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Abstract

Traditional dietary assessment methods heavily rely on self-
reporting, which is time-consuming and prone to bias. Re-
cent advancements in Artificial Intelligence (AI) have re-
vealed new possibilities for dietary assessment, particularly
through analysis of food images. Recognizing foods and
estimating food volumes from images are known as the
key procedures for automatic dietary assessment. However,
both procedures required large amounts of training images
labeled with food names and volumes, which are currently
unavailable. Alternatively, recent studies have indicated
that training images can be artificially generated using Gen-
erative Adversarial Networks (GANs). Nonetheless, con-
venient generation of large amounts of food images with
known volumes remain a challenge with the existing tech-
niques. In this work, we present a simple GAN-based neural
network architecture for conditional food image generation.
The shapes of the food and container in the generated im-
ages closely resemble those in the reference input image.
Our experiments demonstrate the realism of the generated
images and shape-preserving capabilities of the proposed
framework.

1. Introduction

Nutrition plays a pivotal role in maintaining health, influ-
encing both our daily well-being and long-term health sta-
tus. A balanced diet can foster overall wellness, while un-
healthy eating habits can lead to a range of health problems,
such as diabetes, heart disease, obesity, stroke, and certain
types of cancers [9, 21, 52, 68]. Therefore, accurate dietary
assessment is a critical component in keeping healthy and
treating chronic diseases [35, 64].

Traditional self-reported dietary assessment methods in-
clude 24-hour dietary recall (24HR), dietary records, and
food frequency questionnaires (FFQ) [4, 22, 48, 54, 64]. All
these methods necessitate individuals to report their food
consumption, detailing the type and/or volume of food con-
sumed. However, such a process can be time-consuming,
cumbersome, and biased, since it relies heavily on self-
reporting. Individuals tend to report healthier food choices

while neglecting unhealthy items. The reliance on self-
reporting introduces potential inaccuracies in capturing a
comprehensive and precise picture of an individual’s dietary
habits [45, 55].

Food images can be conveniently acquired by wearable
devices or smartphones, and thus image-assisted dietary
assessment has attracted research interest and been exten-
sively investigated. The integration of artificial intelligence
(AI), especially deep learning networks, in analyzing food
images has markedly advanced the automation of dietary as-
sessment [17, 34, 58]. Developing Al algorithms for dietary
assessment requires a substantial collection of labeled im-
ages covering a wide range of food types and volumes for
effective training. Manual labeling becomes necessary to
fulfill this demand, which is a laborious and time-intensive
task. While several datasets with large amounts of food im-
ages are currently available, there is still a need for train-
ing images to recognize foods in specific countries and re-
gions [6, 13, 33, 63]. Additionally, many existing food im-
age datasets lack annotations for food volume, making them
unsuitable for dietary assessment. To address these chal-
lenges, generative models have been proposed to synthesize
images, thereby augmenting training image datasets. Gen-
erative Adversarial Networks (GANs) have demonstrated a
powerful ability in several areas of image generation, such
as super-resolution image generation, image inpainting, and
image semantic editing. Although training images can be
artificially generated using GANS, it is difficult for existing
techniques to maintain both food shapes and image quality
simultaneously, significantly affecting the accuracy of di-
etary assessment. In response, we propose a simple GAN-
based network architecture. Our experiments indicate that
the new form of GAN can not only generate realistic food
images but also preserve the food shape in the reference
image. The proposed approach can significantly enhance
the performance of Al-based dietary assessment systems by
generating training images for both food recognition and
volume estimation. It will thus offer an effective, efficient,
and scalable solution to overcome the current limitations in
automatic dietary assessment.

The major contributions of this paper are twofold. First,
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we present a straightforward GAN architecture for realistic
food image translation. Second, we demonstrate that, in the
generated images, it is convenient to control food categories
and preserve food shapes using style and category variables.

2. Related Works
2.1. Automatic Dietary Assessment

In the field of automated image-based dietary assessment,
identifying and quantifying food nutrition, particularly rec-
ognizing their types and estimating volume, poses consider-
able challenges due to the complicated visual characteristics
of various foods and the absence of reference scales in im-
ages [1, 34, 36, 51]. Traditional food recognition relies on
the extraction of image features, such as the scale-invariant
feature transform (SIFT) and the histogram of oriented gra-
dients (HOG), followed by classification using a classifier
like the support vector machine (SVM) [6, 14, 27, 34, 41].
However, the classification accuracy is low, and the algo-
rithm is difficult to develop [6, 14, 27]. Recently, with
the rapid development of deep learning, deep networks and
strategies such as fine-tuning and transfer learning have
been effectively employed in the analysis of food images,
leading to unprecedented levels of accuracy of food recog-
nition [2, 26, 34, 40, 43, 50, 61, 70, 73]. For training
and evaluating the deep network, food image datasets, such
as Food-101, and UEC-Food, have been constructed us-
ing online sources (e.g., Google Images, Flickr) or col-
lected images for different types of cuisines or specifically
controlled environments [5, 6, 16, 18, 32, 34, 44, 47, 69].
Currently, the application of state-of-the-art methodolo-
gies to these datasets has achieved an impressive accu-
racy rate [61]. For example, the EfficientNet-B7 network
achieves 93% accuracy in the Food-101 dataset ([61]) and
the ensemble method averaging the predictions of ResNeXt
and DenseNet models reaches 90.02% in the UEC-Food100
dataset [34].

The challenge in calculating the volume of food from
a single image is primarily attributed to the absence of
three-dimensional (3D) information inherent in a two-
dimensional (2D) image [34, 36, 60, 62]. Previous studies
mostly rely on model-based techniques [10, 12, 19, 30, 56].
After a calibration procedure using a reference object with
a known size (e.g., a checkerboard, credit card) to deter-
mine the camera’s location and orientation, a pre-defined
shape model is chosen for each food item to match the con-
tour of the food and estimate its volume. However, this
procedure is labor-demanding in most cases since manual
operations are required, and estimating the volume of ir-
regularly shaped food can be challenging [19, 30, 56]. Re-
cently deep neural networks are expected to automatically
learn the scale information of a 2D image from the global
cures in the image and use it for volume estimation. Yang

et al. propose a novel human-mimetic Al system to virtu-
ally gauge the volume of food using a set of internal ref-
erence volumes, mimicking the thinking of dietitians who
mentally use a standard measuring tool (e.g., cup) as a ref-
erence [71]. Several studies employed convolutional neural
networks (CNNs) to estimate a depth map or 3D shape (rep-
resented by voxels) corresponding to the input food image
and obtain volumetric information [15, 20, 46, 53]. In most
of these studies, the training images were created by the re-
search group themselves, either manually labeled [20, 71]
or captured with a depth sensor [15, 46]. However, ob-
taining training images with labeled food volume/calorie or
depth map is a tedious task. Thus, large-scale food image
databases with known volume/nutrient information have not
yet been developed.

2.2. Food Image Generation

It is well known that the quantity and quality of images
in the training set play a critical role in the performance
and generalization ability of deep networks. Therefore,
data augmentation techniques (such as random crop, rota-
tion, translation, flip, and rescaling) have been proposed
to expand training datasets. To further increase the di-
versity of images, GANs have proven to be invaluable
tools [23, 37, 66]. GANs introduce a novel approach to
image generation by training a generator network to pro-
duce realistic images that are indistinguishable from real
ones, while a discriminator network learns to differentiate
between real and generated images.

Several GAN-based structures have been proposed to
generate images from a list of ingredients/recipes or refer-
ence images [29, 49, 57, 74]. The Multi-ingredient Pizza
Generator (MPG) is a conditional GAN framework based
on StyleGAN?2 designed to generate pizza images with de-
sired ingredients[24]. CookGAN combines an attention-
based recipe association model and StackGAN to generate
meal images from ingredients [74]. ChefGAN, RDE-GAN,
and other related works integrate an image-recipe embed-
ding module into GANS structure to synthesize dish images
[49, 57, 65].

RamenGAN uses a conditional GAN to generate ra-
men images after training with a ramen image dataset [29].
arCycleGAN introduces the mechanism of attribute reg-
istration into CycleGAN to transfer the freshness styles
from the style-offering images to the input images [11].
DuDGAN improves class-conditional GANSs to control the
output image using an additional classifier trained with a
diffusion-based noise injection process [72]. TransferI2]
explores several novel techniques to implement image-to-
image translation with limited data labeled data for two-
class and multi-class translation tasks [67]. TUNIT is a
truly unsupervised image-to-image translation model that
simultaneously learns to separate image domains and trans-
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lates input images into the estimated domains [3]. Besides
the GAN structure, diffusion models have also been intro-
duced recently to generate food images [25, 39].

Although promising results have been demonstrated in
these studies, currently, recipe-image pairs are only avail-
able in the Recipel M+ dataset [38], and the volumes of the
foods in the images generated from the recipe are unknown
since they cannot be controlled. Thus in this work, we fo-
cus on image-to-image translation approaches designed to
produce food images with the volumetric information. We
aim to estimate the food volume from a single image, which
is a projection of food in 3D. Therefore, the volume of the
food is preserved, if the shape and depth map of the projec-
tion are unchanged. In our case, we assume that a small set
of training images with known volumes exists but its size
is insufficient for training. Our goal is to increase the size
of this small training set by including new image samples
which are created by replacing the foods in the existing im-
ages with numerous other foods. As a result, the combined
set of images, which may be very large, can then be used to
train deep neural networks for volume estimation.

In addition to preserving contours, maintaining the
shapes of food containers is equally important since con-
tainers serve as references for estimating food volumes.
In doing so, the realism of the generated images is en-
hanced. While CycleGAN, among various GAN structures,
can maintain shapes in the generated images, retraining is
necessary for each new class of images and this procedure is
inefficient. It requires extra training to solve container dis-
tortion by introducing a discriminator to identify whether
a dish plate observed exhibits a correct round shape, and
the results are often not satisfactory [29]. A mask-based
image synthesis network has been proposed to ensure a rea-
sonable plate shape in generated images, but images with
segmented plate regions are necessary [28]. We propose
a simple network to generate diverse, high-quality images
while preserving the shapes of both the food and the con-
tainer of a given dish in the reference image.

3. Methods

We develop a neural network architecture for image genera-
tion with specific object constraints. Our goal is to generate
an image that retains the same object shape as the given ref-
erence image, while the textures are determined by a latent
variable. This variable enables the creation of diverse food
images with identical shapes. The “shape” in this context
includes both the shapes of the food and food container. We
also use a category label as a conditional variable to control
the object category of the generated image. The architecture
of our network is illustrated in Fig. 1.

The network includes three parts. The first is an encoder,
which compresses the input image into features. The sec-
ond part is a generator, which takes the features and a latent

variable as inputs, generating an image. The third part is a
discriminator, which is used to distinguish between the real
and generated images.

Compared with regular GANSs, our proposed network ar-
chitecture includes a shape encoder. The encoder is nec-
essary for shape learning. Our model is remarkably com-
pact, comprising only a single generator and a discrimina-
tor without the need for additional components. Given one
shape image, multiple food images can be generated from
our model. The generated images can be utilized to esti-
mate the food volume in future research. The type of food
can be specified through conditions, allowing the images
to be used for training a food recognition network. As is
widely acknowledged, defining image attributes, especially
shapes, is challenging. Shape information cannot be accu-
rately represented by just a few feature variables, making
it impractical to use a classifier for defining shape features.
Alternatively, we employ the encoder to extract shape infor-
mation directly from images.

Two datasets are used for training. The first image
dataset, Z°, is used as food shape references, where 7°
equals {I{|i = 1,...,N}, I{ € REXWX3 [ and W are
the height and width of the images, 3 is the number of chan-
nels of an RGB image, and N is the total number of images.
The second image dataset, Z;, is used to provide the food
texture information, where Z' equals {I}|i = 1,..., M},
It € REXWX3 "and M the size of the second dataset. The
“textures” mainly encompass various aspects such as the
color of the material, grain size, condensed state, and other
detailed characteristics of the food. This dataset is provided
to the discriminator, D, to train the network. We want to
apply Z° to facilitate the network to generate images with
the same shapes as the images in Z° while maintaining the
textures from Z'.

3.1. Functions of Network Components

Encoder. The input images, I°®, are compressed by the en-
coder to extract essential features. These features mainly
contain the topological information of an image. The en-
coder also helps to reduce the resolution of the shape im-
ages, leading to a more compact network structure.

The encoder structure is shown in Fig. 2. It consists
of downsampling layers and convolutional layers. As the
shape features of an image often encode global and topo-
logical information, which is of “low-frequency” nature, we
apply two downsampling layers to reduce the resolution.
This is followed by a stack of three convolutional network
blocks, each containing a convolutional layer, a ReLU acti-
vation layer, and a downsampling layer.

We use E to represent the encoder model. The en-
coder takes an image I® from the shape dataset as input
and outputs a feature vector, which is set of feature maps
f = E(I’) € RF'>*W'XC" \yhere H' and W’ are the height
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Figure 1. Our network architecture includes three major components, encoder F, generator GG, and discriminator D. The encoder produces
shape-related features f from the image I°. The generator takes features f, latent variable z, and category label ¢ as conditional inputs
and create output image y. The discriminator is used to evaluate the realism of the output image. Loss functions Lagy and Lg are used for

training the network.
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Figure 2. The network structure of the encoder.

and width of a feature map and C” is the number of feature
maps. We set H' = W’ = 16 and C’ = 128 in the experi-
ment.

In the subsequent stages, the feature vector f provides

constraints for generated images, playing a pivotal role in
defining the overall shapes of the objects within the gener-
ated images.
Generator. The generator’s primary role is to create im-
ages that adhere to the constraints derived from the shape
features. The generator is designed with three inputs: the
shape feature vector f, extracted by the encoder, the latent
variable z, and the category label c. The shape feature vec-
tor f primarily determines the shape of the object. The la-
tent variable z, which is sampled from a Gaussian distri-
bution, influences the texture of the generated image. The
category label ¢ determines the image’s class. The sepa-
rated input ports of f, z, and c are essential for isolating the
shape, texture, and category of the generated image.

Let G denote the generator model of the proposed net-
work. The output image y = G(f, z, ¢) is determined by
the shape feature vector f = E/(I*) (output of the encoder),
z (latent variable), and c the category. The dimension of y
is the same as that of I°.

Discriminator. For the discriminator D, a conditional dis-
criminator with class embedding is used, which is similar to
BigGAN [7]. The discriminator takes the generated image
y and an image sample I' from the texture dataset Z' as in-
puts and provides metrics for realism evaluation, which are
D(y,c,) € RY, and D(I',cp) € R!. The learning process
for the discriminator is to detect the differences between the
generated images and real images.

3.2. Network Training

Training is performed in two alternating stages. One stage
is to train the encoder and generator, and the other is to train
the discriminator. Different loss functions are applied in dif-
ferent stages. We apply a reconstruction loss and GAN loss
when training the encoder and generator. The reconstruc-
tion loss ensures the same shape features are shared by the
input and generated images. The GAN loss function and
Ry [42] regularization are applied to train the discriminator.
We adopt the GAN loss from [23] given by

Lagy =Ep[log(D(I', crr))]

FEp [l - log(DGED), 2,00 e)]

where E means expectation. The L loss is used as our
reconstruction loss:

Ly = Ep . JIE(I) - B(GEI),z,0)1). @
Our learning problem is to solve

mlg mgx Lagv + ALr 3)

)

where )\ is a hyper-parameter indicating the relative weight
of the reconstruction loss with respect to the GAN loss.
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4. Experiments
4.1. Realism Evaluation of Generated Food Images

The primary objective of the first experiment is to demon-
strate the capability of our method to generate realistic food
images. The quality of the generated images was quan-
titatively evaluated using the FID (Frechet Inception Dis-
tance) [8], a widely used metric for assessing the fidelity of
the generated images. To validate the effectiveness of our
approach, we also conducted a comparative analysis with
StyleGAN3 [31].

Datasets. A Chinese food image dataset VireoFood-
172 [13] and a Western food image dataset Food-101 [6]
were used to evaluate the performance of our approach. The
VireoFood-172 dataset encompasses 172 distinct classes of
Chinese food, with each class featuring between 300 and
1000 images. In total, the VireoFood-172 dataset comprises
110,241 images. Most images in this dataset contain a food
item in a container (e.g., plate, bowl). Whether the shape of
the container can be preserved was also studied in this ex-
periment. The Food-101 dataset contains 101,000 images of
101 different food classes. As this dataset has been used by
other researchers for food image generation, we also evalu-
ated our approach with the Food-101 dataset for comparison
with other approaches. Before training the network, the im-
ages in both datasets were resized to 256 x 256 pixels to
improve computational efficiency.

Evaluation Metric. We used FID as the metric to evalu-
ate the quality of the generated images. FID measures the
discrepancy between the features of the generated and real
images. These features are extracted using the Inception
network [59]. The computation of FID involves comparing
the distributions of these features as derived from the Incep-
tion network. A lower FID value signifies higher realism in
the generated images. At the extreme, a zero value of FID
indicates a perfect match in the distribution of the gener-
ated and real data, implying that the generated images are
indistinguishable from the real.

Results. Fig. 3 displays some image examples created
by our network, which was trained by the VireoFood-172
dataset. We selected five random images as inputs, with
the first column showing these inputs and the subsequent
columns presenting the outputs generated by our network.
These outputs were created by combining the same input
image in each row with different style variables, indicated
by z. This resulted in a notable change in textures, yielding
highly realistic food visuals.

To calculate the FID values of the generated images, we
randomly selected 30,000 images as input images. For
each input image, we generated one output image and cal-
culated the FID value based on the training dataset and
the 30,000 generated images. The result is shown in Ta-
ble 1. The FID value of our method is 4.97. To bench-

Method FID
StyleGAN3 [31] 9.25
Ours 4.97

Table 1. Comparison of FID on the VireoFood-172 Dataset.

Method FID
StyleGAN3 [25] 39.05
Finetuned Latent Diffusion [25] 30.39
ClusDiff [25] 27.73
Ours 22.82

Table 2. Comparison of FID among various food image generation
models on the Food-101 dataset.

mark against StyleGAN3[31], we ran the StyleGAN3 algo-
rithm using the VireoFood-172 dataset. The model trained
100 epochs (10, 000K images), utilizing the default hyper-
parameters. Image examples generated by StyleGAN3 are
shown in Fig. 4. We randomly generated 30,000 images
using StyleGAN3 and then calculated the FID value based
on these generated images. The FID value of StyleGAN3
for the VireoFood-172 dataset is 9.25 as shown in Table 1.

From Fig. 3, we can see that the structural integrity of
the images generated by our network is consistent across
different styles. This consistency proves the ability of our
method to generate diverse food images while adhering to
fixed shape constraints. On the contrary, it can be observed
from Fig. 4(b) that the shapes of the containers generated
by StyleGAN3 are quite irregular and unpredictable.

The FID value of the 30, 000 generated images when us-
ing the Food-101 dataset as the training set is listed in Ta-
ble 2. For comparison, the FID values for other models us-
ing the same dataset [25] are also included in this Table. It
shows that our model achieves the lowest FID value, 22.82.

4.2. Evaluation of Shape Preservation Performance

In this subsection, we evaluated the shape-preservation per-
formance of the proposed GAN architecture (Fig. 1). Here
the segmentation images were employed by the training
data for the network to learn the texture. The images gen-
erated by the network only contain foods. Using segmenta-
tion images simplifies the evaluation of the network’s per-
formance in maintaining accurate shapes.

Dataset. We used the segmented food images in the
UEC-FoodPIX dataset [47] for shape-preservation evalua-
tion. This dataset is particularly well-suited for our study as
it includes segmentation information for a variety of food
items. This allows us to quantitatively assess how well
our network preserves the food shape. The UEC-FoodPIX
dataset comprises 120 food classes and a total of 9, 000 im-

3725



=

A

Figure 3. Image examples generated by our network using VireoFood-172 dataset: The first column shows the original input images, and
subsequent columns display images created by varying the latent variable z while keeping the corresponding input image from the first

column fixed.

ages. Each image in the dataset may contain more than one
type of food, and the resolutions vary. In pre-processing,
we extracted the image of each food item from the original
image according to the provided segmentation mask. Then
we resized each image to 256 x 256 pixel resolution for
training.

Evaluation Metric. Our network is specifically designed
to preserve the shape of food in the input image while
changing the food category in the generated images. We use
the Intersection Over Union (IoU) metric to evaluate how
well food shapes are preserved. IoU is a widely used metric
in image processing, specifically object detection, for quan-
tifying the degree of overlap between two areas. To calcu-
late the IoU, we segmented the generated images. A high
IoU score signifies effective shape preservation, implying
that the network is proficient in replacing the food in the in-
put image with another category of food while maintaining
the shape.

Results. Fig. 5 presents some image examples generated

(b)

Figure 4. Image examples generated by StyleGAN3: (a) with round-shaped containers and (b) with irregular-shaped containers.

by our network. The first column shows the original in-
put images. Subsequent columns display images created by
varying the latent variable z while keeping the correspond-
ing input image from the first column fixed.

Fig. 6 displays the IoU scores achieved by our network.
We selected five random images as inputs and generated
eight output images for each. We calculated the IoU score
for each generated image. In Fig. 6, each color corresponds
to the IoU scores for the same input image, providing a clear
visual representation of the network’s performance in terms
of shape consistency across multiple outputs. In general, all
IoU scores are above 0.8, and the average IoU score of the
eight images is 0.91.

4.3. Category Control of the Generated Images

Generating images without conditional constraints (as in
Fig. 3) can increase the diversity of the generated images,
thus they are perfectly suitable for the purpose of volume
estimation. However, they are not suitable for image recog-
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Figure 5. Image examples generated by our model: The first column is the input images, and the rest are generated images.
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Figure 6. IoU of the generated images shown in Fig. 5.

Category No. 2 10 132 148 150 169
FID 19.57 24.09 50.78 51.12 44.16 39.68

Table 3. FID values of the generated images of six food categories.
Image examples of each category are shown in Fig. 7

nition since they do not have labels for food categories.
Therefore, to generate images for food recognition, we ap-
plied a conditional generator and a conditional discrimina-
tor to control the category of the generated images. The
output category can be explicitly controlled by variable c.
The VireoFood-172 dataset was applied in the experi-
ment. Fig. 7 shows the results. Three random images in one
category were selected as the input, which are shown in the
first column. Subsequent images in each column are created
by different category labels ¢ with the same input image (in
the first row) and latent variable z. The FID values for one
thousand generated images in each category are presented
in Table 3. The FID values across the whole dataset had
also been calculated by generating thirty thousand images
with random input images, variable z, and category label
c. This value turns out to be 5.18. On the other hand, the

FID value of each single category is greater than that of the
whole dataset, as shown in Table 3. It may be caused by
the small number of images in these categories, the feature
distributions may not be accurately estimated from a small
set of data.

By manually selecting the desired image categories for
generation, the problem of mismatching between the food
and container can be avoided. Fig. 8 illustrates the gener-
ated images when the containers of the input and the output
are inconsistent. The input is a plate of fried vegetables, and
the output is a bowl of porridge. It is impossible to keep the
shape of a plate when transferring between these two kinds
of foods. In addition, the volume of the food in the bowl
cannot be assumed to be close to the volume of the food on
the plate. These issues may be solved by providing a plate
as the input and excluding categories where the food is typ-
ically served only in bowls from the generation process.

4.4. Implementation Details

Our model was implemented by PyTorch. The encoder was
self-built based on the structure described in Section 3. In
our experiments, the dimensions of images in the dataset
were different. To accommodate these differences, the num-
ber of blocks in the encoder and generator was adjusted
while the resolution of features f was fixed. We used the
Adam optimizer to train the network, with the learning rate
set to 0.0001 for the first 100 epochs and then reduced to
0.00001 for the remaining 150 epochs. The generator and
discriminator were trained with a batch size of 64. In Sec-
tions 4.1 and 4.2, the category label c is set to “None.” In
Section 4.3, ¢ is a one-hot vector which encodes the cate-
gory label. In the experiments, the hyper-parameter A was
set to 50.
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Category No.: 170

Figure 7. Image examples generated by our model: The first column is the input images, and the rest are generated by our model. Generated
images in each column correspond to the same food category, which is controlled by the category label c.

Figure 8. Image examples when the containers of the input and the
output are inconsistent. The first column is the input images, and
the second column is the output images, where the fried vegetables
are substituted with porridge. The containers for the vegetables
(i.e., plate) and the porridge (i.e., bowl) are not matched.

Figure 9. (a) Image examples of combining incompatible ingre-
dients. (b) Images examples of misinterpreting plate patterns as
food.

5. Discussions

In our experiments, the foods in the randomly generated
images (i.e., without condition control) sometimes may not
correspond to real-world foods. Multiple ingredients were
randomly mixed to construct a dish, such as noodles in a

burger and chips on a cake, as shown in Fig. 9(a). While
these “strange” foods can still be used for volume estima-
tion, it is challenging to assign categories to these foods.
Occasionally, the decoration pattern on the plate can be mis-
takenly recognized as food, causing the food shape in the
generated images to extend into the plate area, as illustrated
in Fig. 9(b).

These issues might be attributed to inaccurate learning of
the network. Expanding the dataset with food images con-
taining various cuisines, appearances, and patterned food
containers can enhance training. However, image augmen-
tation may be unnecessary when diverse real-world food
images are already available. Currently, a practical ap-
proach is deliberately selecting shape reference images and
controlling generated image categories, though this may
limit the diversity of the generated images. Conducting it-
erative training sessions with feedback from human annota-
tors to continuously fine-tune the model holds the potential
for enhancing the network’s performance over time.

6. Conclusion

Our method can generate new images after training with a
given image food dataset. The content and volume/shape
of the food can be controlled separately. The textures (food
category) of the generated image can be controlled by
style variable z or category label ¢, and the shape of the
generated image can be constrained by the reference image
and the encoder. The generated images are suitable for
training deep networks for food recognition and volume
estimation, which overcomes the lack of training data in
automated dietary assessment.
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