and
once using the model that has undergone concept forgetting.
Subsequently, we calculate the CLIP similarity between an
anchor prompt and each of the two sets of inverted embed-
dings. The anchor prompt is carefully selected to effectively
capture the essence of the concept in question. After forget-
ting, a decrease of CLIP similarity between probing set and
anchor prompt signifies the effective forgetting.

For instance, with anchor prompt as “Elon Musk”, its
embedding (embr) is derived from text encoder. Prob-
ing images of Elon Musk are then inverted using both the
original model and the forgetting model. The resulting
embeddings, original textual inversion (embo) and forget-
ting textual inversion (embf ), are compared with embed-
dings of the anchor prompt to calculate similarity. The
similarity change is quantified as the difference between
cos(embr, embo) and cos(embr, embf ). Table 1 shows
that Memorization Score declines after concept forgetting.

Concept Init.
MScore

Frgt.
MScore #

Init.
CLIP

Frgt.
CLIP #

Elon Musk 0.943 0.848 0.308 0.285
Mickey Mouse 0.948 0.836 0.304 0.269

Zebra 0.972 0.899 0.312 0.310
Google 0.940 0.811 0.216 0.209
Apple 0.696 0.493 0.267 0.258
Horse 0.877 0.808 0.275 0.266

Van Gogh 0.916 0.684 0.274 0.233

Table 1. Changes of Memorization Scores and CLIP Scores after
concept forgetting
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Figure 4. Concept forgetting results using our method. The initial 2x2 grid displays original samples from Stable Diffusion. Following
this, three images depict post-forgetting samples generated from the same prompt. The top three rows, targeting Elon Musk and Taylor
Swift, highlight our multi-concept forgetting capability. Control concepts, including Bill Gates and Emma Watson, illustrate the limited
influence our method has on non-targeted concepts. The final row presents single-concept style models. Image prompts used were: “a
photo of X” (for the first three rows) and “a dog in X style” (for the last row).

Dominant Concept Concept Correction

forgetting Liu Yifei as Mulan

forgetting Daniel Craig as 007

forgetting Apple brand

Figure 5. Concept Correction: Our method’s effectiveness in diminishing dominant concepts allows for the emergence of secondary
concepts within semantically-rich prompts. The displayed images, generated from top to bottom, correspond to the prompts: “a movie
poster of Mulan”, “James Bond”, and “apple shape”.

4.3. Concept Correction
Text-to-image models often prioritize the semantics of a
prompt based on the abundance of image-text examples dur-
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Figure 6. Comparison of methods for forgetting the french horn
concept. Each primary figure is prompted with “a photo of a vio-
lin”, accompanied by a smaller “a photo of a french horn” image.
ESD not only disrupts the french horn concept but also adversely
affects the related violin concept. ACTD, using “instrument” as
the anchor concept, which is dominated by the violin in the SD
model, results in the french horn concept merging with the violin
concept. In contrast, our method selectively removes the french
horn features while preserving the salient features of other related
concepts.
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Figure 7. In concept correction, our method has the advantage of
comprehensive forgetting over negative prompt. In this example,
we also tests “animal” as negative prompts, yet it still generates
dogs/cats.

ing training. This can overshadow less prevalent semantics
during inference, as illustrated in Figure 5. For instance, the
James Bond series predominantly showcases Daniel Craig.
Our method, however, can reduce the dominance of such
a semantic, enabling visibility of other James Bond actors.
Similarly, our approach effectively rectifies target concepts
in scenarios where semantics compete, as seen with the Mu-
lan series and the term “apple”.

Negative prompts, used in text-to-image synthesis to ex-
clude unwanted concepts, can inadvertently alter other im-
age attributes. Moreover, they may not always rectify unde-
sired concepts. As depicted in Figure 7, the prompt “a photo
of a mango” often yields dog images due to the popularity
of “mango” as a pet name. Our method adeptly retrieves
the mango fruit by dissociating the prompt from dog/cat im-
ages.

S
ta

bl
e 

D
iff

us
io

n
Fo

rg
et

-M
e-

N
ot

Figure 8. Results of removing NSFW contents triggered by
“naked”. Faces and sensitive parts are blacked out.

4.4. NSFW Removal

We evaluate our method’s capability to eliminate inappro-
priate content, denoted as NSFW (“not safe for work”).
Such content, potentially offensive even to adults, can inad-
vertently be part of large datasets like LAION [43], despite
the use of NSFW detectors [27]. Stable Diffusion, trained
on LAION, has been known to produce NSFW content with
specific prompts.

To assess our approach, we utilize a known NSFW-
triggering prompt, “a photo of naked”, in the Stable Dif-
fusion v2.1 base model. Using this setup, the model consis-
tently produces inappropriate images. We then train Forget-
Me-Not using eight of these NSFW images.

The results, presented in Figure 8, demonstrate the for-
getting of the “naked” concept. The original images have
undergone black modifications to ensure appropriateness.

4.5. Ablation Studies

Concept Inversion Ablation We conducted experiments
with and without Concept Inversion (CI). Concept inversion
is used to handle concepts that are difficult to describe using
prompts. Generally, it can help extract the target concept
from the prompt, resulting in more precise embeddings.
Our results show that CI can achieve higher fidelity for con-
cepts that can be well-described in a prompt, as illustrated in
Figure 9, where the model trained with CI preserved more
of the original poses and details.

However, CI is not always ideal. Its performance may
vary concept by concept. In Figure 10, we demonstrate a sit-
uation where textual prompt prevails CI. By using the same
settings, textual prompt “airplane” succeeds while inverted
concept fails.
Trainable Weights Ablation We conducted experiments to
compare finetuning the entire UNet model versus only fine-
tuning the cross-attention (CA) layers. Cross-attention is a
critical component in text-to-image generation, as it injects
textual information into the image formation process. Given
the same hyper-parameter settings except for steps, our re-
sults show that both methods can successfully achieve con-
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Figure 9. Improving fidelity to original model with concept inver-
sion. Concept prompt tend to have diverse semantics, resulting in
distortion in concept forgetting. CI extracts precise semantics into
dedicated embeddings, allowing for more pose and feature consis-
tency.

Forgetting with CIForgetting with “airplane”

Orignal: A photo of airplane

Figure 10. Another example of “airplane”, where forgetting with
CI fails.

cept forgetting. However, finetuning the entire UNet model
tended to break the model’s generation capability in fewer
steps. In some cases, the model collapsed before the forget-
ting process was complete, as show in the “Broccoli” case
of Figure 11.

5. Conclusion
In this study, we investigate concept forgetting in text-
to-image generative models and introduce Forget-Me-Not.
This lightweight approach enables ad-hoc concept forget-
ting using only a few either real or generated concept im-
ages; it can also be easily distributed using model patches.
Forget-Me-Not is naturally extended to enable concept cor-
rection and disentanglement. Our experiments demonstrate
that it is successful in diminishing and correcting target con-
cepts in Stable Diffusion. Additionally, we introduce Mem-
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Figure 11. Trainable weights ablation. Compared to tuning only
CA, full UNet is more sensitive to optimization steps. The last
column with Step X* shows the control concept Elon Musk at Step
X.

orization Score as evaluation metric. Overall, our work pro-
vides a foundation for further research on concept forgetting
and manipulation in text-to-image generation, and can be
further extended to other conditional multi-modal genera-
tive models to improve the accuracy, inclusion and diversity
of such models.

6. Social Impact & Limitations

Social Impact Our research has a positive social impact by
offering an effective and cost-efficient method to remove
and correct harmful and biased concepts in text-to-image
generative models. These models are rapidly becoming the
backbone of popular AI art and graphic design tools, used
by a growing number of people. Our method can gener-
ate lightweight model patches that can be conveniently dis-
tributed to text-to-image model users like how conventional
software patch works. Thus, our research takes a small
step towards promoting fairness and privacy protection in
AI tools, ultimately benefiting society as a whole.

Limitations While our approach performs well
on concrete concepts, it faces challenges in identi-
fying and forgetting abstract concepts. Additionally,
successful forgetting may require manual interven-
tions, such as concept-specific hyperparameter tuning.
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