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Abstract

Recently, weakly supervised video anomaly detection
(WS-VAD) has emerged as a contemporary research direc-
tion to identify anomaly events like violence and nudity in
videos using only video-level labels. However, this task has
substantial challenges, including addressing imbalanced
modality information and consistently distinguishing be-
tween normal and abnormal features. In this paper, we ad-
dress these challenges and propose a multi-modal WS-VAD
framework to accurately detect anomalies such as violence
and nudity. Within the proposed framework, we introduce a
new fusion mechanism known as the Cross-modal Fusion
Adapter (CFA), which dynamically selects and enhances
highly relevant audio-visual features in relation to the vi-
sual modality. Additionally, we introduce a Hyperbolic
Lorentzian Graph Attention (HLGAtt) to effectively capture
the hierarchical relationships between normal and abnor-
mal representations, thereby enhancing feature separation
accuracy. Through extensive experiments, we demonstrate
that the proposed model achieves state-of-the-art results on
benchmark datasets of violence and nudity detection.

1. Introduction
In the modern technology era, kids are increasingly turn-
ing to online platforms for learning, fun, and connecting
with others. However, this easy access also brings up wor-
ries about their exposure to harmful and unsuitable content,
particularly content with violence and nudity. The poten-
tial adverse effects on a child’s emotional well-being and
psychological development underscores the importance of
implementing robust mechanisms to detect violence and nu-
dity. Detecting such anomalies in a video is a well-known
computer vision problem that can also be useful in other
real-world applications such as surveillance systems, crime
prevention, and content moderation. Acquiring annotations
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for anomalies at the frame level in videos is costly and time-
consuming. As a result, WS-VAD has emerged as a promi-
nent area of research. WS-VAD focuses on learning ab-
normal events, such as violence and nudity, solely based
on video-level binary labels. In this approach, a video is
classified as normal if no anomalous event is detected. In
contrast, it is classified as an anomaly if any form of ab-
normal events, such as violence or nudity, is present. WS-
VAD methods usually employ Multiple Instance Learning
(MIL) [17] for model training. Here, a regular video is seen
as a negative bag with no anomalous segments, while an
anomaly video is viewed as positive bag with one or more
anomalous segments. The anomaly evaluation function is
trained by optimizing the MIL loss to ensure positive bag
has a higher anomaly value than negative (normal) bag.

Following MIL, recently, several WS-VAD methods
have been proposed based on single-modality (i.e., video-
based methods [10, 13, 28–30, 34, 35]) and multi-modality
[1, 19, 21, 36–38, 40]. The multi-modal approaches
have shown promising results compared to single-modality-
based methods, which jointly learn audio and visual repre-
sentations to improve performance by leveraging comple-
mentary information from different modalities. Although
multi-modal methods show promising performance, they
face two main challenges: 1) unbalanced modality infor-
mation when combining audio-visual features and 2) incon-
sistent discrimination between normal and abnormal fea-
tures. Recently, Peng et al. [21] found that the issue of
modality imbalance is mainly due to noise in audio signals
from real-world scenarios. To address this, they suggest that
auditory information contributes less to anomaly detection
than visual cues, leading to lower prioritization of audio
features. However, this approach must be corrected when
audio data is as crucial as visual data. To address another
issue, i.e., inconsistent discrimination between normal and
abnormal features, prior studies have utilized graph repre-
sentation learning, where each instance is treated as a node
in a graph. However, these methods still struggle to distin-
guish them accurately.

In this study, we propose a new framework to address
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Figure 1. Comparative analysis of our proposed method with
prior video-based method as well as audio-video based fusion ap-
proaches [21, 36] on testing videos of XD-Violence dataset.

these challenges. We introduce a novel fusion module
called a CFA to address the challenge of imbalanced modal-
ity information. It dynamically adjusts the influence of each
modality by prioritizing the importance of audio features
relative to the visual modality. This selective process en-
sures that only relevant audio features crucial for visual
learning are being utilized. By adapting to select the most
appropriate features relative to the visual modality, our ap-
proach enhances visual feature learning by incorporating
relevant audio features. Furthermore, we introduce a hyper-
bolic graph convolution network-based HLGAtt mechanism
to maintain consistent discrimination between normal and
abnormal features. This mechanism operates in hyperbolic
space to capture hierarchical relationships between normal
and abnormal representations through spatial and temporal
feature learning, which aids in distinguishing normal and
abnormal features.

The proposed model accurately identifies anomaly
events and outperforms existing state-of-the-art (SOTA)
methods for violence and nudity detection tasks. Figure 1
shows the anomaly score analysis obtained from a few vi-
olent and normal instances of the XD-Violence dataset and
compares it with various approaches such as only video-
based method [36], Concate fusion [36], Detour fusion [21]
approaches. Figure 1 shows that the proposed model accu-
rately identifies anomalies compared to others. We summa-
rize the contributions of this paper as follows:
• We propose a new WS-VAD framework to address the

imbalance issue in audio-visual modality information and
effectively distinguish abnormal features from normal
ones so that anomaly events such as violence and nudity
can be detected accurately.

• To address the imbalanced modality information issue,
we introduce a novel fusion module called CFA, which
helps the proposed framework to facilitate multi-modal
interaction effectively by dynamically regulating the con-
tribution of each modality.

• We introduce a novel attention mechanism called HLGAtt
to capture the hierarchical relationships between normal

and abnormal representations, thereby enhancing the fea-
ture separation.

2. Related Works
2.1. Violence Detection Works

Earlier, few unsupervised learning-based methods [14, 25]
have been proposed for violence detection. These methods
focus on one-class classification via learning what is nor-
mal and spotting anomalies by recognizing deviations from
the norm. However, these methods are not well-suited for
complex environments and often struggle due to the limited
availability of abnormal video data during training.

Recently, WS-VAD methods [13, 28, 36, 37, 40] have
been introduced utilizing video-level labels and achieved
promising results over unsupervised VAD methods. A few
video-based WS-VAD approaches [10, 13, 28–30, 34, 35]
have been proposed to enhance the detection accuracy of vi-
olence events. However, these approaches overlooked audio
information and cross-modality interactions, limiting the ef-
fectiveness of violence prediction. To address this issue,
Wu et al. [36] introduced a large-scale audio-visual dataset
named XD-Violence and established a baseline for audio-
visual activities. Following this, many multi-modal ap-
proaches [1, 19, 21, 36–38, 40] have been proposed that out-
performs video-based WS-VAD methods. Recently, Peng et
al. [21] proposed a fusion mechanism for audio-visual data
and introduced a hyperbolic graph convolution network-
based model to efficiently capture the semantic distinctions
via learning the embeddings in hyperbolic space. Recently,
Zhou et al. [40] proposed a dual memory units module with
uncertainty regulation emphasizing learning representations
of abnormal and normal data. Salem et al. [1] introduced a
new version of MIL that avoids the disadvantages of rank-
ing loss by using margin loss instead.

Although these methods present promising results, their
effectiveness is hindered by the integration of imbalanced
audio-visual features. Moreover, they struggle to consis-
tently differentiate between normal and abnormal features,
limiting the detection accuracy. This paper addresses these
issues and proposes a new multi-modal framework that de-
tects violent events more accurately. In contrast to recent
multi-modal approaches [21, 38, 40], we propose a new
cross-modal fusion with modulation mechanism to learn
and fuse audio modality with relative visual features adap-
tively. Furthermore, we introduce Lorentzian attention-
based hyperbolic graph mechanism to learn hierarchical re-
lationships between normal and abnormal features and dis-
criminate them effectively.

2.2. Nudity Detection Works

In video-based nudity detection, researchers have devised
various methods to tackle the task of identifying explicit

1966



content. A common strategy involves detecting skin color
in video frames [5, 9, 12, 22]. Samal et al. [26] proposed a
model that combines attention-enabled pooling with a Swin
transformer-based YOLOv3 architecture for obscenity de-
tection in images and videos. Jin et al. [8] employed a
weakly supervised multiple instance learning approach for
generating a bag of properly sized regions with minimal an-
notations to tackle the detection of private body parts based
on local regions. Wang et al. [15] incorporated an attention-
gated mechanism with a deep network, demonstrating its
efficacy in performance enhancement. Several studies have
proposed deep learning architectures considering local and
global context jointly [18, 33]. Utsav et al. [27] proposed
a domain adaptation-based method to filter adult content in
streaming video. Tran et al. [31] proposed an additional
training-based approach on pseudo labels using Mask R-
CNN for sexual object detection.

However, above methods focus on image-based ap-
proaches or utilize uni-modal approaches; the audio-visual-
based approaches have not been extensively explored. This
paper seeks to address this gap by employing audio-visual
data, aiming to enhance the accuracy of nudity detection in
videos.

3. Methodology
3.1. Problem Statement

Given a set of N videos, X = {Xi}Ni=1 and the correspond-
ing ground-truth video-level labels Y = {Yi}Ni=1 ∈ {1, 0}
where Yi = 1 denotes the presence of any abnormal event
in the video while Yi = 0 signifies the absence of any ab-
normal event, we aim to accurately detect abnormal events
such as violence and nudity within the videos in a weakly
supervised manner. Specifically, each video Xi is ini-
tially divided into 16-frame based T non-overlapping multi-
modal segments (M = {MV

i ,MA
i }Ti=1), which are pro-

cessed by a pre-trained CNN network to extract the corre-
sponding visual features FV ∈ RT×DV and audio features
FA ∈ RT×DA , where DV and DA represents the feature di-
mensions of video and audio modality. Here, MV

i and MA
i

denote the video and audio segments, respectively. These
extracted visual and audio features are then forwarded into
the proposed framework which identifies whether the input
video contains any abnormal events or not.

To identify abnormal events accurately, we propose a
new framework as shown in Figure 2 in which we in-
troduce novel cross-modal fusion module and hyperbolic
Lorentzian graph attention mechanism. Details of these
modules are discussed in subsequent subsections.

3.2. Cross-modal Fusion Adapter (CFA)

The CFA module consists of a prefix-tuned-based bottle-
neck attention and a modulation mechanism. The prefix-

tuned bottleneck attention helps in efficient multi-modal in-
teraction between audio and visual modalities. The modu-
lation mechanism dynamically regulates the contribution of
each modality during the fusion process, taking into account
the importance of the audio features to the visual modality.
Prefix-Tuning bottleneck attention mechanism: This
mechanism incorporates prior knowledge into the feature
transformation process by combining the learned represen-
tations with initialized parameters through the prefix-tuning
operation. To do this, the process involves concatenating
the keys K and values V obtained from audio features FA

with prefixes Pk & Pv , resulting in prefix-tuned keys Kp

and values Vp, respectively. The parameters Pk & Pv are
initialized as zero matrices with dimensions of RB×DA×Dp ,
where B, DA & Dp represent the batch size, audio feature
dimension, and prefix dimension, respectively.

These prefix-tuned keys Kp and values Vp along with the
query Q, i.e., visual features FV , are then passed on to the
cross-modal multi-head attention module [23]. This mod-
ule enables the interaction between the prefix-tuned features
of the audio and visual modalities, allowing them to selec-
tively and contextually focus on each modality’s relevant
information. In this process, the attention scores are com-
puted based on queries, prefixed tuned keys and values. The
mathematical formulation of the cross-modal multi-head at-
tention module function (i.e., fCMA) can be formulated as

FAtt = fCMA(Q,Kp, Vp) = Softmax

(
Q ·KT

p√
DKP

)
× Vp,

(1)
where, DKP

represents the dimensionality of the key vec-
tors (Kp). The attention features FAtt are subsequently
passed to the bottleneck adapter module. In this stage,
the bottleneck adapter ensures smooth interaction between
modalities while preserving modality-specific characteris-
tics. It comprises down-scaled fully connected layers (i.e.,
fdown) followed by Gaussian Error Linear Unit (GELU) ac-
tivation (i.e., fGELU ) and up-scaled fully connected layers
(i.e., fup). This can be expressed mathematically as

F̂Att = fup(fGELU (fdown(FAtt))), (2)

Here, the GELU activation function introduces non-
linearity, allowing intricate feature transformations. This
careful design ensures that the adapter module effectively
adjusts input features to the shared bottleneck representa-
tion, promoting context-aware fusion.
Modulation Mechanism: In the proposed CFA module,
we introduce modulation factors that dynamically adjust the
impact of individual modalities by considering the impor-
tance of their audio features relative to the visual modal-
ity. This mechanism is facilitated by a learnable modula-
tion function that operates on audio features FA to select
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Figure 2. Overview of the proposed framework. It takes audio and visual features extracted from pre-trained encoder networks as input,
which are further fused through the proposed Cross-Modal Fusion Adapter (CFA) module to learn multi-modal interaction effectively,
followed by the introduced Hyperbolic Lorentzian Graph Attention (HLGAtt) mechanism to capture hierarchical relationships between
visual and audio representations, ensuring consistency in distinguishing normal and abnormal features during training. Finally, the outcome
features are passed in a hyperbolic classifier to predict anomaly events for each instance.

relevant audio features that are important to visual modal-
ity. The resulting modulated features FMod are defined as

FMod = fMF (FA) = σ(Wmod · FA). (3)

Here, σ represents the sigmoid activation, while Wmod

stands for the weights associated with the modulation func-
tion. The sigmoid activation function ensures that modula-
tion factors range between 0 and 1, thereby regulating the
degree of modulation applied to the fused representation.

Next, the fusion and refinement process is used, where
it first fuses the modulated features with the output of the
prefix-tuning bottleneck attention and then refines the fused
representation through a fully connected layer. This opera-
tion can be expressed mathematically as

FFused = fFC(FV + (F̂Att × FMod)). (4)

The modulation mechanism fMF () modifies the output of
the prefix-tuning bottleneck attention based on the signifi-
cance of their audio features to the visual modality. Through
the fusion and refinement process, the final fused represen-
tation is carefully crafted to capture the most relevant in-
formation from both modalities, simultaneously reducing
noise and preserving the modality-specific characteristics.

3.3. Hyperbolic Lorentzian Graph Attention (HL-
GAtt) Mechanism

In the proposed framework, we introduce a hyperbolic
graph convolution network based on a new attention mech-
anism called HLGAtt. The proposed HLGAtt uses a hyper-
bolic Lorentz graph attention mechanism that learns layer-
wise curvature parameters to capture the hierarchical struc-
ture of the input graph, thereby enhancing the hierarchical
relationship between normal and abnormal representations
compared to existing graph-based [21, 36] or transformer-
based [40] approaches. It consists of a hyperbolic space
conversion operation, a Lorentz linear transformation & en-
hancement module process on parallel nodes, and a fusing
operation.

Initially, we convert the fused audio-visual features
FFused into the hyperbolic space using an exponential func-
tion. As a result, we obtain the converted fused features
maps FH ∈ RT×2DH , wherein T denotes the number of
segments and DH represents the hyperbolic dimension.

Recently, Zhang et al. [39] proposed a hyperbolic graph
attention mechanism that utilized a parallel branch pro-
cess to learn different features and patterns in respective
branches for prediction tasks. Inspired by this [39], we pro-
cess the converted hyperbolic feature maps on two parallel
branches, i.e., node A and node B, to learn specific patterns
from the input feature maps. Separating the branches en-
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sures that features with similar characteristics are directed
to their respective nodes. This allows each branch to learn
the unique properties of normal and abnormal features, en-
abling more precise discrimination between them.

The converted hyperbolic feature maps are passed
through the Lorentzian linear transformation & enhance-
ment module in each node. Here, we employ the Lorentzian
linear transformation [4, 21] for feature transformation and
its transformed temporal and spatial features are further en-
hanced using the proposed enhancement mechanism. In
Lorentzian linear transformation, we first establish the ad-
jacency matrix A ∈ RT×T to capture hyperbolic feature
similarities. Here, each entry Aij can be calculated as

Aij = fsim(FH,i, FH,j)

= Softmax(exp(−dL(FH,i, FH,j)),
(5)

where, fsim represents the hyperbolic feature similarity
measure, which evaluates how closely snippets i and j re-
semble each other based on their Lorentzian intrinsic dis-
tance dL. The exponential and Softmax functions are em-
ployed to maintain non-negativity and restrict the values of
A within the range of [0, 1].

Next, we incorporate a hyperbolic Lorentz linear (i.e.,
fHL()), followed by neighborhood hyperbolic aggregation
operation [24] for feature transformation. These trans-
formed hyperbolic features of the ith snippet at the layer
l (i.e., zli) can be expressed as

zli = F l
H,i =

∑T
j=1 AijfHL

(
F l−1
H,i

)
√
−η

∣∣∣∥∥∥∑T
k=1 AikfHL

(
F l−1
H,i

)∥∥∥
L

∣∣∣ , (6)

where, η indicates the negative curvature constant.
To enhance these transformed features z further, they are

processed based on temporal and spatial information. The
initial component of the input vector z[0] signifies the tem-
poral aspect within hyperbolic space [4]. This component
is processed via a sigmoid activation function followed by
exponential scaling and shifting operations. Through this
procedure, temporal features (i.e., TnodeA and TnodeB) are
computed for both node A and node B as

TnodeA = σ(znodeA[0])× eγ + 1.1

TnodeB = σ(znodeB [0])× eγ + 1.1
(7)

where, γ is a trainable parameter. The remaining elements
of input vector z can be considered as the spatial features [4]
for node A and node B (i.e., SnodeA and SnodeB). Mathe-
matically, they can be formulated as

SnodeA = [znodeA[1], znodeA[2], ..., znodeA[n]]

SnodeB = [znodeB [1], znodeB [2], ..., znodeB [n]]
(8)

These features encapsulate the intricate spatial features in
hyperbolic space, which are critical for capturing the hier-
archical structure and relationships within the graph.

To ensure the alignment of spatial components with the
hyperbolic model, a scaling factor, referred to as Υ is com-
puted. This factor takes into account the temporal and spa-
tial complexities of each node. It ensures that the spatial
components are appropriately scaled to fit within the hyper-
bolic space.

ΥnodeA =
TnodeA

2 − 1∑n
i=1(SnodeA[i])2 + ϵ

ΥnodeB =
TnodeB

2 − 1∑n
i=1(SnodeB [i])2 + ϵ

(9)

The temporal and scaled spatial components are concate-
nate, resulting in enhanced feature vectors (i.e., F̂nodeA

H and
F̂nodeB
H ). Mathematically, this process can be expressed as

F̂nodeA
H = Concat

[
TnodeA, SnodeA ×

√
ΥnodeA

]
F̂nodeB
H = Concat

[
TnodeB , SnodeB ×

√
ΥnodeB

] (10)

The enhanced feature maps in the node A branch passed
through Leaky-ReLU activation and softmax normalization
operations to introduce non-linearity and ensure standard-
ization across the enhanced feature maps. This ensures that
distinct patterns, representing normal and abnormal data,
are learned at each node. By doing so, the model is encour-
aged to learn different sets of features from those processed
by other node (i.e., node B). Finally, the enhanced feature
maps from node A and node B are processed via matrix
multiplication to compute attention, followed by a ReLU
activation to generate the output feature maps. This out-
come of the proposed HLGAtt module can be formulated
as

F final
H = fReLU (F̂

nodeA
H · F̂nodeB

H ). (11)

3.4. Hyperbolic Classifier & Learning Objective

Following [21], we also utilize the hyperbolic classifier,
which takes the output of the HLGAtt module as input
and predicts the confidence scores for normal and abnormal
events. The final score Score can be represented as

Score = fHyp−cls(F
final
H ) (12)

In order to train the proposed model end-to-end, we em-
ploy the MIL-based learning objective adopted in [20, 21,
28, 36], which calculates the mean value of the top k−max
predictive scores within a video. The high-scoring positive
predictions indicate the presence of abnormal events, while
the k−max negative scores usually represent hard samples.
This learning objective function can be formulated as

LMIL =
1

N

N∑
i=1

−Yi · log(Score). (13)

1969



Here, Score indicates the average of the k−max scores in
the video, and Yi represents the binary video-level label.

4. Experiments and Results

4.1. Implementation Details

The proposed model is trained/tested on benchmark XD-
Violence dataset [36] for violence detection task, on NPDI
pornography dataset [2, 3] for nudity detection task. The
details of these datasets are mentioned below:
• XD-Violence for violence detection: The XD-Violence

dataset [36] is a diverse compilation of 4754 raw
videos (equivalent to 217 hours) gathered from real-world
sources, including movies, web videos, sports broadcasts,
security cameras, and CCTVs. It consists of six types of
violent events, such as abuse, auto crashes, and shootings,
with corresponding video-level annotations. The testing
set comprises 300 normal and 500 violent videos, while
the training set includes 2049 normal and 1905 violent
videos, all labeled at the video level.

• NPDI for Nudity Detection : The NPDI Pornography
benchmark dataset [2, 3] comprises around 80 hours of
video content extracted from 400 movies. These contents
are classified as pornographic or non-pornographic, with
an equivalent amount of videos in each category. Within
the non-pornographic section, there are 200 videos la-
beled as either “easy” or “difficult”. The “easy” videos
were randomly selected, while the “difficult” ones were
obtained through textual search queries such as “beach,”
“wrestling” and “swimming”. Although the “difficult”
videos may contain body skin, they do not include ex-
plicit nudity or pornographic content.

Training / Evaluation Details: The proposed model
is trained on datasets mentioned above using the multi-
instance learning-based loss function (i.e., Eq. 13) with a
batch size of 128. During the training process, we adopt
the Adam optimizer with a learning rate of 5 × 10−4 var-
ied using a cosine annealing scheduler and trained for 50
epochs. For fair comparison with existing SOTA methods,
the proposed framework also employs a pre-trained I3D
model [11] to extract the visual features (FV ), while the
VGGish network [7] is utilized to extract the audio features
(FA). In the proposed framework, we use the LeakyReLU
activation function with a negative slope of -2. In the Prefix-
Tuner of the CFA module, we empirically chose the prefix
dimension as 64. The bottleneck adapter has a size of 256
and utilizes the GELU activation function with a dropout
rate of 0.1. The constant representing negative curvature
(η) is set to -1 during training.

For comparison on violence detection task, we choose
unsupervised methods (i.e., SVM baseline, and Hasan et
al. [6]), video modality-based weakly supervised methods
[13, 28, 28–30, 34, 36, 38, 40], and audio-visual modality-

Table 1. Comparison against SOTA methods on XD-Violence
Dataset for violence detection. Best result is bolded and second
best result is underlined.

Method Publication Modality AP (%)
Unsupervised learning based methods
SVM baseline NIPS’99 Video 50.78
Hasan et al. [6] CVPR’16 Video 30.77
Weakly supervised learning based methods
Sultani et al. [28] CVPR’18 Video 75.68
Wu et al. [36] ECCV’20 Audio + Video 78.66
Wu et al. [35] ICIP’21 Video 75.90
Pang et al. [19] ICASSP’21 Audio + Video 81.69
RTFM [30] ICCV’21 Video 77.81
MSL et al. [13] AAAI’22 Video 78.28
S3R [34] ECCV’22 Video 80.26
MACIL-SD [37] ACM’22 Audio + Video 83.40
HyperVD [21] arXiv’23 Audio + Video 85.67
UR-DMU [40] AAAI’23 Audio + Video 81.77
Zhang et al. [38] CVPR’23 Audio + Video 81.43
Salem et al. [1] WACVW’24 Audio + Video 71.40
Tan et al. [29] WACVW’24 Video 82.10
REWARD-E2E [10] WACV’24 video 80.30
Proposed — Audio + Video 86.34

based weakly supervised methods [1, 19, 36–38, 40]). The
frame-level average precision (AP) metric is adopted to
compare these methods, whereas a higher AP measure
means better performance. For the nudity detection task,
we compare the proposed method with existing methods
[8, 16, 21, 26, 27, 31]. However, these methods have uti-
lized uni-modal approaches in their network. Additionally,
we re-train the recent multi-modal SOTA method called Hy-
perVD [21] on the NPDI dataset. For comparison, we use
the standard evaluation metrics, i.e., AP, accuracy, preci-
sion, and recall, where higher measures of these evaluation
metrics indicate superior performance.

All the experiments were implemented using PyTorch
and the network was trained on a 40GB NVIDIA A100
GPU with batch size of 128.

4.2. Result Analysis on Violence Detection task

Table 1 compares state-of-the-art methods on the XD-
Violence testing dataset in terms of AP metric. Notably, our
proposed method outperforms both video modality-based
and audio-video modality-based methods. It achieves an
AP score of 86.34%, which is 0.67% higher than the pre-
vious best-performing method HyperVD [21]. Compared
to video-modality-based methods, our proposed approach
shows a 4.24%

Figure 3 displays the visual prediction analysis of our
method when compared to existing methods, i.e., HyperVD
[21] and Wu et al. [36]. The comparison is based on
the anomaly score obtained from a few videos of the XD-
Violence testing dataset [36]. Here, one can observe that the
proposed method not only identifies violent event regions
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Figure 3. Visual comparison in terms of anomaly score curves
on sample video of XD-Violence dataset. Yellow regions are the
temporal ground-truths of violent events.

Figure 4. Visual comparison on normal and violence features of
the proposed and HyperVD [21] methods on XD-Violence dataset.

but also yields superior and more precise anomaly scores
compared to other methods.

Additionally, Figure 4 provides a comparison between
the proposed and HyperVD [21] methods in terms of t-SNE
visualization [32] of normal and violent features distribu-
tions on the XD-Violence dataset testing videos. One can
find that the proposed method effectively clusters the vio-
lent and non-violent features and also enlarges the distance
between uncorrelated features after the training procedure
as compared to the HyperVD [21] method.

4.3. Result Analysis on Nudity Detection task

This section provides an analysis of the Nudity detection
task, comparing it with existing methods [8, 16, 21, 26, 27,
31] on the NPDI testing dataset [2, 3]. Table 2 shows the
comparison in terms of AP, accuracy, precision, and recall.
Here, it can be noticed that the proposed model outperforms
other methods in all evaluation metrics by a significant mar-
gin. To be specific, our model achieves an AP of 99.45%,
an accuracy of 94.12%, a precision of 95%, and a recall of
93.75%. Notably, it demonstrates improvements of at least
1.95% in AP, 0.42% in accuracy, 2.2% in precision, and 3%
in recall compared to other methods.

Additionally, Figure 5 demonstrates the visualization of
the anomaly score obtained from the proposed and Hy-
perVD [21] methods on the NPDI dataset. The visualization

Table 2. Comparison against SOTA methods on NPDI Dataset for
nudity detection. The best result is bolded and the second best
result is underlined. Here, * indicates the re-trained method.

Methods Modality AP Accuracy Precision Recall
OpenYahoo [16] Video 79.0 — — —
Deep Region-based CNN [8] Video 87.8 — — —
Deep Part Detector [8] Video 87.0 — — —
Deep MIL [8] Video 86.0 — — —
Weighted MIL [8] Video 97.5 — — —
Tran et al. [31] Video — 90.43 — —
WD-based adaptation [27] Video 96.92 93.70 — —
ASYv3 [26] Video 89.87 89.35 89.38 89.55
HyperVD* [21] Audio + Video 96.45 92.19 92.80 90.75
Proposed Audio + Video 99.45 94 .12 95.00 93.75

Figure 5. Visual comparison between proposed model and Hy-
perVD [21] in terms of Anomaly Score vs Time. Yellow regions
are the temporal ground-truths of nudity events.

Figure 6. Visual comparison on normal and nudity event features
of the proposed and HyperVD [21] methods on NPDI dataset.

demonstrates that the proposed method generates minimal
predictions for regular segments in normal footage while ef-
fectively handling extreme situations within nudity content.
This analysis also proves that the proposed method not only
accurately identifies specific regions but also provides more
precise anomaly scores compared to anomaly predictions of
the HyperVD method [21].

We also provide t-SNE [32] based visual comparison
of the proposed and HyperVD [21] methods in Figure 6.
Here, we compare the proposed and re-trained HyperVD
[21] methods with corresponding normal and violent fea-
ture distributions obtained from the NPDI dataset testing
videos. It can be clearly observed that the proposed method
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Table 3. Ablation studies on introduced components i.e., CFA &
HLGAtt of the proposed framework. Here, PT indicates Prefix-
Tuning, MM indicate Modulation Mechanism.

Cases CFA w/o PT & MM CFA w/o PT CFA FHGCN [21] HLGAtt AP (%)
1 ✓ ✓ 81.02
2 ✓ ✓ 81.51
3 ✓ ✓ 83.42
4 ✓ ✓ 85.71
5 ✓ ✓ 86.09
6 ✓ ✓ 86.34

performs better in clustering the nudity and normal features
as compared to the HyperVD [21] method.

4.4. Ablation Analysis

In order to ensure a fair comparison, all ablation ex-
periments were conducted using the XD-Violence testing
dataset for the violence detection task.
Analysis of proposed components: A series of ablation
experiments were conducted to validate the efficacy of the
proposed components, i.e., CFA and HLGAtt, within the
proposed framework. Few experiments have been per-
formed on the CFA module with and without Prefix-Tuning
(PT) and Modulation Mechanism (MM) modules. The re-
sults are outlined in Table 3. It is evident that the inclusion
of the PT and MM modules enhances the performance of
the CFA module. Furthermore, experiments were carried
out using the attention mechanism FHGCN, as proposed
in [21], to validate the effectiveness of the HLGAtt mod-
ule. In Table 3, we present the results performed using the
FHGCN module in Cases 1 - 3, while Cases 4 - 6 show
the result obtained from the proposed HLGAtt module. The
HLGAtt module demonstrates superior performance com-
pared to the FHGCN [21] module by a significant margin.
For instance, there is a 4.69% improvement from Case 1 to
Case 4, a 4.58% improvement from Case 2 to Case 5, and
a 2.92% improvement from Case 3 to Case 6. This analysis
proves the efficacy of the proposed modules.
Analysis on prefix dimension in the Prefix-Tuner mod-
ule: We also thoroughly analyze the prefix dimension
within the Prefix-Tuner module featured in the CFA mod-
ule. The experiment tested different prefix dimensions in-
cluding 34, 48, 64, 80, 128, and 256. The corresponding
results are illustrated in Figure 7 where one can observe that
the optimal performance is achieved as AP of 86.34%, with
a prefix dimension of 64. However, the performance of AP
is diminished when the prefix dimension is increased be-
yond 64. As a result, we set the prefix dimension as 64 in
the proposed CFA module.
Analysis of different fusion mechanism: A series of ab-
lation experiments were conducted to evaluate the efficacy
of the proposed CFA fusion mechanism in comparison to
alternative fusion methods like Detour fusion [21], Concat
fusion, and Gated fusion. The impact of the AP measure
obtained from these experiments during the training process

Figure 7. Ablation studies on different setting of prefix dimensions
Dp on our proposed CFA module

Figure 8. Comparative analysis (Epoch vs AP) with existing fusion
methods with our proposed CFA fusion.

is illustrated in Figure 8. It can be seen from this analysis
that the proposed CFA fusion module consistently achieves
superior performance across all fusion mechanisms.

5. Conclusion
This research presents a new WS-VAD framework with a
Cross-modal Fusion Adapter (CFA) module and a Hyper-
bolic Lorentzian Graph Attention (HLGAtt) module to de-
tect anomaly events such as violence and nudity accurately.
The CFA module addresses the imbalanced modality infor-
mation issue and effectively facilitates multi-modal inter-
action by dynamically selecting the relevant audio features
with corresponding visual features. Additionally, the HL-
GAtt module captures the hierarchical relationships within
normal and abnormal representations, thereby improving
the accuracy of separating normal and abnormal features.
Through extensive experiments and ablation studies, it has
been demonstrated that the proposed model outperforms ex-
isting violence and nudity detection methods.
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