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A. A Two-level Granularity Benchmark

In this section, we presents an simplified granularity bench-
mark with two-levels of semantic hierarchy. The results are
consistent with our observations in the main paper.

Two-level Dataset Our evaluation starts on a dataset with
two levels of labels: Ncg coarse-grained (CG) classes Ycg =
{yicg}, where i ∈ {1, ..., Ncg}, and each CG class has N i

fg

fine-grained (FG) children classes Y i
fg = {yi,jfg}, where

j ∈ {1, ..., N i
fg}. In total, there are Nfg =

∑Ncg

i=1 N
i
fg FG

classes. To create our two-level classification dataset, we
adapt the tiered-ImageNet [1] benchmark, which has 608 FG
classes (a subset of the original 1000 classes of ImageNet-
1K) organized under 34 CG classes and covers 30,400 out of
50,000 ILSVRC-12 validation images.

Evlauation protocol For two-level granularity, we mea-
sure the performance difference of CG classification between
using direct predictions with CG prompts and propagated
FG predictions. The simplest propagation method is to as-
sign the predicted FG labels to their CG parents’ labels. For
instance, if an image is predicted as ”golden retriever” in
the FG classification, it is labeled with its CG parent class
”animal.” Intuitively, if a model exhibits consistent under-
standing of CG and FG concepts, the performance of CG
classification using CG prompts should be similar to propa-
gating the results from FG classification. An alternative way
of propagating FG to CG concepts is using the aggregated
embeddings of FG prompts for CG classifcation. Specif-
ically, for the i-th CG class, we compute the average of
the FG prompt embeddings as the CG prompt embedding:

Eprop
t (yicg) = 1

Ni
fg

∑Ni
fg

j=1 Et(y
i,j
fg ). We use top1 accuracy

as the classification metric.
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B. A Language Only Study
In the main paper, we have highlighted the issues faced by
vision and language models (VLMs) in zero-shot recognition
tasks, focusing on both granularity and correctness analy-
ses. Since these analyses primarily involve working with
different text inputs while keeping the visual inputs constant,
improving the language encoder becomes a natural next step.
We address the question of whether language embeddings
from pre-trained large-scale language models (LLMs) ex-
hibit better behavior compared to VLMs. To investigate this,
we design a language-only task.

Specifically, we conduct a text classification task that
involves classifying fine-grained (FG) concepts to their cor-
responding coarse-grained (CG) concepts using the same
two-level ImageNet dataset as in Section 4.1. This results
in a 34-way classification task with 608 text samples (FG
concept prompts). Similar to zero-shot image classification,
we compute the cosine similarity between the language em-
beddings of FG and CG prompts and classify a FG concept
to the CG concept with the highest similarity score. To incor-
porate the generative model GPT-3 for this task, we design
the following zero-shot prompt:

”Classify a given concept into one of the following
classes: ${all coarse-grained concepts }.
Q: ${a fine-grained concept} A:”

Tab. 2 Presents the performance of LLMs1 or the language
encoder of VLMs on the language-only task. Surprisingly,
LLMs, even when fine-tuned for sentence embedding, do
not outperform the language encoder of VLMs. However,
we find that GPT-3 performs significantly better in a gen-
erative manner. This suggests that when dealing with con-
cept relationships on a larger scale where simple embedding
similarity struggles, generative modeling may offer a more
powerful approach to capture complex semantic knowledge
and model the relationships effectively.

1We use pretrained models provided by sentence-transformer
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Table 1. Evaluating vision-Language model zero-shot classification performance (top-1 accuracy) on fine-grained classes (FG) and coarse-
grained (CG) classes. The CG classification results are obtained through two methods: relating predicted FG class labels to their CG parents
(CGFG-label) and using the average of the FG prompt embeddings as the CG prompt embedding (CGFG-emb). We measure the differences (∆)
with CG classification using CG class prompts (CGdirect), which reveals the discrepancy in CG-FG performance of vision-language models.

Model Arch Training data FGdirect CGdirect CGFG-label (∆) CGFG-emb (∆)

CLIP ViT-B-32 Private400M 66.47 50.15 86.35 (+36.2) 72.62 (+22.47)

Open-CLIP ViT-B-32 LAION400M 63.82 35.98 84.08 (+48.1) 69.65 (+33.67)
ViT-B-32 LAION2B 69.78 45.54 87.39 (+41.85) 71.54 (+26)
ViT-L-14 LAION2B 77.72 49.74 91.83 (+42.09) 76.49 (+26.75)
VIT-H-14 LAION2B 80.39 52.22 92.86 (+40.64) 77.43 (+25.21)

UniCL Swin-B YFCC14M 41.14 37.37 69.67 (+32.3) 59.75 (+22.38)
Swin-B IN21K 30.6 53.14 66.26 (+13.12) 59.5 (+6.36)
Swin-B IN21K+YFCC14M 45.91 52.27 76.84 (+24.57) 67.63 (+15.36)
Swin-B IN21K+YFCC14M+GCC15M 60.17 51.9 83.44 (+31.54) 68.37 (+16.47)

K-LITE Swin-B IN21K+YFCC14M+GCC15M 54.75 44.92 81.85 (+36.93) 71.05 (+26.13)

BLIP
ViT-B-16

COCO+VG+CC+SBU
+LAION+CapFilt-L

55.41 42.09 80.92 (+38.83) 69.69 (+27.6)
BLIPft-coco 58.02 46.75 84.7 (+37.95) 72.93 (+26.18)

FLAVA ViT-B/16 PMD70M 59.48 50.11 83.37(+33.26) 70.84 (+20.73)

Table 2. Performance (accuracy) of classify a fine-grained concept to coarse-grain concept using language embedding models or generative
language models.

Model Type FG-to-CG Text Classification Accuracy (%)

CLIP-B 61.18
OpenCLIP-LLAION2B 55.76
OpenCLIP-HLAION2B 62.66
UniCL 52.96
KLITE 43.59
BLIP 50.00
FLAVA 57.40

all-roberta-large-v1 51.81
sentence-T5-large 52.47
sentence-T5-xl 55.26

GPT-3text-davinci-002 71.17

C. Limitations of Our Study

While our study provides valuable insights into the chal-
lenges and limitations of vision-and-language models
(VLMs) for zero-shot visual recognition, it is important to
acknowledge several limitations. Firstly, our experiments
primarily focus on a specific set of VLMs, datasets, and
evaluation metrics. While we have made efforts to select rep-
resentative models and datasets, our findings may not fully

https://github.com/UKPLab/sentence-transformers

generalize to the entire landscape of vision and language
models. Generalizing the results to other VLM architectures
or datasets requires further investigation and experimenta-
tion.

Secondly, our study is conducted within the context of
the evaluation protocols and benchmarks we have proposed.
While we have designed these protocols to address the chal-
lenges of zero-shot recognition in open-world settings, it is
important to recognize that these benchmarks may not fully
capture the complexities and variations present in real-world
scenarios. Real-world applications may involve different

https://github.com/UKPLab/sentence-transformers


types of data, varied distributions, and additional challenges
that are not fully accounted for in our study.

Furthermore, the scalability of hard sample generation, as
used in our fine-tuning experiments, presents a practical lim-
itation. Generating diverse and representative hard positive
and negative samples can be computationally expensive and
time-consuming. Scaling up the generation process to cover
a wide range of positive and negative cases with diverse vari-
ations poses a significant challenge and may require more
efficient and scalable methods.
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