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Abstract

While there are a lot of models for instance segmenta-
tion, PolarMask stands out as a unique one that represents
an object by a Polar coordinate system. With an anchor-
box-free design and a single-stage framework that con-
ducts detection and segmentation at one time, PolarMask
is proved to be able to balance efficiency and accuracy.
Hence, it can be easily connected with other downstream
real-time applications. In this work, we observe that there
are two deficiencies associated with PolarMask: (i) inabil-
ity of representing concave objects and (ii) inefficiency in
using ray regression. We propose MP-PolarMask (Multi-
Point PolarMask) by taking advantage of multiple Polar sys-
tems. The main idea is to extend from one main Polar system
to four auxiliary Polar systems, thus capable of representing
more complicated convex-and-concave-mixed shapes. We
validate MP-PolarMask on both general objects and food
objects of the COCO dataset, and the results demonstrate
significant improvement of 13.69% in APL and 7.23% in
AP over PolarMask with 36 rays.

1. Introduction

Computer vision techniques have been widely used in var-
ious areas [8, 23, 29, 30]. Food science is gaining pop-
ularity with the growing emphasis on health. In partic-
ular, food segmentation offers valuable insights for calo-
ries estimation [26] and food waste statics [27]. Food seg-
mentation presents a substantial challenge problem due to
the diverse nature of its appearance and intra-class varia-
tions [1]. Therefore, our focus is directed towards convex-
and-concave-mixed images, like those food images in the
COCO dataset [21].

Food segmentation can be considered as one of the ap-
plications of instance segmentation. Instance segmenta-

tion stands as a crucial subfield within computer vision
[6, 12, 24]. Its primary purpose is to address the chal-
lenge of identifying specific objects or targets within an en-
tire image while providing crucial information such as the
target’s category, precise location, and accurate segmenta-
tion boundaries. It can be seen as a combination of se-
mantic segmentation and object detection. Object detection
systems roughly localize multiple objects using bounding
boxes, while semantic segmentation frameworks assign cat-
egory information to each pixel for a class. In contrast, in-
stance segmentation takes a step further by labeling each
pixel with a specific instance, rather than just a particular
class. This enhanced approach allows for more meaning-
ful and detailed inferences on an image, which finds practi-
cal applications in various domains, enabling tasks such as
object localization, recognition, and comprehensive scene
understanding.

Instance segmentation primarily revolves around two
frameworks: two-stage frameworks and one-stage frame-
works. The two-stage instance segmentation can be im-
plemented using two distinct approaches: the bottom-up
method [9, 22], which relies on semantic segmentation,
and the top-down method, which is based on detection
[14, 16, 19, 24, 25]. In platforms with abundant comput-
ing resources, the two-stage frameworks tend to achieve
higher accuracy, but spend much time on heavy computa-
tion, thus limiting their applications in real-time tasks. To
resolve this issue, there are some upcoming approaches that
employ a one-stage pipeline for both object detection and
instance segmentation. One-stage frameworks often have a
simpler structure, incorporate a lightweight backbone, deal
with fewer candidate areas, and employ fully convolutional
detection networks, thus generally running faster than two-
stage approaches [2, 3, 7, 28, 31, 33].

PolarMask [32] is an anchor-free and one-stage instance
segmentation method that is characterized by its simplic-
ity in concept and fully convolutional nature. The key ad-
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(a) Mask points of Polarmask (b) Segmentation of PolarMask

(c) Mask points of MP-Polarmask (d) Segmentation of MP-PolarMask

Figure 1. Comparison of Polarmask and MP-PolarMask.

vantage lies in its seamless integration into most off-the-
shelf detection methods, enabling a high level of adaptabil-
ity and practicality for diverse applications. The method
yields good results when dealing with those convex-shaped
objects. However, it encounters challenges when deal-
ing with more complex objects, especially those concave-
shaped ones.

This paper proposes MP-PolarMask (Multi-Point Polar-
Mask) to relieve the aforementioned problem. We identify
a deficiency of the “Distance Label Generation” algorithm
in PolarMask, which tends to choose longer rays to repre-
sent masks, thereby ignoring the internal nodes within an
object and adversely affecting its performance on concave
objects. We then propose to utilize multiple auxiliary points
that form multiple Polar systems to represent a mask. The
predicted masks are finer, and there is not much extra com-
putation cost in addition to PolarMask. We have validated
MP-PolarMask on multiple datasets, with special focus on
the food images in the COCO dataset. Fig. 1 illustrates the
main idea of this work. Fig. 1a and Fig. 1c show examples
of mask points found by PolarMask and MP-PolarMask, re-
spectively, when using 8 rays. Fig. 1b and Fig. 1d show the
exact output masks by PolarMask and MP-PolarMask, re-
spectively, when using 36 rays.

The rest of this paper is organized as follows. Some re-
lated works are introduced in Sec. 2. Sec. 3 presents MP-
PolarMask. Sec. 4 shows our experiment results. Conclu-
sions are drawn in Sec. 5.

2. Related Works
2.1. Anchor-based and Anchor-free Detection

Anchor-based methods are widely used in object detection
and instance segmentation tasks. These methods use a pre-

defined set of bounding boxes, known as anchors, to local-
ize and classify objects within an image. The anchor boxes
define candidate regions of different shapes and sizes, rep-
resenting potential object locations and aspect ratios. Dur-
ing training, the model adjusts these anchor boxes to better
match the ground-truth bounding boxes of objects in the im-
age and to predict their positions and categories.

Anchor-free methods do not rely on predefined anchor
boxes to determine objects’ positions. Objects’ positions
are directly predicted by such networks. CornerNet [18] and
CenterNet [10] are two examples of anchor-free methods.
CornerNet predicts object positions by estimating the top-
left and bottom-right corners of objects. On the contrary,
CenterNet takes a different approach by directly forecasting
the center points of objects and employing convolutional
operations to determine their boundaries.

Anchor-free methods are often simpler than traditional
anchor-based methods and can achieve better detection re-
sults in certain scenarios. These methods are easier to im-
plement since they eliminate the need for designing and
tuning numerous anchor boxes. Despite their advantages,
anchor-free methods also face challenges. They might
struggle with detecting small and overlapped objects. Ad-
ditionally, these methods often require more computational
resources, creating a hurdle for resource-constrained de-
vices.

2.2. Instance Segmentation

Instance segmentation is an important task in computer vi-
sion that may foster many downstream tasks. According to
whether object detection and segmentation proceed in par-
allel, instance segmentation can be divided into one-stage
and two-stage methods.

Two-stage instance segmentation methods, such as Mask
R-CNN [14], first generate candidate regions of interests
(ROIs) and then classify and segment those ROIs in the
second stage. Because it requires re-extracting features for
each ROI and processing them with subsequent computa-
tions, achieving real-time speeds remains challenging.

One-stage instance segmentation methods generate
position-sensitive maps that are assembled into final masks
by position-sensitive pooling or by combining semantic
segmentation and direction prediction logits. In contrast
to two-stage approaches, one-stage methods generally of-
fer faster processing speeds at the cost of reduced accu-
racy. TensorMask [5] is a noexception among single-stage
methods, as it achieves comparable accuracy to the two-
stage Mask R-CNN. YOLACT [2] eliminates the necessity
for proposal (bounding-box) generation and feature pooling
head networks used in two-stage methods, allowing it to
achieve competitive accuracy at real-time speed (33 frames
per second) on the COCO dataset [21]. When considering
the same image size and device specifications, PolarMask
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Figure 2. PolarMask [32].

with ResNet-101 [15] backbone is 4.7 times faster than Ten-
sorMask. The subsequent Polarmask++ [11] is proved to be
even superior with a significant speed advantage over Ten-
sorMask.

2.3. PolarMask

PolarMask [32] stands out as an unique instance segmenta-
tion algorithm that is designed to keep a balance between
accuracy and efficiency. Taking a one-stage approach, it
performs object detection and segmentation simultaneously.
Rather than using a traditional xy-coordinate, it is built
upon a Polar coordinate system to model a contour. The
segmentation problem is thus transformed into two sub-
problems: center regression and mask ray regression.

Fig. 2 shows its architecture. The first part is backbone
and FPN. The backbone serves as a feature extractor, which
can be realized by different architectures such as ResNet
or ResNeXt. FPN then works as a generator to produce
multi-scale feature maps through a top-down pathway cou-
pled with lateral connections. We exemplify the idea by
three feature maps F2, F3, and F4. From F4, via upsam-
pling, 1 × 1 convolutions, and fusing with C3, the feature
map F3 is yielded. In a similar way, F2 is yielded. Then
a 3 × 3 convolution layer is employed to smooth each fea-
ture map. The top-down pathway allows variable receptive
fields to capture broader and more abstract information.

The second part, Head, has three parallel prediction net-
works, each for processing one scale of feature map. For
each Fi, three branches are designed: classification, Po-
lar centerness, and mask regression. Fi first goes through
some convolution layers. The classification branch pro-
duces a matrix C ∈ RW × RH × Rk, where each tensor
(i, j, ∗) is the probability of k-class prediction. The Po-
lar centerness branch produces a matrix P ∈ RW × RH ,
where each item (i, j) is the score of pixel (i, j) being a Po-
lar center. The mask regression branch computes a matrix
M ∈ RW × RH × Rn, where each tensor (i, j, ∗) denotes
the lengths of n rays. For example, when n = 36, there
are 36 rays, each separated by 360/n = 10 degrees, whose
length is described by (i, j, k) for k = 1, 2, . . . , 36. The
contour connected by the endpoints of these 36 rays forms

(a) Convex-like object

(b) Concave-like object

Figure 3. Left: PolarMask; Right: MP-PolarMask

the Polar mask of the object.
The third part, Assembly, combines the above predic-

tions by performing a pairwise multiplication C × P to get
confidence scores, followed by thresholding for identifying
the top-1000 centers of each Fi. At the end, the top-1000
predictions across all three scales are combined, subject to
non-maximum suppression (NMS), to get multiple instance
segmentation results, each represented by a Polar mask.

We remark that PolarMask follows the design of FCOS
[28], but modifies the prediction networks into Polar repre-
sentations, i.e., P andM. It benefits from the Polar repre-
sentation while keeping computation complexity compara-
ble to FCOS.

3. MP-PolarMask

We make two observations on PolarMask. First, using one
Polar system, its representation capability is somewhat lim-
ited, especially for concave-shaped objects (Fig. 3). In fact,
when a ray encounters multiple boundary points of an ob-
ject, the algorithm would choose the farthest one, tending to
form a convex-like polygon. Second, it makes less efficient
use of mask regression information. While many Polar cen-
ters and rays are identified in P andM, only one center is
selected per object to form the final mask.

To conquer the above deficiencies, we propose Multi-
Point PolarMask (MP-PolarMask for short). The main idea
is to use multiple Polar systems to represent an object’s
mask. In Fig. 1b, there are actually 5 Polar systems. A
mask is formed by a two-level hierarchy. First, a main Po-
lar center is determined for an object, from which n rays
are defined. Second, from the main center, four quadrants,
denoted as Qm, m = 1, 2, . . . , 4, are defined. Then an aux-
iliary Polar center is determined for each Qm, from which
n additional rays will be extended. These 5n rays are as-
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Figure 4. The architecture of MP-PolarMask.

sembled to form the final mask.
Fig. 4 shows the architecture of MP-PolarMask. The

backbone remains the same as PolarMask, which computes
p− 1 scales of feature maps Fi, i = 2, 3, . . . , p. The Multi-
Point Head (MP-Head) module is designed to compute the
main Polar center and its four auxiliary centers located at
its four quadrants. Each auxiliary center is also accompa-
nied by n rays. At the end, the Multi-Point Assembly (MP-
Assembly) module integrates them into an instance segmen-
tation. Below, we introduce these modules and the ground
truth generation procedure. The symbols used in the paper
are listed in Tab. 1.

3.1. MP-Head

The MP-Head module also has p − 1 parallel networks,
each for processing one feature map Fi, i = 2, 3, . . . , p.
Each network has 7 branches: (i) one classification branch,
(ii) one Polar centerness branch, (iii) one mask regression
branch, and (iv) four auxiliary-center branches. Similar
to PolarMask [32], the first three branches compute the
matrices C ∈ RW × RH × Rk, P ∈ RW × RH , and
M ∈ RW × RH × Rn, respectively. The m-th auxiliary-
center branch computes a matrix Am ∈ RW × RH × R2,
m = 1, 2, . . . , 4, in which each tensor (i, j, ∗) ∈ Am is a
2D displacement vector with respect to (i, j) to define the
auxiliary center in Qm.

Specifically, to get the main center, we multiply C and

P . Following the mechanism of PolarMask, we can get a
point, say (i0, j0), as the main center. From (i0, j0), we
derive four auxiliary centers:

(i1, j1) = (i0 +A1(i0, j0, 1), j0 +A1(i0, j0, 2))
(i2, j2) = (i0 −A2(i0, j0, 1), j0 +A2(i0, j0, 2))
(i3, j3) = (i0 −A3(i0, j0, 1), j0 −A3(i0, j0, 2))
(i4, j4) = (i0 +A4(i0, j0, 1), j0 −A4(i0, j0, 2))

(1)

which are located in Q1, Q2, Q3, and Q4, respectively. Fur-
ther, we useM, the output of the mask regression branch, to
obtain n ray lengths, i.e.,M(im, jm, ∗), for auxiliary center
(im, jm). Including the n rays defined byM(i0, j0, ∗) for
the main center (i0, j0), we have totally 5n rays.

3.2. MP-Assembly

This module aims to construct the final mask. The algo-
rithm is outlined in Algorithm 1. The inputs include: (i) the
main center (i0, j0), (ii) four auxiliary centers (im, jm), i =
1, 2, . . . , 4, and (iii) the tensor M that defines ray lengths
for these centers. The output is a sequence of points that
defines the mask of the object.

First, we will compute the mask points specified by the
main center and the four auxiliary centers, denoted by 5
sequences Xm,m = 0, 1, . . . , 4, respectively (line 2). The
kth mask points of these sequences, k = 1, 2, . . . , n, are
defined as

Xm,k = (im, jm) + u⃗k · M(im, jm, k) (2)
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Symbol Description

C output matrix of classification branch
(RW ×RH ×Rk)

P output matrix of Polar centerness branch
(RW ×RH )

M output matrix of mask regression branch
(RW ×RH ×Rn)

Fi feature map, i = 2, 3, . . . , p

Am
the m-th auxiliary-point matrix
(RW ×RH ×R2)

Qm the m-th quadrant

(i0, j0) the main center of an object

(ik, jk) the k-th auxiliary center of a main center

Xm

a sequence of n rays extended from the
main center or an auxiliary center
(Rm ×Rn)

X ′
m

a sequence of rays extended from an
auxiliary point falling in Qm

Xm,k the k-th mask point of Xm

Am,k the angle to each point Xm,k of Xm

X
Qi→Qj

0

the mask points between X ′
i and X ′

j

contributed by the main center

L the loss function of MP-PolarMask

Lcls the instance center classification loss

Lreg
the Polar coordinate distance regression
loss

Lst the structure centerness loss

Lac the auxiliary centerness loss

Table 1. Summary of symbols.

where u⃗k is a unit vector with direction 2π · (k−1)/n. That
is, Xm = {Xm,k | k = 1, 2, . . . , n}, m = 0, 1, . . . , 4.

We are going to form a mask from the points in
Xm,m = 0, 1, . . . , 4. To do so, we associate an angle to
each point Xm,k of Xm with respect to the main center:

Am,k = ∠Xm,kOO+ (3)

where O = (i0, j0) is the main center and O+ = (i0 +
1, j0) is to form the positive x-axis from the main center. We
denote by Am the angle sequence of Xm,m = 0, 1, . . . , 4
(line 3).

Next, we need to refine the four sequences formed by the
auxiliary centers. We identify 4 points in X0 that divide the

Algorithm 1: MP-Assembly
input : Center (i, j); Auxiliary centers (im, jm),

m = 1, 2, . . . , 4; TensorM; Number of
rays n;

output: A sequence of mask points;

1 Function MP-Assembly()
2 Calculate sequences Xm for m = 0, 1, . . . , 4;
3 Calculate angle sequences Am of Xm for

m = 1, 2, . . . , 4;
4 Calculate angles αm for m = 1, 2, . . . , 4;
5 Refine Xm into X ′

m, m = 1, 2, . . . , 4, by
removing out-of-angle points;

6 Refine Am into A′
m, m = 1, 2, . . . , 4,

accordingly;
7 for m = 1 : 4 do
8 am ← min{A′

m};
9 bm ← max{A′

m};
10 end
11 Calculate the sub-sequences XQ1→Q2

0 ,
XQ2→Q3

0 , XQ3→Q4

0 , and XQ4→Q1

0 from X0;
12 return (X ′

1|X
Q1→Q2

0 |X ′
2|X

Q2→Q3

0 |X ′
3|

13 XQ3→Q4

0 |X ′
4|X

Q4→Q1

0 );
14 end

4 quadrants:

X0,1, X0,1+n/4, X0,1+2n/4, X0,1+3n/4

For k = 1, 2, . . . , 4, we draw 4 angles as follows (line 4):

αk = ∠X0,1+(k−1)×n/4(ik, jk)X0,1+(k mod 4)×n/4 (4)

We take the sub-sequence of Xm,m = 1, 2, . . . , 4, that falls
within the angle αm with respect to (im, jm) (line 5). That
is

X ′
m = subseq(Xm, αm). (5)

where function subseq() is to retrieve a sub-sequence
within an angle. We also refine Am into A′

m accordingly
(line 6).

From A′
m,m = 1, 2, . . . , 4, we identify the minimal and

the maximal angles in the sequence (note that the angles are
relative to the main center). These two points are denoted
as am and bm (line 7).

In order to integrate the points of X0 with those in
X ′

m,m = 1, 2, . . . , 4, the final step is to identify the gap
between X ′

1 and X ′
2, the gap between X ′

2 and X ′
3, etc. We

derive 
XQ1→Q2

0 = subseq(X0,∠b1Oa2)

XQ2→Q3

0 = subseq(X0,∠b2Oa3)

XQ3→Q4

0 = subseq(X0,∠b3Oa4)

XQ4→Q1

0 = subseq(X0,∠b4Oa1)

(6)
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(a) (b) (c)

(d) (e) (f)

Figure 5. A running example of MP-PolarMask: (a) the input image, (b) the main center and four auxiliary centers, (c) the mask points
expanded from the main center, (d) the sequence X ′

4 in Quadrant 4 refined by the angle α4, (e) (am, bm) and its corresponding X ′
m, where

the yellow regions are to be filled by the mask points of the main center, and (f) the final mask X ′
1|X ′

2|XQ2→Q3
0 |X ′

3|XQ3→Q4
0 |X ′

4.

where O is the main center (line 11). The final mask is
formed by concatenating X ′

m,m = 1, 2, . . . , 4, and the
above four sub-sequences (line 12).

Below, we use Fig. 5 to run an example. Fig. 5a shows
an image with an concave-shaped object. By running MP-
PolarMask, the main center and the four auxiliary centers in
four Quadrants are identified in Fig. 5b. These centers fur-
ther identify five sequences Xm,m = 0..4. In Fig. 5c, the
white points are the potential mask points expanding from
the main center, i.e., X0. In fact, these points would form
the segmentation result found by PolarMask. We can ob-
serve that PolarMask misses a lot of areas in Quadrant 4.
Fig. 5d shows the angle α4 that is determined by the maxi-
mum and the minimum angles of the points in X4 in Quad-
rant 4. The points falling within α4 constitute the sequence
X ′

4. Fig. 5e demonstrates the angle pairs (am, bm) in all
Quadrants, delineating the sequences X ′

m and the gaps be-
tween them. The final mask prediction is combined by X ′

m

and X
Qi→Qj

0 as shown in Fig. 5f.

3.3. Loss Functions

We formulate the loss function as follows

L = Lcls + Lreg + Lsc + Lac (7)

where Lcls is the instance center classification loss, Lreg

is the Polar coordinate distance regression loss, Lsc is the
structure centerness loss, and Lac is the auxiliary center-
ness loss. We extend the losses in PolarMask [32] to cover
auxiliary centers. Lcls is formulated as the focal loss func-
tion [20], so we omit the details. We explain the other three
terms below.

Following PolarMask, MP-PolarMask transforms the
task of instance segmentation into a set of regression prob-
lems. In most object detection and image segmentation
tasks, smooth L1 loss and IoU loss are two effective meth-
ods to supervise regression tasks. Smooth L1 loss ignores
the correlation between samples of the same object, which
leads to lower localization accuracy, while IoU loss con-
siders the optimization globally and directly optimizes the
pixel outcomes. However, computing the IoU of two ar-
eas is challenging and hard to parallelize. In Polarmask, it
simplifies the computation of IoU by the following distance
regression loss:

Lreg =
∑

(x,y)∈OC

f(x, y) (8)

3710



f(x, y) = log

∑n
i=1 max{M(x, y, i),M∗(x, y, i)}∑n
i=1 min{M(x, y, i),M∗(x, y, i)}

(9)

where OC means the set of points belonging to any object
class andM∗ means the ground truth ray lengths. This is
proved to be quite effective in [32], so we follow the same
design.

Polarmask introduces the concept of Polar centerness
into its loss

PolarCent =

√
min{M∗(x, y, i) | i = 1, 2, . . . , n}
max{M∗(x, y, i) | i = 1, 2, . . . , n}

(10)

where (x, y) is a candidate center point. In our method,
since there is a main center and four auxiliary centers, rather
than considering centerness as a point, we consider center-
ness as a “structure.” Therefore, we propose the Polar struc-
ture centerness as follows. During training, we will com-
pute the matrix P . We will use the ground truth to compute
an optimal matrix P∗ and train our model to approximate
its output P to the optimal P∗. The optimal matrix P∗ is
computed as follows. Consider any point (i0, j0) that be-
longs to any object class. We use it to partition the object
into 4 Quadrants. Let the mask of the object that falls in
Quadrant m be C∗

m(i0, j0). From the mask, we compute
the mass center in Quadrant m, denoted by (xm, ym). From
(xm, ym), we further compute a mask that may reflect the
best inference result, called Cm(xm, ym). Specifically, we
take the n rays in the ground truthM∗(xm, ym, ∗). How-
ever, if a ray crosses the x-axis or the y-axis, it will end
at that intersection point; otherwise, the ray remains un-
changed. Then, the contour formed by the endpoints of
these n rays is Cm(xm, ym). In Fig. 6, we illustrate the
concept using a simple n = 8 case in Quadrant 1. So, we
define the structure centerness at (i0, j0) in an IoU style:

P∗(i0, j0) =
1

4

4∑
i=1

|Cm(xm, ym) ∩ C∗
m(i0, j0)|

|Cm(xm, ym) ∪ C∗
m(i0, j0)|

(11)

We can repeat the above process for all (i0, j0) to obtain the
optimal matrix P∗. During training, we calculate the cross
entropy loss of the predicted P and the optimal P∗, denoted
as Lsc.

For the auxiliary center loss, we define the optimal auxil-
iary arrayA∗

m ∈ RW×RH×2,m = 1, 2, . . . , 4, as follows:

A∗
m[x, y] = massm(x, y)− (x, y) (12)

where massm(x, y) returns the mass center of the object
mask in Quadrant m with respect to the origin (x, y). The
loss, Eq. (13), is defined based on the distance between the
ground truth points, Eq. (14) and the predicted locations,

(a) (b)

Figure 6. (a) area C∗
1 (i0, j0) in Quadrant 1 for center (i0, j0) en-

closed by ground truth points and (b) area C1(x1, y1) for Quadrant
1 for the mass center (x1, y1).

Eq. (15).
Lac =

∑
(x,y)∈OC

Lac(x, y) (13)

distm(x, y) = |A∗
m[x, y]−Am[x, y]| (14)

Lac(x, y)=

{
0.5(distm(x, y))2 if distm(x, y)<1
distm(x, y)− 0.5 otherwise (15)

4. Experiment Results
We have conducted extensive comparisons with a number
of state-of-the-arts on the COCO dataset (dataset A) and in
particular the food images in the COCO dataset (dataset B).
Our evaluation criteria encompass various essential image
processing metrics: AP (Average Precision), AP50 (AP at
IoU 0.5), AP75 (AP at IoU 0.75), APL (AP for large ob-
jects), APM (AP for medium-sized objects), APS (AP for
small objects), and the speed factor FPS (Frames Per Sec-
ond). All the results are reported in Tab. 2.

4.1. Validation on General Objects

In our experiment, except for ExtremeNet, which uses
Hourglass-104 as its backbone, the backbones of all other
models are based on ResNet-101. Based on PolarMask(side
= 600, 36 rays) and MP-PolarMask(side = 600, 36 rays),
we adjust the shorter side of test images to 600 pixels so
as to enhance processing speed. To enrich our experiments
and ensure fairness, we also test two backbones for MP-
PolarMask: BFP [17] and DCN [4] (refer to the test in Po-
larMask++ [11]). Regarding FPS, MP-PolarMask runs at
13.3 FPS with the ResNet-101 backbone, slightly behind
PolarMask’s 13.9 FPS. However, MP-PolarMask’s AP of
35.5 surpasses PolarMask’s AP of 32.1. Remarkably, MP-
PolarMask exhibits a noincrease in AP with only a slight
decrease in FPS, highlighting its efficiency and competitive
edge compared to PolarMask. If we adjust images’ side size
by using MP-PolarMask(side = 600, 36 rays), apart from
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AP AP50 AP75 APS APM APL FPS

Dataset A: All images of COCO test-dev
Mask R-CNN [13] 35.7 58.0 37.8 15.5 38.1 52.4 7.2
FCIS [19] 29.5 51.5 30.2 8.0 31.0 49.7 0.8
YOLACT [2] 29.8 48.5 31.2 9.9 31.3 47.7 22.1
Tensormask [5] 37.1 59.3 39.4 17.1 39.1 51.6 2.1
Extremenet [34] 18.9 44.5 13.7 10.4 20.4 28.3 2.2
PolarMask(36 rays) [32] 32.1 53.7 33.1 14.7 33.8 45.3 13.9
PolarMask(side = 600, 36 rays) [32] 30.7 52.1 31.9 13.2 31.9 43.4 23.2
MP-PolarMask(36 rays, ResNet-101) 35.5 58.5 36.6 16.2 37.7 51.7 13.3
MP-PolarMask(side = 600, 36 rays, ResNet-101) 34.8 57.8 35.9 15.4 37.2 51.1 22.8
MP-PolarMask(36 rays, BFP) 35.6 58.8 36.8 16.5 39.4 52.8 13.2
MP-PolarMask(36 rays, DCN) 37.5 60.3 39.6 17.5 39.7 53.5 9.2

Dataset B: Food images of COCO test-dev
PolarMask(36 rays) [32] 31.8 51.2 32.0 13.1 32.6 43.8 14.0
MP-PolarMask(36 rays, ResNet-101) 34.1 56.4 33.2 14.8 35.7 49.8 13.4
MP-PolarMask(36 rays, BFP) 34.1 56.6 33.3 14.9 36.0 50.1 13.3
MP-PolarMask(36 rays, DCN) 35.8 59.3 36.2 16.2 37.3 51.2 9.2

Table 2. Performance comparison of MP-PolarMask and other methods. (best boldfaced and second best underlined)

Figure 7. Comparison of segmentation results of food images by PolarMask (upper part) and MP-PolarMask (lower part).

Tensormask, MP-PolarMask exhibits better performance in
terms of AP, AP50, AP75, APS , APM , and APL compared
to all other models. It is particularly noteworthy that, when
we use DCN as the backbone for MP-PolarMask, a slight
improvement is observed in AP, AP50, AP75, APS , APM ,
and APL compared to Tensormask. Additionally, the FPS
ratio to Tensormask is 9.2 : 2.1.

4.2. Validation on Food Objects

Food images are more challenging due to their irregular
and concave shapes. From our evaluations, MP-PolarMask
demonstrates superior performance compared to PolarMask
in terms of AP, AP50, AP75, APS , APM , and APL. For
example, MP-PolarMask improves AP by (34.1−31.8)

31.8 =

7.23% and APL by (49.8−43.8)
43.8 = 13.69%. If we switch

the backbone of MP-PolarMask to DCN, there is a de-
crease of 4.8 FPS compared to PolarMask, but the improve-
ments of AP and APL enlarge to (35.8−31.8)

31.8 = 12.57% and
(51.2−43.8)

43.8 = 16.89%, respectively.

In Fig. 7, we show some instance segmentation re-
sults for food-related images generated by PolarMask and
MP-PolarMask. There is a clear advantage of using MP-
PolarMask, especially when objects are of concave shapes.

5. Conclusions

As instant segmentation is a fundamental issue in computer
vision, it is critical to perform the task in a real-time man-
ner to facilitate downstream tasks. We propose a way to
extend PolarMask to multiple Polar systems, thus achiev-
ing finer segmentation results. Through validation on the
COCO dataset, MP-PolarMask demonstrates excellence in
handling concave objects. However, food objects are still
very challenging for the segmentation task as we do observe
lower AP when comparing to the AP of general objects by
MP-PolarMask. Future work may be directed to choosing
more flexible auxiliary points and developing a better mask
assembly method.
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