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Abstract
This paper focuses on bridging the gap between natural

language descriptions, 360◦ panoramas, room shapes, and
layouts/floorplans of indoor spaces. To enable new multi-
modal (image, geometry, language) research directions in
indoor environment understanding, we propose a novel ex-
tension to the Zillow Indoor Dataset (ZInD) which we call
ZInD-Tell1. We first introduce an effective technique for ex-
tracting geometric information from ZInD’s raw structural
data, which facilitates the generation of accurate ground
truth descriptions using GPT-4. A human-in-the-loop ap-
proach is then employed to ensure the quality of these de-
scriptions. To demonstrate the vast potential of our dataset,
we introduce the ZInD-Tell benchmark, focusing on two ex-
emplary tasks: language-based home retrieval and indoor
description generation. Furthermore, we propose an end-
to-end, zero-shot baseline model, ZInD-Agent, designed to
process an unordered set of panorama images and generate
home descriptions. ZInD-Agent outperforms naı̈ve methods
in both tasks, hence, can be considered as a complement to
the naı̈ve to show potential use of the data and impact of
geometry. We believe this work initiates new trajectories in
leveraging Computer Vision techniques to analyze indoor
panorama images descriptively by learning the latent rela-
tion between vision, geometry, and language modalities.

1. Introduction
Description generation aims to automatically generate in-
formative and meaningful textual descriptions or narratives
based on given signals such as images, videos, or other data
formats. It is an emerging research topic due to its potential
in various domains and tasks. Indoor description genera-
tion specifically focus on generating descriptive information
about indoor spaces (e.g., homes, apartments, or offices).
The goal is to generate coherent descriptions in natural lan-
guage that accurately capture the layout, features, and char-
acteristics of the indoor environment.

One of the key values of indoor home description gen-
eration lies in its applications in the real-estate industry.

*Work done during Summer’23 internship at Zillow Group.
1Dataset is avaiable at https://github.com/zillow/zindtell

As you step through the very large
door, you are welcomed into the
very large living room, the heart of
the home. The living room is a
spacious area with an open layout
that seamlessly connects to other
rooms...

Moving to the
basement, you will find
a very large bonus
room that can be used
as a game room or a
home theater. It is
connected to a very
large laundry room
through an opening,
which features two
very large windows... 

The upper floor houses
the bedrooms and
bathrooms. The very
large bedroom is a
sanctuary with a very
large window and doors
of varying sizes. It is
connected to a large
bathroom and a small
hallway through doors...
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Figure 1. Overview of ZInD-Tell. It consists of 3150 ground-truth
descriptions of 1575 homes, each having multiple unordered in-
door panorama images. The descriptions contain the details about
the room connectivity and coherent details of the room features
across multiple floors. Each ground truth description is a combi-
nation of one or more paragraphs for each home. In this figure, we
split the description floor-wise for better illustration.

This technology has significant potential in enhancing the
efficiency of real estate agents and improving the user ex-
perience for property seekers. Imagine a real-estate agent,
focused on describing properties, captures multiple room-
wise 360◦ panorama pictures of a multi-story building.
Manually writing detailed and accurate descriptions for the
property is tedious, time-consuming, and error-prone. For
example, the agents want to align the panorama images to-
gether, note all specific details while writing the description.
An end-to-end model that automates this process by gener-
ating coherent descriptions from the set of panorama im-
ages would significantly reduce manual effort of the agents.
Also, the potential customers may search semantically rel-
evant property by describing that in language, e.g., ‘I want
two bedrooms adjacent to a large dining space’, customers
can find properties that closely match their specifications.

There have been several prior research on generating de-
scription from indoor images [1, 5, 22, 26]. The datasets
like Sentences-NYUv2 [14] facilitate image-text pairs, fo-
cused on describing an interior room contents. Some recent
datasets contain indoor semantic scene graph of 3D rooms
[5] to describe relations among the objects. The indoor im-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Welcome to this beautifully designed home. As you step into the very large living room, you are greeted by an abundance of natural light
streaming in from three large windows. The living room is a hub of connectivity, with two openings leading to other parts of the house.

Through one opening, you find yourself in a large dining room. This room is a delight for those who love to entertain, with a very large
window that provides a picturesque view while dining. The dining room is connected to several other rooms via doors, including a small
closet, a very large bonus room, and a medium-sized kitchen. ...
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Figure 2. Pipeline of generating ground truth descriptions in ZInD-Tell. The process begins with metadata extraction for each H . This stage
is succeeded by factual data collection, including the entry room, room labels, and the vertices of windows, doors, and openings (W/D/O).
Following this, we construct a room-room connectivity graph, then schema for each floor. These structured data serve as inputs to GPT-4,
facilitating the creation of ground truth descriptions. Then, human evaluators assess these descriptions, focusing on their relevancy score.

age datasets mainly used for Vision-Language navigation
[1, 13] contain visual landmarks instead of coherent de-
scription of a floor. To overcome this gap, we want a dataset
that contains 360◦ panorama images of each room for every
floor of a home. The description of a home should contain
coherent details of each room in a floor, which highly re-
spects both geometric and semantic constraints in that floor.
Also, the description should be comprehensive to contain
coherent information across all floors so that it can be con-
sidered as a holistic overview of the property. To the best
of our knowledge, there is no dataset yet that meet these
constraints. Hence, we propose ZInD-Tell, an extension of
the Zillow Indoor Dataset (ZInD) [7] with language modal-
ity. We consider ZInD is the most appropriate for this task,
given its extensive coverage of real residential homes.

We propose two strategies, schema-based and template-
based, for the ground truth description generation. To this
end, ZInD-Tell consists of 2 large descriptions for each res-
idential home for 1575 homes in total. The raw datasets are
initially pre-processed to meet the geometric constraints,
followed by extraction of the key information based on the
raw human annotation. Then, we build the structural and
template-based schema to automate the description gener-
ation by leveraging GPT-4 LLM [21]. Then, we curate the
descriptions by human evaluations to verify the relevancy of
the ground truth descriptions to the homes. Figure 1 illus-
trates a brief overview of the dataset. To evaluate the effec-
tiveness of our ZInD-Tell dataset, two tasks are proposed.
The first task is language-based home retrieval. Here, given
a description as a query, the trained model will retrieve the
home with the closest semantic distance. Second, gener-
ation of the descriptions directly from panorama images.
Here, an end-to-end trained model will take input of the un-
ordered set of indoor panorama images per floor. The objec-
tive of the model is learn the semantic connections between
the rooms in a floor and between the floors to generate a

comprehensive and coherent description.
To initiate the benchmark for our ZInD-Tell dataset, we

introduce a zero-shot method, ZInD-Agent. This baseline
synthesizes existing large models as modules: CLIP [23] for
room classification, HorizonNet [24] for room layout and
window/door/opening location estimation, HoHoNet [25]
for depth inference, and SaLVe [15] for predicting room-to-
room connectivity graphs. These modules collectively facil-
itate the generation of predicted descriptions. We evaluate
ZInD-Agent’s performance in two tasks as mentioned ear-
lier: 1) language-based home retrieval score at k number of
homes and 2) generated description quality using standard
sentence evaluation metrics. Our results indicate that ZInD-
Agent outperforms naı̈ve models in the evaluation metrics.
To the best of our knowledge, this is the first dataset that
includes comprehensive home descriptions in natural lan-
guage. Our major technical contributions are:
• Creating ZInD-Tell, the first ever large-scale dataset that

includes natural language descriptions of indoors, layouts
and panoramic images, by enhancing the well-established
Zillow Indoor Dataset [7].

• Offering a thorough statistical analysis and human evalu-
ations of the dataset to assess the quality.

• Proposing ZInD-Agent, a zero-shot baseline model, for
generating home descriptions from panorama images.

• Benchmarking ZInD-Tell dataset by comparing ZInD-
Agent’s performance with naı̈ve baselines across two
tasks: generation and retrieval.

2. Related Works
2.1. Indoor Scene Description Datasets
Several efforts have been undertaken to understand and de-
scribe indoor scenes. A pioneering dataset in this domain
is the NYUv2 [19], featuring indoor RGB-D scenes with
segmentation and 3D planes, including annotations of in-
door furniture objects. Sentences-NYUv2 dataset [14] ex-
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tended NYUv2 by creating descriptions of all 464 indoor
scenes, incorporating a semantic scene graph—illustrating
connections between indoor objects—and grounding these
objects/relations in the descriptions. The primary aim of
this dataset was to facilitate scene understanding through
natural language descriptions and semantic scene graphs.
Its main limitation, however, is its less image diversity and
relatively small in size for training deep learning models.

Recent advancements in Multimodal AI research have
increased interest in scene understanding, leading to a fo-
cus on simulated data for a richer variety of indoor scenes.
For instance, the AI2THOR [13] dataset allows the gener-
ation of extensive synthetic data using a game engine. An-
other branch of research has extended real indoor datasets
for scene understanding, such as the Spatial Common-
sense Graph (SCG) [11] and ScanNet [8] datasets, featuring
real-world 3D scans with scene graph annotations. Sim-
ilarly, 3DSSG [28] proposed a semi-automatically gener-
ated dataset for semantic scene graph prediction. Unlike
the aforementioned datasets, only the Sentences-NYUv2
dataset included sentence descriptions. Addressing this gap,
the ScanRefer [5] dataset provides extensive descriptions
of each RGB-D scanned indoor object within 3D bound-
ing boxes, significantly surpassing the SentencesNYUv2
dataset in both scene graph size and number of descriptions.

Existing datasets have predominantly focused on dis-
crete indoor rooms, not encompassing entire floors or build-
ings. Creating such datasets poses significant challenges,
including substantial effort and legal considerations. The
3D Scene Graph [2] dataset, however, circumvents these
challenges by using synthetic 3D scans of entire buildings,
containing data of floor-wise and room-wise 3D indoor
data, primarily 360◦ panorama images, along with 3D ob-
ject scene graphs, but lacks explicit language descriptions.
Another research direction involves creating navigational
instructions in natural language to guide embodied agents.
The REVERIE [22] dataset, for instance, focuses on scene-
focused language navigation, such as instructing an agent
to pick up a glass from a table, using First-Person View
(FOV) navigation paths built on the Matterport3D simula-
tor [4]. Similarly, datasets like R2R [1] and CVDN [26]
offer indoor navigation instructions. A recent extension of
the R2R dataset [29] augments descriptions in multiple lan-
guages using visual landmarks. These datasets primarily
assist in object localization using language instructions.

In contrast, our proposed dataset focuses on describing
entire homes coherently at both room and floor levels in nat-
ural language. The research objective is to learn the home
description generation from unordered sets of panorama im-
ages, with descriptions aiding in querying and retrieving rel-
evant homes. Since ZInD is derived from real-world unfur-
nished homes, its descriptions are grounded in real-world
indoor contexts, adding a novel dimension to this area.

3. Problem Definition
For a given home H ∈ H from the set of all homes H, there
exists floors fi ∈ H , where i ≥ 1 is the floor index. Each
floor fi contains a set of indoor panorama images, denoted
as Ifi = {Iij}Nj=1, where ith floorplan has N total images.
Each image Iij ∈ R3×X×Y represents an RGB format
with height X and width Y . Associated with each H are
M distinct ground-truth descriptions {D∗Hj

}Mj=1, satisfying
D∗Hj

̸= D∗Hk
for all distinct j, k ∈ {1, . . . ,M}. The goal

of an end-to-end model is to learn an optimal set of weights
θ∗, such that the generated description DH = f(θ∗, H) ap-
proximates D∗H . However, to the best of our knowledge, ex-
isting works do not provide D∗H for this specific problem.
Thus, subsequent sections will detail the curation of D∗H
following our proposed ZInD-Agent for predicting DH .

4. ZInD-Tell: ZInD + Description
In this section, we detail the creation of ZInD-Tell, explain-
ing the methodology employed to derive D∗H , for ∀H ∈ H
from the dataset. First, we discuss the structure and meta-
data of ZInD that are utilized in for deriving D∗H . Next, we
discuss the two distinct (geometry and factual) information
extraction procedures from the metadata. Finally, we dis-
cuss our approach on organizing the extracted information
that leads to the generation of D∗H , followed by human eval-
uation. Figure 2 depicts the high-level flow of the process.

4.1. Dataset Components and Annotations

The ZInD dataset comprises 1575 real residential homes,
featuring 67448 panorama images of vacant rooms. Each
room includes several 360◦ panoramas, categorized as pri-
mary and secondary. Annotations in the primary panorama
encompass the layout and W/D/O (window/door/opening)
details of each room. Additionally, room labels form part
of the dataset’s annotations. The primary panoramas are ar-
ranged to ensure co-visibility between adjacent rooms, im-
plying a partial overlap of images. Annotators manually
assess and incorporate the floorplans of each home in the
dataset. We denote the aggregation of all panorama images
of a home H as IH =

⋃
fi∈H Ifi , where each home aver-

ages 1.68 floorplans. These floorplans provide precise ge-
ometric details of each floor fi. A unique feature of the
dataset is the annotation of a single entry room in each
home, identified in one panorama image Iij . Moreover,
manual annotations include transformations such as trans-
lation, rotation, and scale for each room and floor [7].

4.2. Geometry Information Extraction

To analyze the internal structure of a home, understanding
the room-to-room connectivity is crucial. While the ZInD
dataset includes annotated vertices, it lacks explicit room-
to-room connectivity data. Consequently, we utilize exist-
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Figure 3. Distribution of room size and room labels of ZInD-Tell.

ing data to construct a connectivity graph, hypothesizing
that rooms in ZInD are interconnected via a door or an
opening (visual edge). For each panorama image Iij , we
initially extract the ground truth vertices of the room and
its corresponding D/O (door/opening). These vertices are
then projected onto the floorplan using the transformation
Tij ∈ SE(2). Subsequently, door vertices are assigned
to rooms based on overlapping vertex values. Connectivity
between two doors (di, dj)i ̸=j is determined if the vertices
are parallel within a specified angle threshold θd and dis-
tance threshold βd, based on the projected floor-level trans-
formations. These thresholds θd and βd are empirical and
consistent across all homes. A similar approach is applied
for openings (oi, oj)i ̸=j , with respective thresholds θo and
βo. An adjacency matrix MH

fi
∈ NR×R×2

0 is then for-
mulated for each floor fi of a home H , where R denotes
the number of rooms. Each element mi,j ∈ MH

fi
is a tu-

ple of (int, ctype). The first element (mi,j)1 represents
the absence (0) or presence (>0, indicating Euclidean dis-
tance) of a connection between two rooms. The second
element (mi,j)2, either D (door) or O (opening), speci-
fies the type of connection. This room-to-room connectiv-
ity graph is bidirectional, ensuring mi,j = mj,i. The re-
constructed floorplan, showcasing door (black edges) and
opening-based (green edges) connectivity, is depicted in the
top right image of Figure 2. The application of MH

fi
in con-

structing the graph is elaborated in subsequent sections.

4.3. Factual Information Extraction

The ZInD dataset offers explicit information which we
leverage for developing ZInD-Tell. Key elements utilized
include room labels, layout, and W/D/O bounding boxes.
To compute the size of rooms and W/D/O, we first calcu-
late their areas using vertex data, expressed in the dataset’s
units. Then, we determine floor-level room ratios by sum-
ming the area of all rooms on each floor and computing the
proportionate area of each. A similar approach is adopted
for W/D/O, calculating their respective percentage ratios.
Additionally, we categorize the area distribution into four
size bins: small, medium, large, and very large. This bin-
ning method is also applied to the distances in the room-
to-room connectivity analysis. Notably, our factual extrac-

Algorithm 1 ZInD-Tell Schema Generation for Floor fi
Require: GraphMP

fi
∈ NR×R×2

0 , start room node Sfi

Ensure: JSON-like schema Jfi
for floor fi

1: Initialize queue Q
2: Initialize visited array V with False for all nodes
3: Initialize JSON-like schema Jfi

as an empty structure
4: Q.enqueue(Sfi

)
5: while there are unvisited nodes do
6: r ← Q.dequeue()
7: Initialize an empty object O for node r
8: Set O.id← r
9: Set O.label← label(r)

10: Set O.size← size(r)
11: Set O.wdo←WD(r)
12: Set O.connections← an empty list
13: if not V[r] then
14: V[r]← True
15: for i from 1 to R do
16: ifMP

fi
[r][i][1] > 0 and not V[i] then

17: Q.enqueue(i)
18: Create a connection object C
19: Set C.index← i
20: Set C.type←MP

fi
[n][i][2]

21: Append C to O.connections
22: Add O to Jfi

23: if Q is empty and there are unvisited room then
24: Find unvisited room x with the highest adjacency
25: Q.enqueue(x)
26: return Jfi

tion process does not rely on explicit image features Iij , as
ZInD’s rooms are empty and lack furnishings.
Entry Room Identification process begins with the extrac-
tion of the entry room from each home. Despite each home
having exactly one entry room, denoted as Iij , this infor-
mation is not explicitly provided in the dataset metadata.
Instead, it is indicated in the ground truth floorplan image
through an upward arrow, as illustrated in Figures 2 and
5. Our analysis revealed that this arrow consistently points
north and is positioned below the entry door, distinguished
by a unique color. For a given home floorplan image IHfi ,
we isolate the arrow by removing all other pixels. Subse-
quently, we reconstruct a 2D floorplan from the room and
W/D/O vertices metadata, resulting in an image IH

f
′
i

, identi-

cal to IHfi size. vi is the set of pixel locations of door vertices
in IH

f
′
i

. Projecting IH
f
′
i

onto IHfi , we determine the pixel loca-
tion of the arrow, denoted as centroid pixel c in the projected
image. We store the pixel locations of projected door ids
and compute the pairwise distance (in pixels) between c and
each door di as D(di, c) =

√
(xdi

− xc)2 + (ydi
− yc)2,

where (x∗, y∗) represents the coordinates of di and c. The
nearest door dmin is identified using argmindi

D(di, c),
ensuring that dmin is above the arrow’s row pixel and al-
most parallel with a threshold angle θd. The identified door
id, dmin, is used to locate the corresponding Iij , which is
then recorded as factual information Sfi = Iij . For other
floors (k ̸= i), we set Sfk = ϕ. The top-right of Figure 2
visualizes IH

f
′
i

, with a green circle indicating dmin, identi-

cal to IHfi shown in the bottom left. We manually verified
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this pipeline for all homes. Out of the 16 out of 1575 ZInD
homes lacking this information, we manually labeled their
Iij . Because, we posit that entry room information is vital
for description generation, acting as a <begin> token. As
shown in Figure 2, the generated text integrates the entry
room information, illustrating its significance with phrases
such as “As you step into the very large living room...”.

4.4. Description Generation

In this section, we discuss the post-processing applied to the
extracted data. Further, we detail the utilization of the GPT-
4 LLM [21] for generating descriptions for building the final
ZInD-Tell dataset. We adopted two distinct techniques.
Schema Generation: This technique entails generating a
JSON-like structured data schema, denoted as J∗H , for each
home. The process involves iterating over annotation data
to extract geometric and factual information (Sections 4.2
and 4.3) for each floor. Specifically, we insert the factual
information of a room r, such as label(r) and size(r), and
include a list of W/D with their relative sizes (in bins) for
WD(r). Additionally, connected rooms to r are appended
based on MH

fi
. This schema generation is framed as a

Breadth First Search (BFS), starting from the entry room,
Sfi ∈ MH

fi
(assuming Sfi ̸= ϕ). The process entails level-

wise BFS traversal from Sfi , documenting factual and con-
nectivity information. If the BFS queue empties before vis-
iting all rooms, indicating isolated rooms, the algorithm en-
queues the room with the highest adjacency and continues
the traversal until all rooms in fi are visited. For floors
where Sfi = ϕ, Sfi is set to the room with the highest adja-
cency, following the same process. The detailed procedure
is outlined in Algorithm 1. The schema for each floor Jfi is
then merged as J∗H =

⋃
fi
Jfi and used in subsequent steps.

Template-based Primitive Descriptions: While the
schema J∗H provides comprehensive information about
home H , its format is not natural language, posing chal-
lenges for stochastic models such as LLMs in generating
semantically consistent descriptions. For instance, inter-
preting room-to-room connectivity graphs from J∗H and ac-
curately tracking each room id, r, can be complex. To ad-
dress this, we introduce a template-based approach to en-
hance the initial seed step for LLMs. This technique em-
ploys the same BFS exploration technique as Algorithm

1, exploring each floor until all rooms are visited. How-
ever, we propose semi-automatic text generation using pre-
defined templates. For instance, a template for room factual
information might read: “Room <room id(r)> is labeled
as <room label>, with a size of <room size>, constituting
<room size percent>% of the total floor area.” Addition-
ally, separate templates describe the factual information of
W/D/O for each room. We utilize three templates to delin-
eate 1) room factual info, 2) W/D/O details, and 3) room-
to-room connectivity. This approach results in numerous
semi-automatic factual texts for each floor, providing a rich
textual dataset that can be more effectively processed by
stochastic LLMs for home description generation, i.e., T ∗H .
Final Descriptions Generation: To generate final descrip-
tions, we employ GPT-4 LLM [21] with a context length
of 32000 tokens. Both J∗H and T ∗H for all homes are to-
kenized. The maximum token counts for J∗H and T ∗H are
5777 and 3671, respectively. For the LLM-based genera-
tion, we use a standardized prompt2 for each of J∗H and T ∗H ,
with a maximum token length of 159. These prompts, con-
catenated with J∗H and T ∗H , feed into the LLM. Given the
total prompt size remains below 32000 tokens, we antici-
pate adequate context for the LLM to avoid hallucinations.
The prompts instruct the LLM to generate descriptions with
a maximum of 500 words. Hence, for each home H , two
Ground Truth (GT) descriptions are produced, denoted as
D∗H = {γ(J∗H), γ(T ∗H)}, where γ(.) represents the output
from GPT-4 LLM. The entire process is depicted in Fig. 2.

4.5. Human Evaluation of the Descriptions

As the descriptions are generated, we cross-check the qual-
ity of the generation, i.e., the correctness of the description
based on the schema. Hence, we employ human evaluation
to perform this task. As mentioned earlier, for each H we
produce two types of home descriptions, {γ(J∗H), γ(T ∗H)}.
We designed a user interface (shown in suppl. material)
that displays the floor plan panoramas on the left (with a
slider to change floors) and the generated description on the
right. The evaluators are given a random description from
{γ(J∗H), γ(T ∗H)} to minimize bias. They evaluate the rele-
vancy of that description of the home by inspecting the floor
plan panoramas. The relevancy score is based on a Likert
scale, ranging from 1 to 10. For each home description, we
collect evaluation from at least two different subjects and
then compute the average. (A third evaluator is used only if
the difference between the first two scores is > 3.) After the
survey, hypothetically, we remove homes with descriptions
having average relevance scores < 6 from the dataset. It
turned out that all the average scores we collected are > 6.
Hence, we are able to use all 1575 × 2 descriptions in our
dataset. Also, another interesting phenomenon is that the
γ(J∗H) has on average 8.05± 1.41, where 7.96± 1.32 was

2To be released with the dataset
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Table 1. Unique POS tags of the ZInD-Tell dataset
Type #Noun #Adj. #Verb #Adv.
γ(J∗

H) 793 479 380 110
γ(T ∗

H) 734 435 336 120

for γ(T ∗H), for ∀H ∈ H. While the difference is small, it
appears that the GPT-4 LLM learns a little better context
while parsing the schema compared to parsing through a
large set of templated content for ZInD-Tell.

5. Analysis of ZInD-Tell Dataset

In this section, we analyze the final generated GT dataset,
ZInD-Tell, in multiple aspects. First we study the embed-
ding space, followed by the sentence and label distributions.
Embedding Space: We encode the {D∗H}H∈H, obtained
using γ(J∗H) for each home H , with the ‘all-MiniLM-L6-
v2’ sentence transformer3 chosen for its efficiency and com-
pact size. This model transforms each description into a
384-D vector, which we then project into a 3D space using
t-SNE [27]. Figure 5 visualizes this 3D space, with the third
axis represented by color hue. Our analysis reveals two
key observations: firstly, the embeddings are closely clus-
tered, indicating minimal spatial separation between them.
The similarity metric ranges from a maximum of 0.97 to a
minimum of 0.52, reflecting the limited diversity in floor-
plans, predominantly influenced by geometric factors. Sec-
ondly, selecting two proximal points and two distant points,
we observe that visually similar floorplans correspond to
nearby embeddings, while structurally distinct floorplans
align with distant embeddings (Figure 5). This suggests the
dataset’s potential for retrieval tasks based on descriptions.
Furthermore, the deployment of larger models for embed-
ding γ(J∗H) might enhance retrieval performance. We also
illustrate embedding space of γ(T ∗H) in suppl. material.
Distributions: In Figure 3 and 4, key dataset distributions
are depicted. The first is the room size distribution, with a
notable predominance of ‘small’ rooms (38.5%), as high-
lighted in Figure 3a. The sub-figure 3b also illustrates the
room label frequencies, where ‘closet’ emerges as the most
common room type. This prevalence is attributed to prop-
erties often having multiple closets, and bedrooms typically
including at least one closet. Consequently, ‘closet’ appears
more frequently than ‘bedroom’, the latter being the second
most common room type. This dominance of ‘closet’, pri-
marily due to its smaller size, is evident in Figure 3a. In
Figure 4a, the word distribution for both γ(J∗H) and γ(T ∗H)
across all homes is illustrated. Notably, most descriptions
contain approximately 400 words, aligning with the guide-
line to not exceed 500 words in the prompt. Despite this,
due to the stochastic nature of LLMs, some homes exhibit
up to 782 words. Interestingly, the word distributions gener-

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

Semantically different homes

Semantically similar homes

Figure 5. Visualization of the description embedding space.
Each point in the 3D plot (in the middle) is embedding projection
of a single home. The high-dimensional description embeddings
are projected into 3D space using t-SNE [27]. Sampling two close
embedding points result is very similar homes, i.e., floorplans (in
the right), whereas, sampling two points far away corresponds to
structurally dissimilar homes as shown in top-left and bottom-left.

ated by both J∗H and T ∗H are nearly identical, reflecting sim-
ilar relevancy scores assigned by human evaluators. This
trend is also observed in the unique 4-grams distribution in
Figure 4b. The plot demonstrates the increase in unique
4-grams with a growing number of homes. Given the di-
versity of the descriptions, there are 98996 unique 4-grams
for only 1575 homes. It is almost identical for both γ(J∗H)
and γ(T ∗H). The analysis of the number of unique Part-of-
Speech (POS) tags is presented in Table 1. It is observed
that γ(J∗H) encompasses a broader array of unique POS tags
compared to γ(T ∗H), with the exception of adverbs. This
observation corroborates the findings from human evalua-
tions, suggesting that the descriptions generated by γ(J∗H)
are more diverse, evidenced by a diversity proportion of ap-
proximately 0.09 in Sec. 4.5. We discuss the room label
distributions extracted directly from text in suppl. material.

6. ZInD-Agent: Zero-Shot Baseline Model
In this section, we discuss the proposed a zero-shot base-
line model, ZInD-Agent. Essentially, this model will be
based on existing pre-trained model on sevel components.
The main purpose of this zero-shot model is to establish a
baseline performance to carry forward further research on
ZInD-Tell. ZInD-Agent generates descriptions from an un-
ordered set of 360◦ panorama images, which is expected to
approximate the D∗H descriptions. It consists of multiple
modules with different objectives. Hence, these modules
work together on the unordered panorama images {Iij}Nj=1

for every fi ∈ F of H and generate DH end-to-end. We
discuss the module-wise performance in suppl. material.

6.1. Assumptions

We assume that the input to the model will be a unordered
set of 360◦ panorama images. The panorama images are
captured from indoor and cover entire room. Also, the im-
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Figure 6. ZInD-Agent. This zero-shot model incorporates several existing modules for generating DH . Given a set of pano images of a
home as input, it initially extracts factual information from each image. Subsequently, it predicts the room connectivity graph M̃H

fi
based

on the panos in fi. The data are then aggregated on each fi to construct a schema, then subsequently passed into the LLM to generate DH .

ages are in equirectangular form, i.e., captured in such a
way that it has 360◦ horizontal and 180◦ vertical field-of-
view of the room and all W/D/O, respectively. In addition,
the image of each room partially overlaps with other adja-
cent room, i.e., there is a co-visibility between two adjacent
rooms via D or O as all doors are opened for all rooms in
ZInD dataset. To this end, we also assume that input to the
model has floor-wise subset F of the panorama image set,
hence {Iij}Nj=1 ⊆ IH . Also, the Iij , for which Sfi = Iij ,
is passed to the model as one-hot encoding.

6.2. Room Classification Module

In this section, we discuss the zero-shot method for room
classification. Essentially, the module will classify all IP .
However this is a challenging problem, because to classify
a room, several semantic cues, e.g., furnitures play crucial
roles. As all rooms in ZInD dataset are empty, it becomes a
more challenging problem. We leverage CLIP [23] for this
task as this model is jointly trained on a massive scale of
Language and Image data and is widely used in many down-
stream tasks [3, 6, 18]. First, we encode all room labels
using CLIP sentence encoder. We augment the label texts
such as “This is a <room label>”. Then, for each Iij , we
convert the equirectangular pano image to 6 cubemap im-
ages. We then encode all images using CLIP image encoder
except for ceiling and floor images, as they don’t contain
significant information. Hence, for a (3×X × Y ) dimen-
sional panorama image, we have (512× 4) dimensional im-
age embedding space. Then, we mean pool it along the 2nd

dimension and then find Top-1 cosine similarity label based
on the image and text embedding spaces.

6.3. Layout and Size Estimation Module

The task of this module will be to estimate the layout of
each Iij along with approximating W/D/O locations. We
use modified HorizonNet [24] model; it is trained with the
partial room shape geometry that can predict both floor-wall

boundary and W/D/O approximate scores. The model is
trained on Zillow’s internal data. We apply the pre-trained
model to all panos {IH}H∈H and store the detection results.
Then, we use HoHoNet [25], a state-of-the-art mono-depth
estimator model for all pano images to calculate depth. Af-
ter that, we project the depth map to the boundary pixels of
both room and W/D/O to approximate the actual size.

6.4. Room-to-Room Connectivity

For a floor fi ∈ H of a home, we want to identify the ad-
jacency of each room, i.e., predict if Iij is adjacent to Iik,
where j ̸= k. As mentioned in Section 6.1, we assume
that the panorama images have co-visibility as all doors are
open and the pano images are captured such a way that they
cover an entire room and fraction of adjacent rooms. The
prediction is challenging and there has been several works
recently to recover the connectivity geometry, e.g., predict-
ing pose graphs [12, 20]. In this paper, we use state-of-
the-art Semantic Alignment Verification (SALVe) [15]. The
SALVe system generate multiple alignment hypotheses be-
tween (Iij , Iik) based on W/D/O by projecting panorama
images to bird’s eye view (BEV). Then, they verify if both
of the projected images contain semantic overlap based on a
learned threshold. Finally, the model predicts a pose graph
and optimize using GTSAM [9]. We utilize the pretrained
SALVe model to infer the floor-wise connectivity graph. In
this process, we also build the connectivity-type (door or
opening) based on the matched hypotheses. Hence, the pre-
dicted connectivity graph M̃H

fi
≈ MH

fi
.

6.5. Description Decoder

In this section, we discuss the integration of modules for
generating DH for ∀H ∈ H, closely mirroring the ground
truth decoding steps outlined in Section 6.5. Algorithm 1
from Section 6.5 is employed here, taking M̃H

fi
and Sfi for

∀fi ∈ F , along with the predicted room label, size, and
W/D/O sizes from Sections 6.2, and 6.3, to construct the
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Table 2. Comparative results for Description Generation and Language-Based Home Retrieval. This table compares the zero-shot
baseline model with CLIP-R for retrieval and BLIP-2 for generation tasks, using relevant metrics. Here, B@k and Emb. denote BLEU and
Embedding scores, respectively. For the results columns with (↑), higher value indicates better performance, vice versa for (↓) columns.

Language Based Home Retrieval Description Evaluation

Model R@1 (↑) R@10 (↑) R@20 (↑) MdR (↓) MnR (↓) B@2 (↑) B@4 (↑) METEOR (↑) CIDEr (↑) ROGUEL (↑) Emb. (↑)

CLIP-R 0.95± 0.32 7.28± 0.32 15.19± 0.15 75.75± 0.25 77.27± 0.38 - - - - - -
BLIP-2 - - - - - 12.92± 5.33 1.52± 1.91 15.75± 2.08 16.05± 3.65 14.32± 2.92 0.52± 0.04

ZInD-Agent 3.16± 0.32 16.84± 1.87 33.51± 3.65 48.32± 5.83 53.91± 3.09 27.26± 3.73 10.94± 1.89 28.16± 2.82 33.18± 3.32 32.15± 3.82 0.69± 0.08

schema JH . Subsequently, JH is fed into the GPT-4 LLM
using the same prompt as for J∗H to generate DH . The sub-
sequent sections will explore the experimental procedure
employed to evaluate DH against D∗H on several tasks.

7. Experiments

7.1. Language Based Home Retrieval

Here, we evaluate ZInD-Agent’s performance on language-
based home retrieval task. Section 5 outlines the method
of mapping home descriptions into an embedding space, as
illustrated in Figure 5. The retrieval process involves us-
ing the model to generate home descriptions, embedding
these descriptions, and calculating cosine similarity with all
ground truth descriptions. We assess retrieval performance
using Recall at Rank K (R@K), Median Rank (MdR), and
Mean Rank (MnR) [10, 17] (see Table 2). Additionally, we
compare ZInD-Agent against a naı̈ve text-to-home retrieval
method, termed CLIP-R, which involves mean-pooling em-
beddings of all pano images IP extracted with the CLIP
image encoder, followed by embedding the ground truth
descriptions D∗H using CLIP sentence encoders. We then
compute cosine similarity between the embeddings from
the image and description encoders and evaluate recall met-
rics. Table 2 reveals that ZInD-Agent outperforms CLIP-
R by an average margin of 116.93%. This substantial im-
provement is attributed to effective geometry extraction, es-
sential for accurately identifying key attributes of homes.

7.2. Home Description Generation

This task evaluates the performance of descriptions gen-
erated by ZInD-Agent. We employ standard sentence
evaluation metrics such as BLEU, METEOR, CIDEr, and
ROUGEL, utilizing the MS-COCO toolkit4. Additionally,
we calculate the cosine similarity between actual and pre-
dicted descriptions, with results presented in Table 2. Sim-
ilar to the retrieval task, a naı̈ve CLIP-based description
generation method is implemented, utilizing BLIP-2 [16],
a state-of-the-art zero-shot image captioning model. BLIP-
2 employs a frozen image encoder and language decoder,
linked via latent embedding. Given an image and a prompt,
it generates descriptions. In this experiment, mean-pooled
panoramic images were used as prompts for generating

4https://github.com/tylin/coco-caption

home descriptions. The performance comparison of ZInD-
Agent and BLIP-2, shown in Table 2, reveals that ZInD-
Agent significantly outperforms BLIP-2 across all metrics.
This superior performance improvement by 180.65% on av-
erage (for all metrics) is primarily attributed to the zero-
shot model’s ability to accurately infer floor-level and room-
level contexts from unordered image sets, complemented by
its size estimation capabilities, leading to the descriptions
that are syntactically and semantically more precise.
Although our proposed zero-shot baseline model surpasses
naı̈ve techniques, there is considerable room for improve-
ment, as the current results are far from what would be
deemed robust performance. Consequently, follow-up re-
search focusing on end-to-end learning, utilizing the ZInD-
Tell dataset, are anticipated to be pivotal in enhancing the
overall performance on both tasks.

8. Limitations and Future Extensions
We acknowledge that as the ZInD dataset is limited to North
American residential homes, descriptions in ZInD-Tell are
also limited to that scope. Nevertheless, this research opens
avenues for further exploration in a novel domain. At the
dataset level, our efforts will expand into the Visual Ques-
tion Answering [22] task, focusing on grounding, where the
rationale for each sentence generation is linked to the corre-
sponding image. Technically, ZInD-Tell dataset facilitates
semantic matching of homes or floorplans, enabling search,
retrieval, and generation tasks based on natural language
queries. For instance, it allows a model to associate queries
with original homes, or generating entire floorplans.

9. Conclusion
This paper addresses the novel challenge of generating natu-
ral language descriptions from unordered indoor panorama
images. We present the novel ZInD-Tell dataset, created
on top of ZInD, detailing information extraction, construc-
tion, and evaluation methods. To the best of our knowledge,
ZInD-Tell is the first dataset for natural language descrip-
tions of indoor homes. We then introduce ZInD-Agent, a
zero-shot baseline, to initiate the benchmarking on ZInD-
Tell dataset, focusing on home retrieval and description
evaluation tasks. In both tasks, ZInD-Agent outperforms
naı̈ve methods, emphasizing the significance of the room-
level and floor-level geometric information to semantically
understand the scene for home description generation.
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