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A. Analysis on Interference

Figure A. Percentage of non-zero WK,V
t − WK,V

t−1 adaptations
which are modifying the pre-trained weights WK,V

init at the corre-
sponding position for the first time. Here, a high number equates
to low interference (good), and a low number equates to high in-
terference (bad).

In Figure A, we show that STAMINA has low inter-
ference in changes to the pre-trained weights over tasks.
Specifically, we plot the percentage of non-zero WK,V

t −
WK,V

t−1 weight adaptations which are modifying the pre-
trained weights WK,V

init in their corresponding locations
(i.e., indices in the weight matrix) for the first time. The
reader should recall that our weight adaptations are sparse
due to a hard masking mechanism (Eq. 5) and sparsity reg-
ularization loss (Eq. 7). Thus, in combination with the for-
getting loss (Eq. 3), our method should naturally avoid al-
tering the pre-trained weights in the same index locations
as previous tasks. We show this exactly - over 50 tasks, the
percentage remains high, indicating little to no interference
during each task. We note that in some tasks the percentage
drops below 100%, demonstrating that some interference
still exists in our method.

On the contrary, this same plot for C-LoRA [12] and
Custom Diffusion [7] would, by the designs of these meth-
ods, show close to or exactly 0% from tasks 2 and beyond,
indicating high interference at each task. This high inter-
ference is likely a strong contributor to the increased catas-

trophic forgetting of past task concepts in these methods.

B. Additional Metrics
In the main paper tables, we provided the following metrics:
Ammd (↓), which gives the average MMD score (×103) af-
ter training on all concept tasks, Fmmd (↓), which gives
the average forgetting, and Nparam (↓), which gives the %
number of parameters being trained. To provide additini-
nal context to our experiments, we provide: KID (↓), which
gives the Kernel Inception Distance (×103) between gen-
erated and dataset images, and plasticity Pmmd (↓), which
gives the average plasticity (ability to learn new tasks) as
the average MMD score (×103) for all concepts measured
directly after after training. The new metrics can be found
in Tables A,B,C.

Pmmd =
1

N

N∑
j=1

MMD (Fclip(XD,j),Fclip(Xj,j)) (12)

C. Plasticity Analysis

Figure B. Average plasticity Pmmd (↓) vs. number of trained tasks.

In Figure B, we directly compares plasticity vs. num-
ber of trained tasks for C-LoRA, TI++, and STAMINA in
the Table 2.a 50 task benchmark. This figure shows (i) a
stronger decrease in plasticity for C-LoRA (compared to
STAMINA) and (ii) C-LoRA converging to a much worse
plasticity value.
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Table A. 50-Task Full Results

Method
Nparam

Train (%) Ammd (↓) Fmmd (↓) KID (↓) Pmmd (↓)

TI++ [2] 0.00 2.52 0.00 38.33 2.56
CD [3] 2.23 5.99 5.67 85.08 3.17

CD+EWC [21] 2.23 5.15 3.95 64.47 3.45
C-LoRA [1] 0.09 3.09 1.41 45.37 2.79

Ours 0.19 2.29 0.01 25.73 2.32

Table B. 20-Task Results on Google Landmarks dataset v2 [59]

Method
Nparam

Train (%) Ammd (↓) Fmmd (↓) KID (↓) Pmmd (↓)

TI++ [2] 0.00 2.91 0.00 33.69 3.03
CD [3] 2.23 5.20 5.10 114.55 3.25

CD [3] (Merge) 2.23 14.83 8.43 331.21 10.19
CD+EWC [21] 2.23 5.10 3.56 80.58 3.23

C-LoRA [1] 0.09 3.09 0.38 53.24 3.15
Ours 0.19 2.42 0.01 31.73 2.44

Table C. 20-Task Results on Celeb-A HQ [57,58]

Method
Nparam

Train (%) Ammd (↓) Fmmd (↓) KID (↓) Pmmd (↓)

TI++ [2] 0.00 2.37 0.00 35.49 2.35
CD [3] 2.23 7.58 6.56 104.54 3.43

CD [3] (Merge) 2.23 13.84 8.61 353.40 7.83
CD+EWC [21] 2.23 7.39 5.81 91.61 3.45

C-LoRA [1] 0.09 2.25 0.33 37.41 2.15
Ours 0.19 2.18 0.03 28.63 2.07

D. Additional Implementation Details

We use 2 A100 GPUs to generate all results. All hyperpa-
rameters were searched with an exponential search (for ex-
ample, learning rates were chosen in the range 5e− 2, 5e−
3, 5e− 4, 5e− 5, 5e− 6, 5e− 7, 5e− 8). We found a learn-
ing rate of 5e− 6 worked best for the Custom Diffusion [7]
methods, and a learning rate of 5e − 4 worked best for the
LoRA-based methods and Textual Inversion [3]. Following
Smith et al. [12], we use a loss weight of 1e6 and 1e8 for
EWC [6] and C-LoRA, respectively. For our method, we
found a loss weight of 1e − 3 and 1e3 worked best for the
sparsity penalty (Eq.7) and forgetting loss (Eq.3), respec-
tively. We found a rank of 16 was sufficient for LoRA for
the text-to-image experiments and 64 for the image clas-
sification experiments. These were chosen from a range
of 8, 16, 32, 64, 128. We use 500 training steps (twice as
many as reported in Kumari et al. [7] due to our data being
fine-grain concepts rather than simple objects) except for C-
LoRA, which requires longer training steps (we use 2000 as

reported in Smith et al. [12]). We regularize training with
generated auxiliary data (as done in Smith et al. [12]) for all
methods.

The simple MLPs used in our paper are composed of two
linear layers and a ReLU [1] layer in between. For the mask
MLPs, θMK,V

t
, the dimension of linear layers 1 and 2 are

r × r and r × D1 · D2 · 2, where r is the same low rank
as the LoRA parameters AK,V

t and BK,V
t , and D1, D2 are

the dimensions of the weight WK,V . For the custom token
MLPs θV ∗

t
, the dimension of linear layers 1 and 2 are both

Dtoken × Dtoken, where Dtoken is the dimension of the
token embedding.

E. Benchmark Dataset Details
Given the datasets Celeb-A HQ [5, 8] and Google Land-
marks v2 [15], we sample concepts at random which have
at least 10 individual training images each. Specifically,
we iterate randomly over the fine-grained identities of each
dataset (person for Celeb-A HQ and waterfall location for



(a) Successes (b) Failures

Figure C. STAMINA multi-concept generations after training on 50 tasks.

Google Landmarks V2) and check whether the identity has
sufficient unique examples in the dataset; we do this until
we reached the number of desired concepts for each dataset.
Each concept customization is considered a “task”, and the
tasks are shown to the model sequentially.

F. Additional Details for Image Classification
Setting

In Section 5.2, we benchmark our approach using
ImageNet-R [4, 13] which is composed of 200 object
classes with a wide collection of image styles, including
cartoon, graffiti, and hard examples from the original Im-
ageNet dataset [10]. This benchmark is chosen because the
distribution of training data has significant distance to the
pre-training data (ImageNet), thus providing a problem set-
ting which is both fair and challenging.

We use the same experimental settings as those used
in the recent CODA-Prompt [11] paper. We implement
our method and all baselines in PyTorch[9] using the
ViT-B/16 backbone [2] pre-trained on ImageNet-1K [10].
All methods are trained with a batch size of 128 for
50 epochs; the prompting-based methods use a learn-
ing rate of 5e − 3, whereas the LoRA based methods
use a learning rate of 5e − 4. We compare to the fol-
lowing methods (the same rehearsal-free comparisons of
CODA-Prompt): CODA-Prompt [11], Learning to Prompt
(L2P) [14], DualPrompt [13], and C-LoRA [12]. We use the
same classification head as L2P, DualPrompt, and CODA-
Prompt. For additional details, we refer the reader to orig-
inal CODA-Prompt [11] paper. For our method, we add
STAMINA to the QKV projection matrices of self-attention
blocks throughout the ViT model, and use the same 64 rank
as used in C-LoRA [12].

G. Negative Multi-Concept Results

We extend our results demonstrating the ability to generate
photos of multiple concepts in the same picture by showing
both successful attempts (Figure Ca) and failing attempts
(Figure Cb). We use the prompt style “a photo of V* person
posing next to V* waterfall” for the top row (single person
and single landmark) and “a photo of V* person, standing
next to V* person, posing in front of V* waterfall” for rows
2 and 3 (two people and a single landmark). Unlike most
results in our paper, which diffuse for 200 steps (as done in
[7]), we allow the multi-concept results to diffuse for 500
steps.

Each generated image in Figure Cb used the same
prompt as the corresponding image in Figure Ca. In general,
we found a success rate of roughly 50% for two concept
generations and 20% for the challenging 3 concept genera-
tions. The failures in row 1 (single person with single land-
mark) each have a blurred or occluded concept. In rows
2 and 3 (two people with single landmark), we see failures
such as the landmark disappearing (row 2, column 1), imag-
ined people (row 2, column 4), merged people (row 3, col-
umn 2), or one concept taking on characteristics of another
person, such as skin tone (row 3, column 3) or age (row 2,
column 2), which could be explained by bias and is a limi-
tation that users of this work should pay close attention to.
We hope to address these sources of failures in future work.

H. Variance Across Runs

In Table E, we provide the mean and standard deviation for
each method across all 3 Continual Diffusion benchmarks
(Tables 1.a, 1.b, and 2.a). We see that our method not only
has the best metric performance, but also has the lowest



Table D. Mean and standard deviation across 3 runs: Ammd

(↓) gives the average MMD score (×103) after training on all con-
cept tasks, and Fmmd (↓) gives the average forgetting. Nparam

(↓) gives the number of parameters being trained as a % of the
unmodified U-Net backbone size.

Table E. Celeb-A HQ [5, 8]

Method
Nparam

Train (%) Ammd (↓) Fmmd (↓)

TI++ [3] 0.00 2.60 ± 0.23 0.00 ± 0.00
CD [7] 2.23 6.26 ± 0.99 5.78 ± 0.60

CD [7] (Merge) 2.23 14.34 ± 0.50 8.52 ± 0.09
CD+EWC [6] 2.23 5.88 ± 1.07 4.44 ± 0.98
C-LoRA [12] 0.09 2.81 ± 0.40 0.71 ± 0.50

Ours 0.19 2.30 ± 0.10 0.02 ± 0.01

standard deviation for both Ammd and Fmmd.

I. Figure Image Sources

In our figures, we replace dataset images with generated
similar images due to licensing constraints. Specifically, we
generate “target data” using offline (i.e., no continual learn-
ing) single-concept Custom Diffusion [7], which we refer to
as pseudo figure images. We note that all training and eval-
uations were completed using the original datasets, and all
result images were obtained through models trained directly
on the original datasets. For Figure 1, the images captioned
“learn” are pseudo figure images, and the multi-concept im-
ages are results produced with our method. For Figure 3, all
concept images are pseudo figure images. For Figure 4, the
images labeled “target data” are pseudo figure images, and
the rest are results from models we trained. Finally, Fig-
ures 5 and A only contain results produced from models we
trained.
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