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Abstract

Medical image captioning plays an important role in
modern healthcare, improving clinical report generation
and aiding radiologists in detecting abnormalities and re-
ducing misdiagnosis. The complex visual and textual data
biases make this task more challenging. Recent advance-
ments in transformer-based models have significantly im-
proved the generation of radiology reports from medical
images. However, these models require substantial com-
putational resources for training and have been observed
to produce unnatural language outputs when trained solely
on raw image-text pairs. Our aim is to generate more de-
tailed reports specific to images and to explain the rea-
soning behind the generated text through image-text align-
ment. Given the high computational demands of end-to-end
model training, we introduce a two-step training methodol-
ogy with an Intelligent Visual Encoder for Bridging Modal-
ities in Report Generation (InVERGe) model. This model
incorporates a lightweight transformer known as the Cross-
Modal Query Fusion Layer (CMQFL), which utilizes the
output from a frozen encoder to identify the most relevant
text-grounded image embedding. This layer bridges the
gap between the encoder and decoder, significantly reduc-
ing the workload on the decoder and enhancing the align-
ment between vision and language. Our experimental re-
sults, conducted using the MIMIC-CXR, Indiana Univer-
sity chest X-ray images, and CDD-CESM breast images
datasets, demonstrate the effectiveness of our approach.
Code: https://github.com/labsroy007/InVERGe

1. Introduction

The growing volume of medical imaging data presents a
significant challenge to radiologists, who are under pressure
to analyze and report results promptly. To address this chal-
lenge, automated medical report generation has emerged

Figure 1. Illustration of two sets of sample reports produced by
the InVERGe model, alongside their corresponding ground truth
reports for comparison. The matched text is highlighted in the
same color, underscoring the alignment between the predicted and
actual reports.

as a valuable solution, reducing workload, reducing diag-
nostic errors and streamlining clinic workflow. In this pa-
per, the main objective is to create clear reports about the
image’s content. This work typically follows an encoder-
decoder architecture, with an image encoder extracting fea-
tures from the image and a large language model (LLM)
decoder converting these features into text output. When
applying conventional image captioning models directly to
medical report generation, performance often suffers. From
the previous methods, we also observe that single vanilla
Vision Transformer (ViT) [32], initially trained for tasks
such as natural image classification or convolutional neural
network (CNN) struggles to extract whole information from
the medical images due to slight differences between medi-
cal images which make it a challenging task. Also in med-
ical imaging [10, 28, 41, 42], capturing pixel-level details
such as colour is unnecessary but region, intensity and other
details are important. That’s why we need a powerful ViT,
trained on medical images that will extract high-quality fea-
tures that can help the decoder generate reports. Therefore,
we employ a Self-Supervised Joint-Embedding Predictive
Architecture like - I-JEPA [5] to efficiently train our encoder
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in a self-supervised manner [27], obtaining high-level se-
mantic image representations. It learns robust off-the-shelf
representations without the use of hand-crafted view aug-
mentation. The fundamental idea behind this architecture is
to predict various target sections within the image.
Since the encoder has not seen texts during their unimodal
pretraining and the decoder has also not seen the images
during their unimodal pretraining, it becomes challenging
to merge them and attain effective alignment between vi-
sion and language in our task. To bridge this modality gap
requires tighter integration of visual and text representa-
tions, We incorporate an intermediary CMQFL layer to ob-
tain text-grounded image embeddings which boosts the de-
coder to generate reports. Since end-to-end model training
of a huge encoder-decoder model requires lots of comput-
ing power, we propose a this two-step training approach. In
the first stage, we train the CMQFL layer to enhance vi-
sual representation. In the second stage, we fine-tune the
decoder. Our model exhibits better performance than the
existing state-of-the-art (SOTA) models. As a result, the en-
tire network gradually enhances its performance, ultimately
acquiring the capability to enhance image-based text gener-
ation, as demonstrated in Figure 1.

The key contributions of this work are summarized as :

• Our image-grounded text generation pre-training em-
ploys a self-supervised image representation task to en-
hance semantic depth. This involves predicting missing
information using pixel reconstruction in an abstract rep-
resentation space without reliance on external knowledge
or transformations. The improvement in report generation
is achieved without requiring extra features, annotations,
external datasets, or task-specific knowledge.

• We introduce a CMQFL layer to enhance report genera-
tion by obtaining a text-grounded image embedding. This
layer, trained jointly with the main model, selectively
provides crucial image features alongside text, optimiz-
ing the process. The iterative approach aims to detect
subtle disparities and produce concise, high-quality text-
grounded image embeddings and also boost the decoder’s
ability to generate reports.

• To enhance method explainability, we have used a mech-
anism that validates image regions corresponding to the
report. This involves plotting attention map features from
the encoder alongside the CMQFL layer and also plotting
the attention maps for individual words.

2. Related work

2.1. Image grounded text generation

This task involves generating descriptive sentences for a
given image. However, medical report generation is more
challenging than image captioning and reports are usually
much longer than captions. Several approaches have been

proposed in previous years [16, 35], including approaches
using CNNs as image encoders and recurrent neural net-
work (RNN) as a decoder. However, after the improve-
ment of ViTs and transformers’ attention mechanism, most
of the models used ViT as the encoder and LLM as a de-
coder. These architectures incorporate the dual-encoder ar-
chitecture [24, 39], the fusion-encoder architecture [34],
the encoder-decoder architecture [14, 51] and more re-
cently, the unified transformer architecture - Bootstrap-
ping Language-Image Pre-training (BLIP) [30] and Beit
[49]. Over the years, several pre-training objectives have
been put forth, gradually coalescing around a select few
proven approaches. These include image-text contrastive
learning [29, 39, 55], image-text matching in Align be-
fore fuse [29] and Vlmo [8] and (masked) language mod-
elling [29, 49, 57]. BLIP-2 [32] has a Q-Former that uses a
frozen visual encoder and then enables zero-shot image-to-
text generation through a frozen LLM.

2.2. Radiology Report Generation

Some approaches [11, 31, 43] use a robust CNN-based net-
work that encodes images into visual features and a strong
sequential network based on RNN that takes visual features
as an initial state to generate image reports. Among these
approaches, show attend and tell [53] paper gives the idea
of putting some attention to the encoder output to get image
grounded caption. Drawing inspiration from this frame-
work, inspired by human intelligence, several papers ap-
plied the attention mechanism [35, 56]. The paper [20] em-
ploys segmentation models like UNet and TorchXRayVi-
sion to extract features from segmented regions. These fea-
tures are then concatenated to form comprehensive image
features. R2Gen [13] utilises a memory-based Transformer
architecture, allowing it to remember important informa-
tion from earlier in the report and uses a special method
to include this memory in the report generation process.
A recent publication introduced R2GenGPT [52], which
is quite similar to the BLIP-2 model but trained on med-
ical image datasets. X-REM [23] method which uses im-
age text similarity loss to get important features from the
image. M2Transformer [16] employs a Meshed-Memory
Transformer architecture with region encoding to enhance
image captioning performance by the integration of a pri-
ori knowledge. CvT2DistilGPT2 [36] illustrates that pre-
trained models designed for conventional computer vision
and natural language tasks can provide valuable support
for generating radiology reports. CXR-RePaiR [19] ad-
dresses the problem of medically inconsistent information
in reports using text-grounded image labels. It labels a
report that has the highest cosine similarity in CLIP [39]
text embeddings with CLIP image embedding. To calcu-
late this similarity score, two pre-trained singular modal-
ity encoders are used. The HReMRG-MR [54] model
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used reinforcement learning after the decoder to penalize
the incorrectly predicted words. They adopted varying
weighted hybrid rewards derived from their search solution
and used them as training rewards. The PPKED [34] model
consists of three main components: Posterior Knowledge
Explorer (PoKE), Prior Knowledge Explorer (PrKE), and
Multi-domain Knowledge Distiller (MKD). PoKE identifies
explicit abnormal regions in the image using ResNet-152.
PrKE examines relevant prior knowledge related to the im-
age for that they use some pre-structure words for both nor-
mal and abnormal images. MKD can distil and integrate the
subsequent and prior knowledge to create the report.

2.3. Multimodal Task

After the evolution of the LLMs, researchers used this for
visual language modelling. LLMs have demonstrated the
ability to master novel tasks. They exhibit distinct be-
haviours and remarkable emergent abilities, like GPT-3’s
[9] proficiency in few-shot learning, compared to smaller
models like BERT [17] and GPT-2 [38]. Recent LLMs
such as GPT-3 [9], PaLM [4, 15], LLaMA [44, 45], Vi-
cuna [59], GPT-4 [2] demonstrate enhanced capacity when
scaled in terms of model size or data. Several multimodal
models have emerged in biomedical applications. Notably,
Geneformer [60] focuses on context-specific predictions in
low data networks biology application, BiomedGPT [58]
combines medical images and literature but requires task-
specific fine-tuning using a combination of language model
and masked image infilling objectives, while Med-PaLM M
[47] tackles multiple biomedical tasks without further fine-
tuning for further downstream applications.

2.4. Masked Image Modelling

Masked image modelling (MIM) has made significant
progress in parallel with masked language modelling
(MLM) [9, 12, 22, 46] tasks in NLP, although initially in a
less prominent position. Pioneering efforts, such as context
encoder methods and Contrastive Predictive Coding (CPC)
[22, 46], predict masked areas and missing pixels in images.
Modern vision transformers such as ViT [18], and BEiT [7]
have revived this approach with innovative design elements
including pixel clustering, average colour prediction, and
tokenization via dVAE networks. Recent I-JEPA [5] model
introduces an effective method for learning semantic im-
age representations, not pixel-level information, emphasiz-
ing simple representations without representational space
prediction and scene augmentation for rapid convergence.

3. Method
We give an overall architecture overview of our model in
Figure 3. Our model has three main components - an im-
age encoder, a BERT-based CMQFL layer responsible for
generating text-grounded image embeddings, and our de-

coder Vicuna, which draws its inspiration from the LLAMA
model.Our model architecture operates in two distinct train-
ing stages. Initially, the pretraining stage involves training
the encoder once for fine-tuning. In the first stage, we train
the CMQFL layer with a frozen image encoder which is
trained for different tasks and the frozen decoder performs
pre-training using pairs of images and corresponding re-
ports. Lastly, we finetune the LLM according to the output
of the CMQFL layer. This comprehensive process culmi-
nates in the generation of the final report, bridging the gap
between visual content and textual description effectively.

3.1. Encoder

For the visual encoder of our model, we fine-tuned the I-
JEPA model using the NIH dataset. For that, we initialized
the model’s weights from [5]. In total, there are three parts:
the context encoder (CE), the predictor (fϕ), and the target
encoder (TE) of that model.

C
ontext Encoder

Predictor

Target Encoder

Masked Image patches Visible Context
patches Embedding

IB of Target Encoder Prediction of IB

Figure 2. Visual representation of the initial step of training the
encoder component of the InVERGe model.

In Figure 2, after masking the patches in block-wise, it
uses the unmasked visible block to predict the originating
of the interested blocks by the TE (fθ̄). The CE (fθ) is also
a ViT that only processes the visible context patches. The
TE (fθ̄) is the same as the CE (fθ) which is interested in
some masked blocks. The predictor (fϕ) is a small ViT that
takes the CE’s output and predicts the representations of the
interested blocks of the TE (fθ̄) at a specific location. After
the prediction of the predictor, the L2 loss (i.e., D(Ex, Ey))
is computed between the interested block of the Target en-
coder and the Prediction of those blocks by the Predictor.

In this scenario, we employ gradient methods to fine-
tune the parameters of both the predictor fϕ and the CE
(fθ). Simultaneously, the parameters of TE ( fθ̄ ) are con-
tinuously adjusted, achieved by applying an exponential
moving average (EMA) technique to the parameters of the
context encoder. Adopting an EMA strategy for target en-
coders is essential in achieving effective training results for
joint embedding architectures (JEA) that incorporate ViT,
as discussed in [5]. These updates also ensure the target
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Figure 3. The architecture of the proposed InVERGe approach, includes our encoder trained on self-supervised methods, learnable CMQFL
layers, and Vicuna decoder.Specifically, the encoder encodes high-level semantic features and the CMQFL layer uses that information and
applies a query that will generate text-grounded image embeddings. Then the decoder uses that embedding to produce a report.

encoder captures high-level pixel information, thereby so-
lidifying its pivotal role as an invaluable component within
our model’s encoder.

After completing the training of the entire model, we
adopt the target encoder as our primary encoder for the pro-
posed InVERGe model.

3.2. Text Grounded Image Embedding

We introduce a CMQFL layer using BERT architecture be-
tween the encoder and decoder. This CMQFL layer con-
sists of learnable query embeddings, enabling interactions
among queries through self-attention and with image fea-
tures from the frozen encoder via cross-attention layers and
producing the most useful text-grounded image embeddings
for the decoder to generate the desired report. We ini-
tialize this CMQFL layer with pre-trained weights from
BERTlarge with the cross-attention layers which are ini-
tialized in a randomised way. In total, this CMQFL layer,
contains 32 queries, each with a dimension of 1024, result-
ing in a much smaller size (32 × 1024) compared to the
frozen image features (e.g., 257 × 1280 in the encoder).
This design, combined with our training three objectives as
shown in Figure 4, encourages the query tokens to extract
the most relevant visual insights from the image embedding
for the text generation.

We pre-train text-grounded image embeddings using
three key objectives: multimodal contrastive learning
(MCL), masked language modelling (MLM), and enhanc-
ing multi-modality matching (MMM) through the imple-
mentation of batch negative mining.

Multimodal Contrastive Learning (MCL) :
This objective function aims to optimize the alignment of
image-text labels, maximizing shared information which is
achieved by contrasting the similarity of positive pairs with
that of negative pairs. Interactions between query embed-

dings and image embeddings occur through cross-attention
mechanisms in the CMQFL layer, leading to the generation
of text-grounded image embeddings (Z) that are more in-
formative. Additionally, we consider the [CLS] token from
the text-transformer, denoted as tcls.

Figure 4. Model architecture of CMQFL layer and decoder at first
stage training of CMQFL layer. We jointly train the model using
three objective functions that enforce the query tokens to extract
the most relevant visual information for the text.

Since Z encompasses multiple output embeddings, each
corresponding to a different query, we evaluate the similar-
ity between each query output and tcls by calculating pair-
wise similarities. The highest similarity is then identified
as the image-text similarity. This similarity is computed us-
ing the function Lz(z) · Lt(tcls), where Lz and Lt apply
linear transformations to the embeddings, converting them
into normalized 1024-dimensional representations.

For the image-to-text similarity (sim(Q,T )), we employ
the following equation:

sim(Q,T ) =
max(Lz(z) · Lt(tcls))

τ
(1)
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For the text-to-image similarity (sim(T,Q)), the equation is
as follows:

sim(T,Q) =
max(Lt(tcls) · Lz(z))

τ
(2)

where τ is the temperature parameter.
To create the target vector (Yf ), we assigned unique inte-

gers to each item within a batch to facilitate the loss calcula-
tion. The target vector is specifically designed to match the
number of items in the batch, ensuring that each item has a
distinct target value. This allows us to calculate losses effi-
ciently and accurately during training. The objective func-
tion (Lmcl) is defined as the cross-entropy loss (CE) be-
tween Yf and sim :

Lmcl =
1

2
[CE(Yf , sim(Q,T )) + CE(Yf , sim(T,Q))] (3)

Masked Language Modelling (MLM) : Due to the
CMQFL layer’s architecture, direct interactions between
the fixed image encoder and text tokens are not initially
feasible. Therefore, the information necessary for text
generation is initially extracted by the queries. Now we
masked some text tokens and then passed them via self-
attention layers. Queries can interact with each other via
self-attention but all text tokens can interact with all the
queries and previous text tokens and produce the masked
tokens. Therefore, the queries are forced to extract visual
features that can produce the masked tokens of the text. For
that we use cross-entropy loss to improve its text genera-
tion ability, ensuring that it can efficiently and accurately
generate text autoregressively.

Lmlm = − 1

M

M∑
j=1

1mask(j) log(pij) (4)

Here, Lmlm represents the cross-entropy loss for masked
language modelling. In this equation, M is the number of
masked tokens, and 1mask(j) is an indicator function that
evaluates to 1 if token j is a masked token and 0 otherwise.
The purpose of this loss function is to guide the model in
minimizing the dissimilarity between its predictions and the
actual text for the masked tokens, promoting accurate text
generation. These variables are crucial in the computation
of the MLM loss, which focuses on the masked tokens and
is instrumental in training the model to enhance the accu-
racy of token predictions in an autoregressive manner. This
loss function ensures that the model maximizes the likeli-
hood of the text tokens, particularly the masked ones, dur-
ing training, a vital aspect of autoregressive text generation.

Multi-Modality Matching (MMM) : This procedure is
designed to determine whether an image and text pair is ei-
ther positively matched or not. To achieve this, We leverage
a bi-directional self-attention mask where all queries and

texts can appear to each other. As a result, the query em-
bedding, denoted as Q, effectively captures multimodal in-
formation. Then we pass each query embedding through a
binary classifier to get the two-class probability score which
indicates whether the pair is matched or not. Then we take
an average of the probability scores of all the queries as
the final matching score (p). To enhance the quality of
positive-negative pairs, we take negative sample pairs from
the batch. Here we utilize the hard negative mining strategy
inspired by ALBEF [29] to construct close negative pairs.

Lmmm = − 1

B

B∑
i=1

C∑
j=1

yij log(pij) (5)

In our approach, we employ the Cross-Entropy Loss
(Lmmm) to assess the dissimilarity between predicted
and ground truth class probabilities. During the training
process, we operate with a batch size denoted as B. Here,
i represents the sample index, j indicates the class index,
and C is set to 2, signifying the two classes for matched
and unmatched pairs. The variables yij and pij correspond
to the ground truth probability of class j in sample i and
the predicted probability of class j in sample i, respectively.

The total pre-training objective for training the CMQFL
layer of InVERGe consists of a combination of three dis-
tinct damage components:

L = Lmcl + Lmlm + Lmmm (6)

3.3. Decoder

After training the CMQFL layer, it becomes adept at ex-
tracting relevant information from image features. To en-
sure consistency between the output of the CMQFL layer
and the input of LLM, we employ a fully-connected layer
for linear projection. This projection transforms the out-
put embeddings from the CMQFL layer for the input of the
decoder (i.e., Vicuna). These newly projected embeddings
are then prepended to the input text embeddings, effec-
tively acting as soft visual cues that condition the decoder
on the visual context received by the CMQFL layer. Be-
cause the CMQFL layer is pre-trained to capture language-
informative visual features, it acts as an effective informa-
tion filter. This filter selectively delivers the most relevant
visual information to the LLM while filtering out less rele-
vant visual details. This not only eases the LLM’s burden in
learning the alignment between sight and language but also
reduces the problem of catastrophic forgetting.

In the fine-tuning process of the decoder, we use the
frozen CMQFL layer and exclusively employ the MLM loss
given by the model. This architectural configuration ensures
close integration of visual and textual information.
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4. Experiments
4.1. Dataset Description

For this experiment, we train the encoder using the NIH
dataset [50]. For generating the reports, we utilize three
datasets: IU-Xray, MIMIC-CXR and CDD-CESM.

MIMIC-CXR: This extensive dataset [25] is commonly
used for tasks involving generating reports. It includes
10 folders, comprising a total of 377,110 chest X-ray im-
ages and 227,835 corresponding reports. In our research,
we specifically focus on the ‘p10’ folder, which contains
36,337 images.

IU-Xray: The IU-Xray dataset [1] serves as a well-
recognized benchmark for evaluating the performance of
radiology report generation techniques. It includes 7,470
chest X-ray images, each paired with a corresponding radi-
ology report, totalling 3,955 reports. To prepare the data for
our experiments, we initially filtered out entries lacking of
findings section.

CDD-CESM: The Breast dataset [26] contains 1003
low-energy images along with corresponding subtracted
CESM images, featuring CC and MLO views for both
breasts. This dataset is derived from 326 female patients.

In each dataset, we split the dataset into training, valida-
tion, and testing sets, with proportions of 75%, 10%, and
15%, respectively.

4.2. Experimental Settings

Metrics: Our evaluation employs a set of well-established
metrics, namely BLEU [37], METEOR [6] and ROUGE-L
[33]. These metrics are computed using the standard eval-
uation toolkit. It’s worth noting that BLEU and METEOR
were initially developed for assessing machine translation
quality, while ROUGE-L is specifically designed for evalu-
ating the quality of textual summaries.

Implementation Details: For image feature extraction,
we use the target encoder that operates on non-overlapping
(14 × 14) patches, part of the whole trained encoder 3.1.
The extracted features consist of 257 patches, each with a
dimension of 1280. Then we employ a projection layer to
reduce it to 1024 for the CMQFL layer input. The queries
are learned from the CMQFL layer, to extract the most
useful information from the image features. This vector is
then transformed into the shape required for input into the
decoder, which generates the final report. We first train the
CMQFL layer while freezing all other parts of the model,
and then we fine-tune the decoder for better results. During
encoder training, we use the AdamW optimizer with a batch
size of 4, and the learning rate is linearly increased from
1.0e-4 to 1.0e-3 during the first 10 epochs of pretraining and
decays to 1.0e-6 following a cosine scheduler for last 20
epoch. We start with an initial weight decay of 0.04, which
progressively increases to a final value of 0.4. Training

is conducted at a resolution of (224 × 224) pixels. Addi-
tionally, we introduce momentum with an initial value of
0.996, which is linearly increased to 1.0 during pre-training.

For both tasks, we utilize the AdamW optimizer with
mathematical parameters: β1 set to 0.9, β2 set to 0.999, and
a weight decay of 0.05. Our training process involves 1000
warm-up steps for the IU dataset and 5000 for the MIMIC
dataset, with a warm-up learning rate of 1e−4. We employ a
cosine learning rate decay strategy, beginning with an initial
learning rate (lr) of 1e−3 and gradually decreasing to a final
lr of 1e − 7. Throughout both training and evaluation, we
consistently use a batch size of 4 due to limited resources.

To train the model, we begin by pre-training the CMQFL
layer for 20 epochs. Following this, we proceed to fine-tune
the decoder with 25 additional epochs. The entire process
takes place with the assistance of an NVIDIA RTX A4000
GPU, which has 16 GB of memory for computational tasks.

4.3. Quantitive Results
We conducted a comprehensive comparison of our model
with nine SOTA radiology report generation approaches in
Table 1. These methods encompass a wide range of tech-
niques, including both classic and modern approaches such
as Show-tell [48], AdaAtt [35], Att2in [40], Up-down [3],
R2Gen [13], M2transformer [16], X-REM [23], BLIP-2
[32] and R2GenGPT [52]. The proposed InVERGe model
demonstrates superior performance across nearly all met-
rics. In both the MIMIC-CXR and IU datasets, we achieve
superior performance compared to the latest R2GenGPT
medthod across all metrics except BLEU-4. The reason be-
hind this improvement is the selection of robust encoder that
generate high-level semantic features and the CMQFL layer
that generates text-grounded image features.

4.4. Qualitative Results

In Figure 5, we present visualizations of individual words
from the report, showcasing how our model not only gen-
erates reports but also connects specific words to distinct
sections of the image. First, we retrieve the attention map
from the last layer of the text decoder cross-attention layer.
These attention maps capture the model’s focus on differ-
ent regions of the image corresponding to specific words in
the input text. The attention maps are then processed to ob-
tain a single map per word by taking the maximum attention
score across all attention heads. Subsequently, these maps
are reshaped to match the dimensions of the image.

5. Ablation studies
5.1. Variour Image Encoder

We employ different frozen encoders to extract optimal fea-
tures from images. Our image encoder choices cover a
range of models, including the standard ViT, the Masked
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Table 1. Comparison of the proposed InVERGe and other SOTA methods on the MIMIC-CXR, IU and CDD-CESM datasets. A higher
value indicates superior performance in all categories. The best performance is highlighted in bold.

DataSet Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Show-Tell [48] 0.279 0.159 0.101 0.076 0.121 0.251

AdaAtt [35] 0.28 0.16 0.105 0.079 0.122 0.254
Attn2in [40] 0.331 0.213 0.121 0.081 0.131 0.271
Up-Down [3] 0.318 0.191 0.113 0.071 0.128 0.267

MIMIC-CXR R2Gen [13] 0.311 0.186 0.112 0.077 0.125 0.265
M2 Transformer [16] 0.347 0.211 0.122 0.085 0.140 0.269

X-REM [23] 0.314 0.188 0.112 0.069 0.121 0.266
BLIP-2 [32] 0.377 0.221 0.125 0.088 0.152 0.274

R2GenGPT (Deep) [52] 0.392 0.229 0.129 0.101 0.159 0.283
Proposed (InVERGe) 0.425 0.240 0.132 0.100 0.175 0.309

Show-Tell [48] 0.341 0.203 0.140 0.079 0.123 0.321
AdaAtt [35] 0.434 0.283 0.195 0.126 0.143 0.342
Attn2in [40] 0.402 0.262 0.188 0.119 0.133 0.338
Up-Down [3] 0.383 0.248 0.176 0.116 0.129 0.337

IU X-Ray R2Gen [13] 0.421 0.261 0.170 0.121 0.139 0.335
M2 Transformer [16] 0.456 0.312 0.202 0.151 0.168 0.351

X-REM [23] 0.426 0.263 0.171 0.119 0.135 0.341
BLIP-2 [32] 0.476 0.273 0.210 0.168 0.181 0.372

R2GenGPT(Deep) [52] 0.481 0.301 0.214 0.169 0.189 0.375
Proposed (InVERGe) 0.499 0.324 0.226 0.168 0.195 0.384

Show-Tell [48] 0.284 0.165 0.109 0.079 0.153 0.264
AdaAtt [35] 0.293 0.169 0.116 0.080 0.180 0.269
Attn2in [40] 0.340 0.217 0.124 0.081 0.240 0.306
Up-Down [3] 0.338 0.204 0.123 0.079 0.237 0.310

CDD-CESM R2Gen [13] 0.335 0.199 0.122 0.077 0.213 0.299
M2 Transformer [16] 0.357 0.221 0.125 0.085 0.256 0.315

X-REM [23] 0.333 0.197 0.119 0.074 0.210 0.297
BLIP-2 [32] 0.382 0.235 0.139 0.102 0.301 0.342

R2GenGPT(Deep) [52] 0.417 0.249 0.165 0.129 0.354 0.377
Proposed (InVERGe) 0.453 0.267 0.185 0.134 0.391 0.430

Figure 5. Visual representation of cross-attention maps illustrating
word-level explainability.

Autoencoders ViT [21], and the encoder from the IJEPA ar-
chitecture. These encoders produce image embeddings that
are used as input features. The resulting feature sets were
evaluated for model performance, as presented in Table 2.
The table reveals that employing I-JEPA’s encoder signifi-
cantly enhances the performance of the base model, for in-
stance, improving the BLEU-2 score from 0.161 → 0.183.

5.2. Effect of CMQFL Layer

After selecting an effective encoder, we noticed an improve-
ment in the accuracy of our base model. However, an ex-
amination of the attention maps revealed that the model still
faced challenges in identifying abnormal regions to gener-
ate accurate reports. To solve this problem, we introduced
a CMQFL layer capable of detecting abnormal regions. In
Figure 6 we discard 80 % low-value attention weights and
then plot the top 20% attention, it is clear that the model
is actively searching for potentially abnormal regions and
using this information to generate high-quality reports.

Table 2. Baseline refers to one normal ViT encoder and decoder
only. CPE (Context Pixel encoder) stands for our trained Model’s
Target Encoder. For this, we use the MIMIC-CXR dataset. Here
we only use MLM objective function to check the performance.

Model BLEU-2 METEOR Rouge-L
Baseline 0.161 0.124 0.255

MAE + Decoder 0.178 0.060 0.208
CPE + Decoder 0.183 0.117 0.260

CPE + CMQFL + Decoder 0.227 0.163 0.290
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Figure 6. Qualitative results of attention maps generated by BLIP
and our InVERGe model’s Encoder and CMQFL Layer.

The initial stage of representation learning involves the
pre-training of CMQFL layers, which capture visual fea-
tures relevant to textual content. This process lightens the
burden on the LLM when it comes to achieving vision-
language alignment. In the absence of a representation
learning stage, the CMQFL layer relies entirely on gener-
ative learning of the decoder from vision to language to
bridge the representation gap of image and text embed-
ding. As shown in Figure 6 and Table 2, it’s evident that
the impact of the CMQFL layer on the generative learn-
ing of the decoder is significant. Without this layer, both
types of models exhibit notably lower performance. At
the CMQFL layer, key image features are identified as the
most relevant features, including cardiomegaly, effusion, at-
electasis, consolidation, opacities etc. These features are
then directed to the corresponding anomalous regions which
clearly highlights the performance of the CMQFL layer in
capturing anomalous visual regions. As illustrated in Figure
6 chest X-ray, reveals mild left and right pleural effusion,
demonstrating the model’s capability to accurately iden-
tify and describe specific conditions. These visual results
are verified and confirmed by an in-house clinician, ensur-
ing their accuracy and reliability. We can clearly see from
Table 2 that there is a significant increase in accuracy af-
ter adding the CMQFL layer BLEU-2 score increases from
0.183 → 0.227.

5.3. Objective Functions

In our training approach of the CMQFL layer, we employ
a combination of three objective functions to enhance the
learning process, as discussed in Section 3.2. These ob-
jective functions substantially improve the model’s perfor-
mance. To elaborate, in Table 3, we utilize the Masked
Language Model (MLM) loss as the initial training objec-
tive for the CMQFL layer. This foundational step allows
the model to grasp linguistic and contextual understanding.
Subsequently, we augment the training method by intro-
ducing two additional objectives: Multimodal Contrastive
Learning (MCL) and Multi-Modality Matching (MMM).

By adding these objectives, the model’s overall capabilities
are noticeably enhanced.The addition of MCL focuses on
strengthening the alignment between images and text, max-
imizing their common information. This contrastive ap-
proach encourages the model to distinguish between pos-
itive image-text pairs and negative pairs, resulting in a
stronger understanding of the relationship between visual
and text data. At the same time, the introduction of MMM
further refines the model’s cross-modal capabilities, helping
to fine-tune the CMQFL layer by emphasizing alignment
between images and text through matching objectives.

Table 3. Evaluation after adding additional objective to train the
CMQFL layer. For this, we use MIMIC-CXR dataset.

Model BLEU-1 BLEU-2 METEOR Rouge-L
MLM 0.410 0.227 0.163 0.290

MLM+MMM 0.416 0.231 0.166 0.30
MLM+MMM+MCL

(InVERGe) 0.425 0.24 0.175 0.309

The combined effect of these three objective functions
leads to a substantial improvement in the performance of
the pre-trained model, enhancing its ability to understand
and leverage both text and image data effectively.

6. Conclusion

In this research, we present a novel, high-performing
visual-language model that significantly advances the
alignment of texts with corresponding visual features. By
employing a two-stage training procedure, focusing ini-
tially on the CMQFL layer and then fine-tuning the Vicuna
decoder, the model demonstrates exceptional performance.
The introduction of an advanced encoder for extracting
detailed visual features enhances the model’s ability to
generate reports without requiring additional annotations
or external task-specific knowledge. The CMQFL layer,
with its three objectives, contributes to creating small yet
highly informative image embeddings, promoting a more
grounded vision and language representation. This ap-
proach not only improves the accuracy of the model within
a shorter training period but also surpasses previous SOTA
models on publicly available datasets, delivering detailed
radiology reports and marking a significant advancement in
the field.

In our work, since the decoder component of our model
is pre-trained on natural language, we require the integra-
tion of an LLM specifically trained on a wide range of med-
ical datasets to increase its effectiveness in generating com-
prehensive and contextually relevant reports. In a feature we
use open-source high-performance medical LLM for get-
ting better results.
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