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Abstract

We present the Recognize Anything Model (RAM): a
strong foundation model for image tagging. RAM makes a
substantial step for foundation models in computer vision,
demonstrating the zero-shot ability to recognize any com-
mon category with high accuracy. By leveraging large-scale
image-text pairs for training instead of manual annotations,
RAM introduces a new paradigm for image tagging.

The development of RAM comprises four key steps.
Firstly, annotation-free image tags are obtained at scale
through automatic text semantic parsing. Subsequently, a
preliminary model is trained for automatic annotation by
unifying the captioning and tagging tasks, supervised by the
original texts and parsed tags, respectively. Thirdly, a data
engine is employed to generate additional annotations and
clean incorrect ones. Lastly, the model is retrained with the
processed data and fine-tuned using a smaller but higher-
quality dataset.

We evaluate the tagging capability of RAM on numer-
ous benchmarks and observe an impressive zero-shot per-
formance, which significantly outperforms CLIP and BLIP.
Remarkably, RAM even surpasses fully supervised models
and exhibits a competitive performance compared with the
Google tagging API. We have released RAM at https:
//recognize-anything.github.io/ to foster the
advancement of foundation models in computer vision.

1. Introduction
Large language models (LLM) trained on large-scale web
datasets have sparked a revolution in nature language pro-
cessing (NLP). These models[5, 20] exhibit impressive
zero-shot generalization, enabling them to generalize to
tasks and data distributions beyond their training domain.
When it comes to computer vision (CV), Segment Anything
Model (SAM) [12] has also demonstrated remarkable zero-
shot localization abilities through data scaling-up.

However, SAM lacks the capability to output semantic
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Figure 1. SAM excels in providing strong localization capabilities,
while it falls short when it comes to recognition tasks. In contrast,
RAM exhibits exceptional recognition abilities, surpassing exist-
ing models in terms of both accuracy and scope.

labels, which is another fundamental task in addition to lo-
calization. Image tagging, also known as multi-label image
recognition, aims to provide semantic labels by recogniz-
ing multiple labels of a given image. Image tagging is a
significant and practical computer vision task, as images
inherently contain multiple labels encompassing objects,
scenes, attributes, and actions. However, existing models
in multi-label classification, detection, segmentation, and
vision-language tasks have exhibited deficiency in tagging,
characterized by limited scope or poor accuracy, as illus-
trated in Figure 1.

Two core components impede the progress of image tag-
ging. 1) The difficulty lies in collecting large-scale high-
quality data. Specifically, there is a lack of a universal and
unified label system and an efficient data annotation engine
that is capable of semi-automatic or even automatic annota-
tion of large-scale images with a vast number of categories.
2) There is a lack of efficient and flexible model design
that can leverage large-scale weakly-supervised data to con-
struct an open-vocabulary and powerful model.

To address these key bottlenecks, this paper introduces
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living room, dog, blanket, carpet, couch, desk, furniture, pillow, plant, 
sit, wood floor, lamp

living room, dog, sit on, blanket, couch, plant, modern
Missing: lamp, carpet

living room, lamp, houseplant, cushion, throw pillow, picture frame
Bad: property, design, throw
Missing: dog, couch, carpet, blanket

living room, dog, sit, couch
Missing: lamp, blanket, carpet

couch, picture frame,lamp, houseplant, wood floor, flowerpot, carpet
Bad: event, property, television
Missing: living room, dog, blanket

RAM Christmas market, Christmas tree, stall, market square, snow, 
people, stroll, town, building

Christmas market, Christmas tree, snow, town, people
Missing: building

Christmas decoration, town square, market, snow, building
Bad: human hair, human head, mixed-use

Christmas market, winter, town, people
Missing: Christmas tree, snow, building

Person, Building
Missing: Christmas tree, snow, market

Tag2Text

ML-Decoder

Google
Tagging API

BLIP

Figure 2. The comparison of recognition capability among tagging models. RAM recognizes more valuable tags than other models without
missing important part. ML-Decoder and Google tagging API tend to output redundant tags (e.g., “human head”) or less relevant tags
(e.g., “property”) tags. BLIP’s tag recall is limited as it relies on caption generation. Note: borderline tags are not listed here.

the Recognize Anything Model (RAM), a strong foundation
model for image tagging. RAM overcomes the challenges
related to data, including label system, dataset, and data en-
gine, as well as the limitations in model design.

Label System: We begin by establishing a universal and
unified label system. We incorporate categories from popu-
lar academic datasets (classification, detection, and segmen-
tation) as well as commercial tagging products (Google,
Microsoft, Apple). Our label system is obtained by merg-
ing all the public tags with common tags parsed from mas-
sive image-text pairs, thus covering most of common labels
with a moderate amount of 6,449. The remaining open-
vocabulary labels can be identified through open-set recog-
nition.

Dataset: How to automatically annotate large-scale im-
ages with a label system is another challenge [29]. Inspired
by CLIP [22] and ALIGN [11], which leverage publicly
available image-text pairs at scale to train powerful visual
models, we adopt similar datasets for image tagging. To
utilize these large-scale image-text data for tagging, follow-
ing [9, 10], we parse the texts and obtain image tags through
automatic text semantic parsing. This process allows us to

obtain a diverse collection of annotation-free image tags in
accordance with image-text pairs.

Data Engine: However, the image-text pairs from the
web are inherently noisy, often containing missing or in-
correct labels. To enhance the quality of annotations, we
design a tagging data engine. To address the missing label
problem, we leverage existing models to generate additional
tags. With regards to incorrect labels, we first localize spe-
cific regions corresponding to different tags within an im-
age. Subsequently, we employ region clustering techniques
to identify and eliminate outliers within the same class. Fur-
thermore, we filter out tags that exhibit contrary predictions
between whole images and their corresponding regions, en-
suring a cleaner and more accurate annotation result.

Model: Tag2Text [10] has demonstrated superior image
tagging capabilities by the integration of image tagging and
captioning tasks, employing a lightweight recognition de-
coder [18] in conjunction with the original image encoder.
However, the effectiveness of Tag2Text is limited to recog-
nizing fixed and predefined categories. In contrast, RAM
enables generalization to previously unseen categories by
incorporating semantic information into label queries. This
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Figure 3. Illustration of RAM’s model architecture. Large-scale image tags are obtained from image-text pairs through automatic text se-
mantic parsing. With image-tag-text triplets, RAM unifies the captioning and tagging tasks. Furthermore, RAM introduces an off-the-shelf
text encoder to encoder tags of the label system into textual label queries with semantically-rich context, empowering the generalization to
unseen categories in the training stage.

model design allows RAM to empower the recognition ca-
pabilities of any visual dataset, underlining its potential for
diverse applications.

Benefiting from a large-scale high-quality image-tag-
text dataset and the synergistic integration of tagging
with captioning, we develop a strong recognize anything
model (RAM). RAM represents a new paradigm for im-
age tagging, demonstrating that a general model trained on
noisy and annotation-free data can outperform fully super-
vised models. The advantages of RAM are summarized as
follows:
• Strong and general. RAM exhibits an exceptional image

tagging capability with powerful zero-shot generalization
as illustrated in Figure 2;

• Reproducible and affordable. RAM requires a low
reproduction cost with open-source and annotation-free
dataset. Moreover, the strongest version of RAM only
requires 3-days of 8 A100 GPUs training;

• Flexible and versatile. RAM offers a remarkable flex-
ibility, catering to various application scenarios. By se-
lecting specific classes, RAM can be directly deployed to
address specific tagging needs. Furthermore, when com-
bined with localization models (Grounding DINO [17]
and SAM [12]), RAM forms a strong and general pipeline
for visual semantic analysis.

2. Recognize Anything Model

2.1. Model Architecture

As illustrated in Figure 3, we extract image tags through
text semantic parsing to provide a large-scale of tags with-
out expensive manual annotations. The overall architecture

of RAM is similar to that of Tag2Text[10], which consists
of three key modules: an image encoder for feature extrac-
tion, followed with an image-tag recognition decoder [18]
for tagging, and a text generation encoder-decoder for cap-
tioning.

Image Tagging involves the prediction of the presence of
each category in the label system within an input image.
The image features interact with label queries in the image-
tag recognition decoder, yielding logits for each category.
The tags parsed from the text are used as ground truth la-
bels, and Asymmetric Loss [23] is employed for optimiza-
tion. Compared with CLIP [22], which aligns image and
text globally, RAM aligns image region features and tags
based on automatic attention mechanism. This fine-grained
alignment empowers RAM to accurately identify various
semantic tags within different regions of an image.

Image Captioning involves generating descriptive texts
based on the image features in conjunction with assigned
tags through the text generation encoder-decoder. In the
training stage, the recognition decoder learns to predict the
tags parsed from text, while in the inference stage, it serves
as an image-to-tags bridge by predicting tags which provide
a more explicit semantic guidance to image captioning.

2.2. Open-Vocabulary Recognition

Compared with Tag2Text [10], RAM’s core advancement in
model design is the introduction of open-vocabulary recog-
nition. Tag2Text can only recognize a fixed set of categories
that it has seen during training, while RAM can recognize
any category.

Textual Label Queries. Inspired by [24, 27], the pivotal
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Figure 4. Recognition Scopes of different tagging models. Tag2Text recognizes 3,400+ fixed tags. RAM upgrades the number to 6,400+,
covering more valuable categories than OpenImages V6. With open-set capability, RAM is feasible to recognize any common category.

enhancement lies in the incorporation of semantic informa-
tion into the label queries of the recognition decoder, which
facilitates generalization to previously unseen categories in
the training stage. To achieve this, we utilize an off-the-
shelf text encoder to encode individual tags from the label
system, consequently providing textual label queries with
semantically-rich context. In contrast, the label queries em-
ployed in the original recognition decode [10, 18] are ran-
domly initialized learnable embeddings, lacking the seman-
tic relationship with unseen categories, thus are confined to
predefined seen categories.

Implementation Details. We adopt Swin-transformer [19]
as the image encoder, as it has demonstrated better perfor-
mance than naive ViT in both vision-language [10] and tag-
ging domains [18]. The encoder-decoder used for text gen-
eration has 12 layers of transformers, and the tag recog-
nition decoder has 2 layers of transformers. We utilize
an off-the-shelf text encoder from CLIP [22] and perform
prompt ensembling [22] to obtain textual label queries. We
also adopt the CLIP image encoder to distill image feature,
which further improves the model’s recognition ability for
unseen categories via image-text feature alignment.

2.3. Model Efficiency

Training Phase. RAM is pre-trained on large-scale datasets
with a resolution of 224×224 and fine-tuned at a resolution

of 384×384 using small and high-quality datasets. Empiri-
cal evidence shows that RAM converges rapidly, often after
a small number of epochs (typically less than 5 epochs).
This accelerated convergence enhances the reproducibility
of RAM with limited computational resources. To illus-
trate, the RAM model pre-trained on 4 million images re-
quires only one day of computation, and the RAM model
pre-trained on 14 million images requires merely three days
of computation on 8 A100 GPUs.

Inference Phase. The lightweight image-tag recognition
decoder effectively ensures the inference efficiency of RAM
on image tagging. Furthermore, we eliminate the self-
attention layers from the recognition decoder, which not
only further improves efficiency, but also circumvents un-
wanted interference between label queries. Consequently,
instead of fixed categories and quantities, RAM allows cus-
tomization of label queries for any category and quantity
that one wants to automatically recognize, enhancing its
utility across various visual tasks and datasets.

3. Data

3.1. Label System

This work adopts three guiding principles for the formula-
tion of the label system: 1) Tags that frequently appear in
image-text pairs are more valuable due to their representa-
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tional significance in image description. 2) A variety of do-
mains and contexts should be represented in the tags. Our
conception of a tag includes objects, scenes, attributes, and
actions from a range of sources, which aids model general-
ization to complex and unseen scenarios. 3) The quantity of
tags needs to be moderate. Excessive tag numbers can incur
heavy annotation costs.

Initially, we parsed 14 million sentences from our pre-
training datasets into tags by utilizing a SceneGraph-
Parser [25] with minor modifications. We then hand-picked
tags from the top-10k most frequently occurring tags. Our
selection intentionally covers tags from numerous popu-
lar datasets for classification, detection, and segmentation,
as illustrated in Figure 4. While most are fully covered,
exceptions include ImageNet and OpenImages V6, due to
their unusual tag presence. Additionally, we partially cover
tags from leading tagging products, which were obtained
via public APIs [1–3] using open-source images. Conse-
quently, RAM can recognize up to 6449 fixed tags, which
are substantially more than Tag2Text [10], and include a
higher proportion of valuable tags. To reduce redundancy,
we collected synonyms via various methodologies includ-
ing manual checks, referring to WordNet [7], translating
and merging tags, etc. Tags within the same synonym group
are assigned with the same tag ID, resulting in 4585 tag IDs
in the label system.

3.2. Datasets

Similar to BLIP [15] and Tag2Text [10], we pre-train
our model on widely-used open-source datasets. 4 mil-
lion (4M) image and 14 million (14M) image settings are
adopted. The 4M setting includes two human-annotated
datasets, COCO [16] (113K images, 557K captions) and
Visual Genome [13] (101K images, 822K captions), along
with two large-scale web-based datasets, Conceptual Cap-
tions [6] (3M images, 3M captions) and SBU Cap-
tions [21] (849K images, 849K captions). The 14M setting
builds upon the 4M setting, with the addition of Conceptual
12M [6] (10M images, 10M captions).

3.3. Data Engine

Given the predominant open-source nature of our training
datasets, which are largely crawled from Internet, we en-
counter a non-negligible amount of missing and incorrect
labels. To mitigate this, we design an automatic data engine
to generate additional tags and clean erroneous ones.

Generation. Our initial step involves training a baseline
model using the captions and tags parsed from these cap-
tions, similar to the approach used in Tag2Text [10]. We
then leverage this baseline model to supplement both cap-
tions and tags, utilizing its generative and tagging capabil-
ities, respectively. The original captions and tags, in con-
junction with the generated captions and their correspond-

Table 1. Details of the test benchmark datasets.

Type Dataset #Category #Image

Cls.
OPPO-common 200 44,606

OpenImages-common [14] 214 57,224
OpenImages-rare (Open-set) [14] 200 21,991

Det. COCO-80 [16] 80 5,000

Seg.
COCO-133 [16] 133 5,000
ADE20k [30, 31] 150 2,000

ADE20k-clean [30, 31] 143 2,000

ing parsed tags, and the generated tags, are merged to form a
temporary dataset. This step significantly expands the num-
ber of tags in the 4M image dataset from 12 million to 39.8
million.

Cleaning. To address the issue of incorrect tags, we initially
employ Grounding-DINO [28] to identify and crop regions
corresponding to a specific category within all images. Sub-
sequently, we cluster the regions from this category based
on K-Means++ [4] and eliminate the tags associated with
the outlier 10%. Simultaneously, we also remove tags with-
out the prediction of this specific category using the baseline
model. The motivation is that the precision of tagging mod-
els can be improved by predicting regions rather than whole
images.

4. Experiment

4.1. Experimental Setting

Test Benchmarks. We conducted a comprehensive evalua-
tion of the models on various popular benchmark datasets
across different computer vision tasks, including clas-
sification, detection, and segmentation, as summarized
in Table 1 For classification, we adopt the OpenImages
V6 [14], which contains 9605 categories. However, due
to the issues of missing labels and incorrect annotations
within the OpenImages dataset, we curated two high-
quality subsets: OpenImages-common, comprising 214
well-annotated common categories, and OpenImages-rare,
consisting of 200 categories not included in our label sys-
tem for open-set experiments. Additionally, to facilitate bet-
ter zero-shot evaluation, we employed an internal test set
known as OPPO-common, which exhibits high annotation
quality.

For detection and segmentation datasets, we select the
widely used COCO [16] and ADE20k [30, 31] datasets. In
these datasets, we focus solely on semantic labels as image-
level tagging ground-truth, disregarding bounding boxes
and masks. It is important to note that ADE20k contains
plenty of very small ground-truth annotations and ambigu-
ous categories that deviate from mainstream concepts, e.g.,
“buffet”. Thus, we created a subset of ADE20k called
ADE20k-clean by removing a few small targets and am-
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Table 2. Comparison with classification models in mAP. Cells marked with ✗ means unable to evaluate on such setting. Cell background
color: Green means fully supervised learning; Blue means zero-shot performance; Yellow denotes that the model has seen the cor-
responding training images, but not the annotations. Notably, RAM’s zero-shot generalization to OpenImages-common is superior to
ML-Decoder’s full supervision. RAM can also recognize categories in OpenImages-rare, even though it has not seen them during training.

Methods Tags‡

Multi-label Classification Detection Segmentation

OPPO OpenImages OpenImages COCO-80 COCO-133 ADE20k ADE20k
-common -common -rare (Open-set) -clean

ML-Decoder [24] 33.9M 82.4† 85.8 79.5 72.8† ✗ ✗ ✗
MKT [8] 0.6M 78.2 77.8 63.5 62.9 51.0 37.1 38.4

Tag2Text-4M [10] 11.4M 83.0 82.9 ✗ 78.3† 66.9† ✗ ✗
Tag2Text-14M [10] 33.6M 85.4 83.4 ✗ 78.2† 67.1† ✗ ✗

RAM-4M 39.3M 85.6 86.0 66.7 79.0 68.3 51.5 53.2
RAM-14M 119.9M 86.9 86.5 69.2 80.6 69.4 55.4 56.9

† A few categories that are not supported by the model are excluded when calculating mAP.
‡ The total number of common tags that co-occur in the training set and the top-10k parsed tags.

Table 3. Comparison with detection, segmentation and vision-language models in Precision/Recall. Cells marked with ✱ means poor
performance in large-sized categories, or long inference time due to the high image resolution, e.g., 1024 for ODISE. Notably, RAM
outperforms CLIP and BLIP with large margins on common categories.

Methods Backbone
Multi-label Classification Detection Segmentation

OPPO OpenImages OpenImages COCO-80 COCO-133 ADE20k ADE20k
-common -common -rare (Open-set) -clean

Grounding-DINO [17] Swin-B ✱ ✱ ✱ 83.1 / 86.9 66.4 / 48.3 34.3 / 24.7 35.6 / 26.0

ODISE [26] Diffusion-v3 ✱ ✱ ✱ 78.5 / 85.9 71.1 / 80.2 47.4 / 48.0 48.2 / 50.3
SEEM [32] FocalNet-L ✗ ✗ ✗ 75.7 / 67.8 71.8 / 61.0 ✗ ✗

CLIP-400M [22] ViT-B 76.6 / 54.1 77.9 / 52.9 67.5 / 46.5 64.0 / 38.7 47.8 / 36.4 30.3 / 5.3 31.0 / 5.5
BLIP-129M [15] ViT-B 76.7 / 57.5 78.6 / 55.1 65.2 / 46.5 67.0 / 39.0 53.8 / 34.6 28.5 / 8.8 29.1 / 9.3
Tag2Text-4M [10] Swin-B 76.6 / 74.8 75.9 / 71.9 ✗ 80.5 / 66.1† 71.2 / 54.0† ✗ ✗
Tag2Text-14M [10] Swin-B 77.9 / 79.4 76.4 / 73.3 ✗ 80.1 / 64.5† 71.2 / 53.2† ✗ ✗

RAM-4M Swin-B 78.4 / 75.2 79.2 / 73.7 53.9 / 48.4 81.8 / 66.1 74.3 / 54.0 47.0 / 47.6 47.8 / 50.3
RAM-14M Swin-L 78.8 / 79.4 80.3 / 75.7 53.8 / 54.3 82.9 / 66.4 74.3 / 54.1 53.2 / 50.0 53.7 / 52.2
† A few categories that are not supported by the model are excluded when calculating precision and recall.

biguous categories.

Evaluation Metrics. To assess the performance of the
models, we employ various evaluation metrics. Mean Av-
erage Precision (mAP) was used for reporting results in ab-
lation experiments and comparisons with other classifica-
tion models. For models where mAP was not available,
we utilize Precision/Recall metrics and manually adjust the
threshold of different models to ensure comparability across
evaluations.

4.2. Comparison with SOTA Models

Comparison with Multi-Label Classification Models.
We compare RAM with state-of-the-art (SOTA) models in
multi-label classification, as show in Table 2. Generally,
a generalist model typically lacks expertise in specific do-
mains, whereas an expert model struggles to generalize be-
yond its specialized field. Specifically, the supervised ex-

pert model ML-Decoder [24] excels in its designated do-
main of expertise, OpenImages, but faces challenges in gen-
eralizing to other domains and unseen categories. MKT [8]
is a generalist model in tagging by transferring the knowl-
edge from CLIP, but fails to achieve satisfactory accuracy
across all domains. Tag2Text [10] is powerful at zero-shot
tagging, but it lacks the ability to handle open-set scenarios.

RAM exhibits impressive tagging abilities, showcasing
an impressive accuracy and broad coverage. Particularly
noteworthy is the performance of RAM-4M, which sur-
passes ML-Decoder on the OpenImages-common dataset.
While ML-Decoder relies on 9 million annotated images
from OpenImages, our RAM-4M achieves a higher accu-
racy with a training set of 4 million annotation-free image-
text data. This improvement is attributed to the utilization
of 39.3 million common tags derived from the 4 million im-
ages, outperforming ML-Decoder trained with 33.9 million
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Table 4. Ablation study of RAM model based on Tag2Text baselines. “Seen Categories” refers to the number of training cate-
gories.“Captioning” refers to the joint training of captioning and tagging tasks. “Textual Queries” refers to using a text encoder to
generate label queries possessing semantic information. “Distillation” refers to image feature distillation using CLIP’s image encoder.

Case Seen
Categories Captioning Textual

Queries Distillation OPPO OpenImages
-common -common -rare

Tag2Text 3,429 80.60 83.52 ✗
3,429 ✓ 81.37 84.04 ✗

(a) 3,429 ✓ ✓ 81.22 84.09 60.99
(b) 3,429 ✓ ✓ ✓ 81.70 84.16 61.88
(c) 6,449 ✓ ✓ ✓ 80.27 83.09 63.54

Table 5. Ablation study of data engine. “Parsing” means the training tags parsed from the captions. “Generation” means the supplemen-
tation of captions and tags. “Cleaning” refers to data cleaning. “Fine-tuning” refers to fine-tuning the pre-trained model with COCO.

Backbone Pre-train Parsing Generation Cleaning Fine-tuning OPPO OpenImages
#Images #Tags -common -common -rare

Swin-Base

4M 12.0M ✓ 80.27 83.09 63.54
4M 41.7M ✓ ✓ 82.50 84.27 67.17
4M 39.8M ✓ ✓ ✓ 82.83 84.94 66.88
4M 39.8M ✓ ✓ ✓ ✓ 85.56 86.01 66.74

14M 121.5M ✓ ✓ ✓ 83.52 85.39 68.54
14M 121.5M ✓ ✓ ✓ ✓ 86.47 86.50 68.79

Swin-Large 14M 121.5M ✓ ✓ ✓ 83.26 84.94 68.60
14M 121.5M ✓ ✓ ✓ ✓ 86.92 86.46 69.21

common tags from 9 million images. Moreover, RAM can
recognize any common category by leveraging a vast range
of 6,400+ seen common categories, coupled with its open-
vocabulary ability.

Comparison with Detection and Segmentation Models.
The comparison in Table 3 reveals that supervised detection
and segmentation models excel in specific domains such as
the COCO dataset, which encompasses a limited number of
categories. However, these models face challenges when it
comes to recognizing a larger number of categories. On the
one hand, they take much more computational overheads
as they requires more complex network and larger input im-
age sizes for extra localization task. Especially, ODISE [26]
takes long inference time due to its adoption of the diffusion
model and large input image resolution. On the other hand,
the scalability of training data for detection and segmenta-
tion is limited, resulting in poor generalization performance
for these models. Although Grounding-DINO [17] serves
as a generalist model, it struggles to achieve satisfactory
performance for large-sized categories. In contrast, RAM
demonstrates impressive open-set ability, surpassing exist-
ing detection and segmentation models. RAM showcases
its capability to generalize across a broader range of cate-
gories, providing a robust solution for the challenges faced

by conventional detection and segmentation models.

Compared with Vision-Language Models. Despite
the open-set recognition capabilities of CLIP [22] and
BLIP [15], these models suffer from subpar accuracy. Fur-
thermore, their interpretability is limited, as they rely on
cosine similarity computations of dense embeddings for
image-text pairs. In contrast, RAM exhibits a superior per-
formance, surpassing CLIP and BLIP by a significant mar-
gin, with accuracy increases of over 20% observed across
almost all datasets. However, it is worth noting that RAM
performs slightly worse than CLIP and BLIP in the case of
OpenImages-rare dataset. We attribute this discrepancy to
the smaller training dataset utilized for RAM and the rela-
tively less emphasis placed on rare classes during training.

4.3. Model Ablation Study

In Table 4, we study the impact of various model improve-
ments to RAM based on Tag2Text [10] and make the fol-
lowing key observations. 1) The training integration of cap-
tioning and tagging can promote the tagging ability. 2) The
open-set recognition capability can be achieved through
textual queries by CLIP [22], but has little impact on the
seen categories in training. 3) The expansion of the label
system introduces a minimal impact on existing categories,
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which can be attributed to that the additional categories in-
creases the difficulty of model training. However, this ex-
pansion concurrently enhances the model’s coverage and
enhances the open-set ability of unseen categories.

4.4. Data Engine Ablation Study

We present an ablation study of the data engine in Table
5. The findings are summarized as follows: 1) Adding
more tags from 12.0M to 41.7M significantly improves
model performance across all test sets, indicating the se-
vere missing label problem in the original datasets. 2)
Further cleaning the tags of some categories results in a
slight increase in performance on the OPPO-common and
OpenImages-common test sets. Limited by the inference
speed of Grounding-DINO, we only conduct cleaning pro-
cess for 534 categories. 3) Scaling up the training images
from 4M to 14M brings remarkable improvements across all
test sets. 4) Employing a larger backbone network leads to
a slight improvement on OpenImages-rare and even slightly
inferior performance on common categories. We attribute
this phenomenon to our insufficient resources available for
conducting hyper-parameter search. 5) Fine-tuning with
tags parsed from the COCO Caption dataset [16] demon-
strates remarkable increases in performance on the OPPO-
common and OpenImages-common test sets. The COCO
Caption dataset provides five descriptive sentences for each
image, offering a comprehensive description that approxi-
mates a complete set of tag labels.

5. Conclusion

We have presented the Recognize Anything Model (RAM),
a strong foundation model designed for image tagging,
which heralds a novel paradigm in this field. RAM demon-
strates the zero-shot ability to recognize any category with
high accuracy, surpassing the performance of both fully
supervised models and existing generalist approaches like
CLIP and BLIP. RAM represents a considerable advance-
ment for large-scale models in the field of computer vision,
holding the potential to empower the recognition capabili-
ties of any visual tasks or datasets.

There still exists room for further refinement of RAM,
for example, scaling up the training dataset beyond 14 mil-
lion images to better cover diverse domains, multiple rounds
of data engine, and increasing the backbone parameters to
enhance the model capacity.

Limitations. Similar to CLIP, the current version of
RAM efficiently recognizes common objects and scenes,
yet struggles with abstract tasks like object counting. More-
over, zero-shot RAM’s performance lags behind task-
specific models in fine-grained classifications, such as dif-
ferentiating between car models or identifying specific
flower or bird species. It is also noteworthy that RAM is

trained on open-source datasets and could potentially reflect
dataset biases.
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