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Abstract

Food recognition plays a crucial role in several health-
care applications. Nevertheless, it presents significant com-
puter vision challenges such as long-tailed and fine-grained
distributions that hinder its progress. In this work, we
propose LOFI, a Long-tailed Fine-grained Network aimed
specifically at tackling these food recognition challenges by
improving the feature learning capabilities of food recogni-
tion models. Specifically, we improve vanilla R-CNN archi-
tecture by tailoring it for food recognition. We design an
efficient multi-task framework for fine-grained food recog-
nition, which exploits the lexical similarity of dishes dur-
ing training to improve the discriminative ability of the net-
work. Secondly, we include a Graph Confidence Propaga-
tion module based on graph neural networks to aggregate
the information of overlapping detections and refine the fi-
nal prediction of the network. Extensive analysis and abla-
tions of different components of LOFI highlight that it suc-
cessfully addresses the targeted problems and leads to no-
ticeable gains in performance. Remarkably, the proposed
method achieves competitive results and outperforms the
current state-of-the-art methods in three public food bench-
marks: UECFood-256, AiCrowd Food Challenge 2022, and
UECFood-100 segmented.

1. Introduction
Nutrition and well-being are closely interconnected and
mutually influential [27, 53]. Recently, Food Computing
[43] has gained a lot of research significance due to its
potential applications in society. Food intake monitoring
[27] promotes optimal health and helps individuals make
informed decisions regarding their nutrition, which is par-
ticularly beneficial for people managing chronic conditions

such as diabetes, hypertension and cardiovascular problems
[46, 48]. Automatic food recognition is instrumental to
most food computing tasks [18]. It leverages deep learning
models for object detection and image segmentation tasks to
common food recognition problems such as nutritional in-
formation estimation of dishes [56, 62] and smart-service
restaurants [1, 26]. These applications commonly adopt
generic models prevalent in the literature [74]. However,
food images are highly complex, rendering them challeng-
ing to tackle only with general models.

Food images exhibit high intra-class variance and high
inter-class similarity, highlighting a clear fine-grained na-
ture [35]. Moreover, the food domain exemplifies a long-
tailed distribution problem, where certain dishes are signif-
icantly less prevalent compared to others [29]. The combi-
nation of these challenges is inadequately addressed by the
current generic recognition models like Mask R-CNN [31]
and Cascade R-CNN [9]. As these models are trained on
large object detection datasets [36, 45], they fail to take into
account the long-tailed distributions and fine-grained com-
plexities [24]. Specific approaches such as FGFR [59] and
DoD [60] leverage subset learning strategies to address the
fine-grained nature of food problems for image classifica-
tion. However, these methods have been less explored in
food recognition tasks.

In this work, we follow this line of subset learning strate-
gies and efficiently apply them to food recognition tasks.
Our approach, LOFI (LOng-tailed FIne-Grained Network
for Food Recognition), emphasizes fine-grained classes and
incorporates strategies to address the inherent long-tail dis-
tributions. LOFI focuses on increasing the precision of clas-
sification made over RoIs using a multi-task fine-grained
module. We use lexical information to create multiple clas-
sification subheads that focus on a specific subset of sam-
ples (called clusters) [10, 60]. This module proves benefi-
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cial in learning better fine-grained features and reduces the
RoI classification error. We retain the original efficiency
of the model by using this module only during training
and removing it during inference. Secondly, we address
scenarios in which multiple low-confidence yet correct de-
tections are overshadowed by a single high-confidence de-
tection. To address this, we implement a graph module
called Graph Confidence Propagation (GCP). The GCP
module constructs a graph by connecting region proposals
with edges that encode both spatial and lexical informa-
tion. Thanks to this connection, we minimize these com-
mon scenarios. Finally, we address the long-tailed class
imbalance by replacing the loss function and final classi-
fication layer with an equalization loss (EQLv2) [66] and
a normed linear layer [69] respectively. Our novel mod-
ules and smart replacements boost the performance of tra-
ditional models and obtain SoTA performances on popular
food recognition benchmarks, highlighting the effectiveness
of handling these food-specific challenges. In summary, we
outline our contributions as follows: (1) We present a novel
multi-task-based framework, to address fine-grained food
recognition. (2) We improve the confidence distribution of
the predictions by integrating the Graph Confidence Propa-
gation module. (3) We propose two different replacements
for the loss function and final classification layer that empir-
ically boost the performance of food recognition tasks. (4)
LOFI improves previous state-of-the-art by 4.6% and 2.2%
mAP on UECFood-256 and S-UECFood-100 datasets.

2. Related Works

2.1. Challenges in General Object Recognition

Long-tailed Distributions. Long-tailed distributions [75]
are characterized by a few classes representing most in-
stances (head), while most classes are underrepresented
(tail). This imbalanced distribution is common in real-world
situations. Generic datasets such as LVIS [28] are created to
focus on addressing this challenge. Several approaches such
as Seesaw loss calibration [68], IOF (Inverse Object Fre-
quency Loss) [2], and Equalization losses (EQL) [65, 66]
have been proposed to mitigate the long-tailed nature of
datasets. Long-tailed object recognition also relies on class
grouping: Forest R-CNN [70] clusters classes using their
lexical embeddings. A classification head is added to each
clustering to determine which cluster the object belongs to.
The predicted probability for each cluster is used as a prior
for inference. AHRL [38] creates clusters based on fea-
ture vectors generated by the model making it necessary to
train the model twice. The normed linear layer [69] em-
ploys cosine similarity instead of the typical dot-product in
the last classification layer. In contrast, our proposed LOFI
addresses the long tail problems by a smart combination of
EQL and normed linear layer, avoiding the downgrade of

cluster methods that require a second training phase.
Post-processing of Detections. Post-processing meth-

ods are used to improve object detectors and instance seg-
mentation models by removing duplicated detections from
the models’ outputs. Non-Maximum Suppression (NMS)
[49] and the subsequent Soft-NMS [6] and Dual-NMS [39]
are popular post-processing methods. Other works include
Confidence Propagation Cluster (CPC) [63], which com-
bined information from overlapping bounding boxes to re-
fine the prediction of a single model. Of late, Graph Neural
Networks (GNN) are used to refine object recognition pre-
dictions [71, 72]. Graphs are used to model the region pro-
posals, enabling the combination of detections by relying
on general priors that are not explicitly annotated. Most of
these methods build edges based on the co-occurrence be-
tween categories [5, 16, 34] and lexical information of the
labels [13, 14, 16]. It is also beneficial to encode additional
spatial information in the edges between objects [13, 14].
Despite advancements in hand-crafted rule-based duplicate
removal in object detectors and utilization of GNNs to
model relations between objects, the combination of both
remains unexplored to the best of our knowledge.

2.2. Food Image Recognition

Automated food recognition plays a pivotal role in vari-
ous tasks such as dietary assessment [27], food perception
[61, 64], and food recommendation [26]. Food recogni-
tion presents several unique challenges that are intrinsic
to the nature of food images and datasets. High occlu-
sion [55], fine-grained classes with high intra-class variance
and inter-class similarity [44], highly imbalanced nature of
food classes [35] constitute critical challenges in develop-
ing any food recognition model. Compared to food classi-
fication [43], food detection and instance segmentation are
less explored tasks, because of their complexity and limited
availability of public datasets. One of the common food
datasets, UECFood-256 [36], has significantly fewer classes
compared to real-world scenarios. BTBUFood-60 [8] con-
sists of only 60 categories, which has minimal relevance
to the fine-grained nature of food. Food detection litera-
ture often employs algorithms such as SSD [25], Faster-
RCNN [41] and YOLO [47] on different food datasets.
However, it does not propose solutions to tackle the said
food-specific challenges. Creation of instance segmentation
datasets [3, 45, 54] involves highly complex data collection
process. Most of the existing food instance segmentation
methods either use a limited variety of classes [54], or use
simple baselines [20, 54] or “simply” focus on segmentation
and mask quality, paying less attention to the classification
(which is one of the main challenges of food recognition)
[50–52]. In contrast, we address food recognition similar to
general domains [28], considering not only the localization
but also the classification of ingredients as a core task.
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Food is Long-Tailed Fine-Grained. The differences
between different food classes are subtle and there usu-
ally is a high imbalance between the number of sam-
ples of each class, making them both long-tailed and fine-
grained [59]. Fine-grained recognition can be catego-
rized into localization-classification sub-networks [32, 37],
end-to-end feature encoding [4, 22], and subset learning
[59, 60, 67]. Subset learning though less explored, are ben-
eficial in food classification. In subset learning methods,
the categories are split into groups of classes, and the net-
work is forced to focus on distinguishing the classes within
that group. Fine-grained expert learners exploit already ex-
isting multi-level hierarchies to train classifiers of different
granularity [11, 76]. Subset learning has been previously
employed in fine-grained food classification problems as
in FGFR [59], ELFIS [67] and DoD [60]. These methods
replicate the end of the backbone as many times as clusters
that have been found and combine the output of these repli-
cated blocks to produce the final output in inference. How-
ever, ELFIS [67] and FGFR [59] require multi-step training.
To the best of our knowledge, no subset learning method
exists for recognition tasks. Also, while some approaches
tackle the fine-grained problem, there is a lack of literature
that directly addresses the long-tail problem. Compared to
the other subset methods, LOFI is trained end-to-end, incor-
porating model-agnostic clusters and smart modifications to
tackle the inherent long-tailed distribution problem.

3. Our Proposal: LOFI
The increasing complexity and diversity of culinary dishes
across different cultures present a unique challenge in the
field of computer vision, particularly in food recognition
(both food detection and instance segmentation). The main
challenges of food recognition include: (1) food categories
and ingredients are fine-grained, (2) food data is highly
imbalanced and presents a long-tailed distribution of sam-
ples (with many classes underrepresented), (3) the visual
arrangement of food dishes is non-uniform, contains occlu-
sions and overlapping instances, as well as a large range of
possible scales and orientations, In this section, we intro-
duce our proposed LOFI (LOng-tailed FIne-Grained Net-
work for Food Recognition), to address the aforesaid limita-
tions in traditional recognition networks in the food domain.

An overview of LOFI is depicted in Figure 1. As seen in
the figure, LOFI is a two-stage food recognition framework
comprising a region proposal network (RPN) which identi-
fies candidate regions of interest (RoIs) that likely contain
objects. In the second stage, these RoIs are processed to
classify the type of food present, refine the bounding box
locations and, if dealing with instance segmentation, seg-
ment the object in the proposal. Classification of food items
is affected by the fine-grained and long-tailed distribution
of the data. To tackle the former, LOFI relies on an effi-

cient multi-task fine-grained recognition framework, lever-
aging linguistic information, forcing the network to learn
more discriminative features. To tackle the latter, LOFI re-
places the traditional elements of recognition networks with
an equalization loss and a normed linear layer to ensure bal-
anced learning across all classes, regardless of their preva-
lence in the dataset. The framework also addresses the chal-
lenges of varying food object sizes, orientations, occlusions,
and overlapping instances through the inclusion of General-
ized Intersection over Union (GIoU) loss for bounding box
refinement and a mask scoring head for improved segmen-
tation accuracy. To solve the problem of overlapping pre-
dictions, LOFI implements Graph Confidence Propagation
(GCP), using GNNs to aggregate information across pre-
dictions, enhancing decision-making accuracy. Together,
these improvements address the nuanced challenges of food
recognition, significantly advancing the state-of-the-art.

3.1. Food Classification

In two-stage networks, each RoI is independently classified
by a classification branch. This classification is highly af-
fected by the general challenges of food images: the fine-
grained and long-tailed nature of the data.

Fine-grained Food Classification. The complexity of
this task arises from the presence of closely related classes
with subtle differences. To tackle this problem, we present
an efficient multi-task fine-grained recognition framework
designed to exploit non-visual cues (depicted in the red
dashed box of Figure 1). This additional information im-
proves the performance of food recognition models in fine-
grained scenarios. More concretely, we leverage linguistic
information to divide the classes into different clusters of
similar categories. For each cluster, we force the network
to learn the new task of classifying every proposal as be-
longing to one specific class in the cluster or to any ”other”
cluster. The rationale behind this is that it introduces addi-
tional non-visual information during the learning process.

Let C be the set of the categories of the dataset, with |C|
= C. We use a text encoder, TE(·), to encode every label
in the data set c ∈ C into a fixed-length lexical embedding
lc = TE(c). To create the clusters, we use cosine simi-
larity between the embeddings. We then apply hierarchical
agglomerative clustering using average linkage. Hierarchi-
cal clustering allows us to work with a previously unknown
number of clusters, and the linkage helps us obtain clus-
ters of balanced size and handle non-Euclidean distances.
These clusters are used to build the multi-task component.
Let U = {U1, U2, . . . Un} be a set of clusters of the classes
in the dataset, such that Ui∩Uj = ∅ for all 1 ≤ i, j ≤ n. For
each cluster Ui, a new classification subhead CLUSi (blue
and red dashed modules in Figure 1) is attached. These sub-
heads are added as “sibling nodes” to the original classifi-

3752



Dataset
labels

Class 1
Class 2
Class 3
Class 4
Class 5

Backbone Feature map

RPN

RoiAlign

...

...

Classification

Regression

+
Classification

Regression

...

GCP

Region proposals
GATv2

Final
output

Multi-task framework for fine-grained food recognition

Sentence
encoder

Hierachical
clustering

+

...

...2d-convolutional map of a RoI
Feature vector of a proposal

Refined feature vector of a proposal
Hidden dense layer

Classification/Regression linear layer
Computed once before training

Only-training information flow
Training and inference flow

...

1 output per
class in Other

Detailed view of

...

...

...

... ... ...

Concat

Max
Pooling

MaskIoU Head

Output
mask

Vector of length : Predicted IoU

Figure 1. Schematic representation of LOFI, our proposed two-stage food recognition framework. The diagram illustrates the initial region
proposal process, followed by the classification, detection, and segmentation stages. Key innovations include the integration of a multi-task
fine-grained recognition framework, Equalization Loss v2 and a Normed Linear Layer for addressing the long-tailed nature of food data,
and the application of GIoU loss and a mask scoring (or MaskIoU) head for improved bounding box refinement and segmentation accuracy
respectively. The Graph Confidence Propagation module resolves overlapping predictions through graph neural networks.

cation head. The input for each subhead is the feature vec-
tor of every RoI. Each of these newly added subheads (as
shown in Figure 1) is responsible for classifying the classes
that belong to the cluster, as well as identifying categories
from any other cluster. For example, if |Ui| = ni, then
CLUSi classifies an incoming 1024 vector into ni + 1 cat-
egories: a particular class of the cluster Ui or “other” class.
It is noteworthy that these heads are only used as guidance
during training (removed for inference).

We reduce the imbalance in the subheads by using only
the RoIs that have been matched with foreground objects.
The proposed multi-task framework for fine-grained recog-
nition can be used on any food recognition model. The
computational overhead of this approach is minimal, as the
class labels are processed only once to create the clusters,
and the subheads are simple linear layers that are only used
in training. The presence of these specialized heads during
training introduces new tasks to the learning process, which
leads to learning features that allow better separability of
food classes and clusters in the latent space.

Long-tailed Food Recognition. The disproportionate
distribution of food categories, where a small number of
classes dominate the dataset while many others are un-
derrepresented, presents a significant challenge often over-
looked in the literature on food recognition [24]. To di-
rectly address the challenge of class imbalance inherent in
food recognition datasets, our method prioritizes achieving
a balanced learning environment where rare and common
classes are treated equitably. To achieve this, we modify

two key components of the classification head: the loss
function and the final classification layer. Traditional clas-
sification losses such as cross-entropy favor the focus of the
network on the most common categories. Thus, we replace
it with the equalization loss v2 (EQLv2) [66], which is a
hyper-parameter free loss that automatically balances the
loss penalty of different losses according to their accumu-
lated gradient (which is used as an indicator of imbalance).
This component is particularly valuable in addressing the
imbalanced nature of food datasets, as it ensures that the
model does not favor the dominant classes while neglecting
the rare ones, thus achieving a more balanced and robust
performance across all classes. On the other hand, when
the imbalance is very high, the weights of the final classifi-
cation layer are commonly biased towards the most frequent
classes (with higher magnitude for the most common cate-
gories). We solve it using a normed linear layer [69] to re-
place the traditional scalar product in the final classification
layer with cosine similarity. This adjustment ensures the
uniform treatment of all categories, regardless of their fre-
quency in the training dataset. This leads to improved clas-
sification performance even for underrepresented classes.

3.2. Food Detection and Segmentation

In response to the unique challenges presented by food
recognition, including the variability in sizes and orienta-
tions of food items and the occlusions and overlapping in-
stances, we introduce modifications to both the detection
and segmentation modules. These changes refine our ap-
proach to more effectively handle the intricate aspects of
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food detection and segmentation. In two-stage detectors,
the positions and dimensions of the predicted bounding
boxes are refined to more accurately encompass the de-
tected food items. To improve the bounding box location
refinement, we replace the traditional L1, L2 or LIoU regres-
sion losses with the generalized intersection over union
(GIoU) loss [58]. This loss offers a superior approach for
bounding box regression, and it inherently addresses the is-
sue of varying scales and aspect ratios, thus enhancing the
overall accuracy of food recognition models.

When dealing with segmentation, we propose using the
mask scoring head [33], which provides a more accu-
rate evaluation of predicted masks, refining instance-level
recognition by explicitly learning the quality of predicted
masks and adjusting the corresponding scores. The archi-
tecture of this component is depicted in the green box of
Figure 1, and it receives as input the feature map of each
RoI. As we can see, apart from predicting the mask (as usu-
ally done by other food segmentation methods), it also out-
puts a vector of size C (one per class), containing a pre-
diction of the IoU between the output mask and the ground
truth (self-evaluation). The inclusion of this head is partic-
ularly important for food instance segmentation, as it im-
proves the model’s ability to distinguish and accurately seg-
ment overlapping instances of food.

3.3. Post-processing and Refinement

In food recognition, a significant challenge arises where
multiple predictions of different classes with differing con-
fidence levels persist, even when using a low confidence
threshold. We refer to these overlapping predictions as “is-
lands”. To overcome this limitation, we model the predic-
tions as graphs and use Graph Neural Networks (GNNs) to
consider the relationships between multiple predictions and
make more accurate decisions based on the aggregated in-
formation. Thus, we enable the network to reason globally.
We introduce the Graph Confidence Propagation (GCP)
module (blue dashed box of Figure 1) to specifically ad-
dress situations where multiple low-confidence predictions
of one class may collectively indicate a higher likelihood of
that class being present than a single higher-confidence pre-
diction of another class, thereby facilitating more accurate
information aggregation.

Given a set of N region proposals, we construct a graph
G = (V,E), where the nodes vi ∈ V are the region propos-
als (represented by the RoI features) and the edges eij ∈ E
are defined based on the relationship between vi and vj .
Particularly, an edge between the nodes vi and vj is created
if IoUij = IoU(vi, vj) ≥ t. This “sparsification” threshold
t makes it easier for the network to focus on dealing with
the island, since we substantially limit the number of input
edges. Each edge consists of a 6-dimensional vector, and it
encodes spatial and lexical information along with the IoU

information eij = [IoUij , Sij , Lij]. Spatial relationship
[15] corresponds to the spatial features which represent all
the relative position information of two proposals:

Sij =

[
log

(xi − xj)
2

w2
i

, log
(yi − yj)

2

h2
i

, log
wi

wj
, log

hi

hj

]
where vi and vj are of size wi × hi, wj × hj centered
in (xi, yi), (xj , yj), respectively. Lexical relationship is
computed as the similarity between two proposals in the
semantic space. For each category, as well as the addi-
tional background class, we compute the feature vector us-
ing TE(·) as described earlier. Then, we can compute a fea-
ture representation of the ith proposal in the lexical space as
l̂i =

∑C+1
k=1 cik · lk ∈ R256, where cik is the classification

score for the kth class prior to the GNN. Lij is defined as
the cosine similarity between l̂i and l̂j . C + 1 indicates the
number of classes plus background.

Once the graph is constructed, we use a GATv2 layer [7]
to refine the representation of each node vi by aggregating
information from its neighbors N (i), obtaining v′i. The re-
fined RoI/proposal representation v′i is finally passed to a
classification layer and a regression layer to provide the fi-
nal output of the detector. This GCP approach helps to miti-
gate the issue of overlapping predictions, improve the over-
all performance of the detector, and enhances the model’s
confidence in the presence of different classes.

3.4. Final Loss

The final training loss is computed as L = LRPN +Lcls +
Lreg + Lmask, where LRPN refers to the region proposal
loss, Lcls refers to the classification loss, Lreg is the local-
ization loss of the bounding boxes, and Lmask is the loss
associated with the segmentation masks.

Lcls = EQLv2orig +
1

n

n∑
c=1

CECLUSc + CEGCP (1)

Lreg = GIoUorig +GIoUGCP (2)

Lmask = BCEGCP +MaskIoUGCP . (3)

The sub-indexing scheme employed in Eqs. (1) to (3) de-
notes which model heads are updated by that specific loss
component. More concretely, EQLv2orig and GIoUorig

refer to the original classification and regression heads of
the R-CNN architecture, respectively. CECLUSc

refers to
the classification loss of the cth cluster, and CEGCP refers
to the classification loss of the GCP head. GIoUGCP refers
to the regression loss of the GCP head. Finally, BCEGCP

and MaskIoUGCP refer to the binary cross-entropy and
the mask IoU losses of the GCP head, respectively. Note
that Lmask is only used when dealing with instance seg-
mentation, and LRPN is not modified.
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Table 1. mAP Comparison between SoTA methods and LOFI with
ResNet-50. ’-’ denotes not implemented for the given task.

Method UEC 256 S-UEC 100

Faster/Mask R-CNN [31, 57] 46.9 57.3
ForestDet [70] 49.0 61.9
QueryInst [23] 47.8 57.3
IOF [2] 50.3 64.1
DINO [73] 50.4 -
SparseInst [17] - 60.6

LOFI (Ours) 55.0 66.3

4. Validation
4.1. Setup

Datasets. We use three public datasets of varying sizes for
food recognition tasks. UECFood-256 [36] is a food detec-
tion dataset with a total of 29,774 images, composed of 256
different Asian dishes. We use an 80-20 training-test split
for UECFood-256 experiments. Segmented UECFood-
100 [3] is a more recent food instance segmentation dataset,
which provides instance-level annotations for the well-
known UECFood-100 [42] dataset. The dataset consists of
12,740 images from 100 categories. We create a stratified
80-20 split for our experiments. AiCrowd Food Recogni-
tion Challenge 2022 [45] is an extension of MyFoodRepo-
273 benchmark, corresponding to the last edition of the food
recognition challenge. It has 54,392 images containing 323
categories of food. Since the test set annotations are private,
we split the training dataset into training and test sets in a
multi-label stratified fashion.

Implementation Details. For all experimentation and
testing, we utilize the PyTorch-based mmDetection frame-
work v3.3.0 [12]. We use the Universal Sentence Encoder
(USE) [10] as TE(·). We demonstrate the effectiveness
of our method across various architectures using ResNet-
50 [30] and Swin Transformer (Swin-T) [40] backbones.
To further enhance its performance, we have upgraded the
standard convolutions in ResNet-50 to deformable convolu-
tions [19], providing additional flexibility and adaptability.
This is especially beneficial for handling the intricate vari-
ations of food items in terms of shape, size, and texture.
Both backbones are initialized with ImageNet-1K [21] pre-
trained weights. For LOFI, we adopt the default hyperpa-
rameters of the R-CNN counterpart, ensuring a fair com-
parison and avoiding over- or under-tuning of hyperparam-
eters when comparing with other methods. In all considered
methods, we use the default hyperparameters of the short-
est scheduler recommended by mmDetection. We use the
mean average precision (mAP) as the evaluation metric:
box-based mAP for object detection and mask-based mAP

Table 2. Comparison between base R-CNN architectures and
LOFI on various tasks and architectures.

UEC 256 AiCrowd S-UEC 100

Faster Cascade Mask

(ResNet-50)
Base 46.9 54.1 19.3 57.3
LOFI 55.0 59.4 24.5 66.3

(Swin-T)
Base 56.4 62.1 25.1 68.2
LOFI 56.7 63.0 26.2 69.7

for instance segmentation. This metric allows us to assess
the quality of our model in a standardized way, facilitating
comparisons with existing methods.

4.2. State-of-The-Art Comparisons

We present the performance of LOFI with ResNet-50 back-
bone in Table 1, showcasing its competitive analysis in dif-
ferent data sets against a variety of state-of-the-art meth-
ods under identical experimental conditions to ensure fair-
ness. Specifically, our comparison includes Faster R-CNN
[57] and Mask R-CNN [31] as baselines, alongside methods
ForesDet [70] and IOF [2] that address challenges in imbal-
anced datasets. Additionally, recent advancements namely,
QueryInst [23], DINO [73], and SparseInst [17] are also
evaluated. LOFI achieves substantial improvements across
datasets and tasks, showing its effectiveness and general-
ization ability. LOFI is the best-performing method across
both datasets. Its performance gain over the second-best
state-of-the-art method is 4.6% for UECFood-256 and 2.2%
for Segmented UECFood-100. These results show the com-
petitiveness of the proposed approach. IOF [2], the second-
best performing approach in the considered cases, is inferior
in general domain recognition compared to other methods
in the list. However, IOF focusses on long-tailed recogni-
tion. These results highlight the importance of considering
this challenge when designing solutions for food detection
and segmentation, supporting our idea and reinforcing the
key decisions made in the design of LOFI.

4.3. Discussions

4.3.1 Performance Comparison with R-CNNs

We report the mAP achieved by base R-CNN architectures
and LOFI with two different backbones in Table 2. To
explore LOFI’s adaptability, we examine cascade architec-
tures by comparing the performance of Cascade R-CNN [9]
with Cascade LOFI, a version enhanced with all our pro-
posed improvements. LOFI achieves noticeable improve-
ments across datasets, tasks, and architectures, which high-
lights its effectiveness and generalization ability. More con-
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Figure 2. Class-wise mAP improvement for different datasets and
architectures. The red line represents 0 difference (no change).

cretely, the performance gains range from +5.3% in the
AiCrowd dataset to +8.1% in the UECFood256 dataset with
Faster R-CNN. Notably, LOFI exhibits the capability to
enhance the performance of more complex architectures
such as Cascade R-CNN and Swin-T backbones, which are
known for their high capabilities. This highlights the re-
markable ability of LOFI to further optimize and refine the
results obtained from these complex architectures, thereby
achieving better overall performance.

The benefits of using LOFI can be further seen in the
delta distribution of the class-wise mAP for the considered
benchmarks as shown in Figure 2. LOFI shows an improve-
ment in results for most of the categories. However, there is
a small portion of classes that suffer a performance drop.
This decrease is very slight in all cases, except one out-
lier in AiCrowd. Regarding qualitative results, in Figure 3
we visualize some examples of images from Segmented
UECFood-100 in which LOFI outperforms the baseline.
Three different kinds of situations, where the baseline fails
in some way, but LOFI succeeds, are presented (in this or-
der): correct classification, wrong segmentation; incorrect
classification, correct segmentation; wrong for both tasks.

4.3.2 Effect of Multi-task Fine-grained Framework

To better understand the influence of the newly added sub-
heads, we provide a deeper analysis using the changes in
the inter- and intra-cluster confusion (Figure 4a). The inter-
cluster confusion of the kth cluster measures the proportion
of detections whose ground truth is a class of the kth clus-
ter, but whose predicted label belongs to any other cluster.
The intra-cluster confusion of the kth cluster represents the
percentage of predictions whose ground-truth label belongs
to the kth cluster, but the model has predicted a different
class of the same cluster. According to Figure 4a, there is
a noticeable drop in the confusion between clusters in both
datasets after including the fine-grained module. Thanks to
the output of “others” in the cluster subheads (described in
Figure 1), the backbone is forced to learn features that allow
the network to discern the belonging of an object to every
cluster more effectively. Similarly, there is also a significant
improvement in confusion between classes of the same clus-

Ground Truth

Dried 
fish

Chinese 
soup

Takoyaki

Baseline Proposal

Figure 3. Comparison of base R-CNN and LOFI predictions on
Segmented UECFood-100 dataset images. Blue indicates ground
truth, green for correct class predictions, and red for wrong ones.

ter when using the fine-grained framework. In some cases,
there is a slight increase in misclassification. However, this
does not lead to a decrease in the overall performance.

4.3.3 Effect of Graph Confidence Propagation Module

We provide in-depth analysis to understand whether the
GCP helps the model to address the problem we are try-
ing to tackle: the presence of “islands” of detections for the
same object in which the most confident prediction is not a
true positive. To this end, we present in Figure 4b the dis-
tributions of the differences between the confidence of the
true positive and the confidence of the most confident false
positive for every island in Segmented UECFood-100. A
higher value indicates a better ability of the model to iden-
tify the proper label of an object. Since the idea of highly
overlapping detections is not well defined, one natural ques-
tion is ”When a group of detections should be considered an
island?”. Following a philosophy similar to that behind the
mAP metric, we analyze the islands defined using different
IoU thresholds. For a given threshold tI , an island is formed
by all the predictions that can be connected by IoU values
above tI . From Figure 4b, we can infer that using GCP re-
sults in an improvement in this aspect in all thresholds and
all the situations considered. The GCP module helps the
model to better identify the appropriate labels for objects
within these ”islands”. This way, we address the originally
targeted problem, improve the prediction confidence distri-
butions and the overall performance of the detector.

4.4. Ablation study

In Table 3, we show results for different combinations of
LOFI components (ResNet-50) for UECFood-256 and Seg-
mented UECFood-100. More concretely, we evaluate all
the modules independently and in conjunction with each
other. The proposed smart replacements (SR) to the R-
CNN architecture (losses and layer changes) provide a sig-
nificant performance boost, especially when combined with
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Figure 4. Analysis of the impact of the multi-task fine-grained framework and GCP.

Table 3. Ablation of different components of LOFI.

SR FG GCP UEC 256 S-UEC 100

- - - 46.9 57.3
✓ - - 52.6 63.6
- ✓ - 51.3 63.3
- - ✓ 48.4 62.9
✓ ✓ - 54.3 64.8
✓ - ✓ 54.4 65.6
✓ ✓ ✓ 55.0 66.3

the other elements. In terms of mAP, the multi-task fine-
grained framework (FG) shows noticeable benefits when
used independently or in combination with the other mod-
ules. The GCP module also exhibits similar improvements
when added to the pipeline. Combining all the modules de-
livers the best results, showing the benefits of LOFI.

4.5. Limitations

Despite the promising results and improvements in all the
considered metrics and scenarios, we carefully elucidate the
potential limitations of LOFI that can serve as future direc-
tions. (1) The clustering technique relies on the lexical em-
beddings of the category labels. This limits the applicability
of the method to cuisines for whose language there is not a
robust text encoder. (2) The improvement in confidence dis-
tribution brought by GCP might not always be reflected in
the final performance. This is because sometimes the GCP
priors might mislead the module, leading to an increase in
the confidence of some false positives. (3) Although good
results have been achieved without tuning, the presence of
several losses might require extensive testing to obtain the
optimal performance.

5. Conclusions and Future Lines
In this work, we introduce LOFI, a novel framework tai-
lored for the intricate task of food recognition, which sur-
passes the performance of general state-of-the-art networks
in this domain. Through our comprehensive evaluations
across diverse datasets and architectures, we demonstrate

the exceptional ability of LOFI to address the unique chal-
lenges of food object recognition ranging from long-tailed
data distribution to the diverse shapes and sizes of food
items. A key aspect of LOFI is the strategic use of cross-
modal information, specifically leveraging linguistic sim-
ilarities among food categories to refine and guide the
model’s learning process. Furthermore, our utilization of
the GCP module further emphasizes the value of consid-
ering neighbouring predictions to refine detection outputs.
With these enhancements, LOFI establishes a new bench-
mark for food recognition, underscoring the importance of
focusing on food-specific challenges.

Future Lines. Exploring more advanced lexical models
such as LLMs could refine our clustering approach, poten-
tially offering better discrimination. The usage of GNNs
can be further explored to obtain solutions that include other
information (e.g. from ontologies). Additionally, our re-
search represents a notable advancement in food monitoring
technology and encourages both experienced and inexperi-
enced users to interact with these innovations, closing the
gap for more user-friendly and efficient food tracking.
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