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Abstract

We propose a content-based system for matching video
and background music. The system aims to address the
challenges in music recommendation for new users or new
music give short-form videos. To this end, we propose a
cross-modal framework VMCML (Video and Music Match-
ing via Cross-Modality Lifting) that finds a shared embed-
ding space between video and music representations. To
ensure the embedding space can be effectively shared by
both representations, we leverage CosFace loss based on
margin-based cosine similarity loss. Furthermore, to con-
firm the music is not the original sound of the video and that
more than one video is matched to the same music, we fol-
low the rule and collect videos and music from a well-known
multi-media platform. That is because there are limitations
of previous datasets. We establish a large-scale dataset
called MSV, which provide 390 individual music and the
corresponding matched 150,000 videos. We conduct exten-
sive experiments on Youtube-8M and our MSV datasets.
Our quantitative and qualitative results demonstrate the ef-
fectiveness of our proposed framework and achieve state-
of-the-art video and music matching performance.

1. Introduction
In recent years, short-form videos have rapidly entered

our daily lives. People record their life by uploading
short videos to various platforms such as TikTok, Instagram
Reels, and Youtube Shorts. The daily usage time of TikTok
by young generation users (ages 10-25) in 2022 has grown
by 2.38 times from 2017 to 2022, with 44 minutes into 105
minutes of daily TikTok. After the opening of Instagram
Reels in April 2022, the number of short-form videos has
increased significantly with an increase of 971 percent in
August compared to April. These platforms typically pro-
vide context-based recommendation systems to help users
attach background music to their uploaded videos. These
music are mostly selected according to users’ previous se-
lection or current trends, which eventually bias towards a
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Figure 1. The content-based video and music matching system.
For training, we collect several pieces of music and several videos
using the same background music. Hence, one music matches sev-
eral videos. In testing, seen music set (existing music in training)
can be addressed as classifying a video to a set of music identi-
ties. The unseen music set (new music unseen in training) can be
viewed as performing video verification by comparing the similar-
ity between the video and the new music identities.

few existing trendy background music. The diversity of
background music is important for these platforms since
new trendy music can be more engaging and the uniqueness
of trendy music can attract more new users to the platform.
However, the contents of background music and videos are
typically not considered.

The content-based music matching system, as shown in
Figure 1, is crucial for (1) recommending new music as they
haven’t been selected and (2) recommending existing mu-
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sic to new users as they lack of previously selected music.
There are few pioneers who work on cross-modal matching
for video and audio content, while previous works have fo-
cused on cross-modal matching for images and text. The
pairing of visual and language elements usually follows a
one-to-one mapping. However, when it comes to visual and
audio, there are instances where the pairing becomes one-
to-many. This makes the cross-modal matching for video
and audio more challenging. Hong et al. [9] proposed a
content-based retrieval model that combines the inter-modal
ranking loss and soft intra-modal structure loss to construct
a shared embedding space. Surı́s et al. [21] (referred to as
CEVAR) proposed a joint embedding model with the classi-
fication loss along with a similarity loss, which incorporates
the video labels provided by the YouTube-8M [1] dataset.
Yi et al. [29] (referred to as CMVAE) proposed a hierar-
chical Bayesian generative model using variational auto-
encoder and matching relevant background music to videos
by the corresponding latent embeddings. However, all these
methods exhibit a significant performance gap when match-
ing existing music to new videos compared to matching new
music to new videos. We use seen or existing interchange-
ably and unseen or new interchangeably.

We treat this cross-modal matching task as a metric-
learning problem where most music matches to a few videos
as they are non-trendy. Moreover, we want our method im-
proves on both recommending existing music, as well as
new music. It is not obvious at first glance, but face recog-
nition [12,17,20,23] shares the same challenges to our task.
A face recognition model not only needs to recognize exist-
ing faces in training, but it also needs to enroll new faces and
identify them without retraining the model. In addition, the
model should only require a person to enroll a few faces for
ease of usage. Inspired by these observations, we adopt the
CosFace loss [24] and the ArcFace loss [4], widely used for
face recognition to our cross-modal matching task. We refer
to these losses as lifting loss. To find a shared embedding
space between video and music, there is a shared head that
makes both video and music features more aligned. Fur-
thermore, we calculate the similarity loss between video
and music features. More specifically, we combine cross-
modality lifting loss and cross-modality similarity loss for
cross-modal matching.

The public datasets directly downloadable for matching
video and background music features are limited. We es-
tablished a dataset, Music for Short Video Dataset MSV,
containing 150k videos and 390 corresponding background
music pairs. The differences between Youtube-8M [1] and
MSVD are (1) the ground truth of music and video in the
former is a one-to-one mapping but there is more than one
video matched to the same music in the latter, (2) most of
the music in the former is the original of the video and (3)
most of the videos in the former are longer than 1 minute.

The distinction between Tiktok dataset [10] and MSV lies
in their content. The Tiktok dataset [10] exclusively com-
prises videos, whereas MSV includes both the video and
their accompanying music. We divide the MSVD into seen
music set and unseen music set corresponding to real-world
scenarios. With the MSV dataset established, we conduct
experiments to evaluate the performance of VMCML and
compare it with previous methods.

Our main contributions are summarized as follows:

(1) We propose a novel cross-modal framework VMCML
with cross-modality lifting loss and cross-modality
similarity loss for content-based background music
matching, which can be applied to both seen and un-
seen video-music samples.

(2) We collect a short video and background music match-
ing dataset called “Music for Short Video (MSV)”,
the suitable dataset for the video-music matching task
which provides 390 music and their 150,000 corre-
sponding videos.

(3) VMCML achieve the state-of-the-art on MSV and
Youtube-8M [1].

2. Related Works
We introduce the previous cross-modal matching meth-

ods in Sec. 2.1, and present the metric learning in Sec. 2.2.

2.1. Cross-Modal Matching

Most existing cross-modal matching methods typi-
cally focus on textual and visual modalities, using open-
sourced datasets such as MSCOCO [16], Flickr30k [19],
ActivityNet-captions [14] and MSR-VTT [28]. Zhen et
al. [31] proposed a deep supervised cross-modal retrieval
method that simultaneously minimizes discrimination loss
in the label space and invariance loss. Wei et al. [26] in-
troduced a universal weighting metric learning framework
and a new polynomial loss under it. The universal weight-
ing framework provides a powerful tool to analyze various
metric-learning-based weighting and loss, which have been
widely used in cross-modal matching. However, there has
been little effort devoted to matching video and music con-
tent. There are few differences between visual-language
learning and visual-audio learning when it comes to cross-
modality matching. The pairing of visual and language ele-
ments typically follows a one-to-one mapping. However, in
the case of visual and audio, there are instances where the
pairing becomes one-to-many. This situation makes the task
more challenging. Previous work commonly used cross-
modal ranking losses for music and video [9, 15, 30]. The
TikTok Dataset [10] offers videos along with human mask
and human UV coordinates but no music part. Hong et
al. [9] presented a content-based retrieval model that only
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uses content features between music and videos, constrain-
ing the relative distance relationship of samples within each
modality. While Suris et al. [21] uses the visual features
and audio features provided by Youtube-8M [1] to mini-
mize the distance of visual embedding and audio embed-
ding of the same video at representation space to predict
the corresponding video label. Yi et al. [29] proposed a hi-
erarchical Bayesian generation model using the variational
auto-encoder to match relevant background music to video
through their latent embedding. Nonetheless, these methods
face a significant performance gap when matching existing
music to new videos compared to matching new music to
new videos. This work introduces face recognition-inspired
loss to mitigate the gap.

2.2. Metric learning

The goal of metric learning is to learn the similarity be-
tween features to enable accurate feature matching and ver-
ification. To improve the quality of feature embedding, con-
trastive loss [2, 3] and triplet loss [8,25] are commonly em-
ployed techniques that help increase the Euclidean margin.
More specifically, the former ensures that same-class ob-
jects are mapped together in the representation space, while
different-class objects are mapped apart by a margin. The
latter compares distances between anchor, positive and neg-
ative samples. In addition, there are other variations of
metric learning methods such as center loss [27] and an-
gular loss [24] that have been proposed specifically for face
recognition tasks. Center loss aims to minimize the dis-
tance between each sample and its corresponding class cen-
ter. In contrast, angular loss minimizes the distance between
the feature embedding and its corresponding class bound-
ary. Overall, metric learning has played a crucial role in
enabling accurate verification systems for learning the sim-
ilarity between features.

3. Approach
In this section, we introduce the problem formulation of

the video-music matching task in Sec. 3.1. Then, we detail
our loss functions in Sec. 3.2 for lifting cross-modality fea-
tures to a shared space. Finally, we introduce our proposed
VMCML framework for video-music matching in Sec. 3.3.

3.1. Problem Definition

Given a music set M = {mi|i ∈ Z, 1 ≤ i ≤ Nm} with
Nm music and a video set V = {vi|i ∈ Z, 1 ≤ i ≤ Nv}
with Nv videos from training dataset, where (mi,vi) de-
note music features and video features. For matching video
and music, we adopt the shared weight W as the proto-
type to lift video and music features to a shared embedding
space. Our video-music matching task is formulated as a
mapping f : mi → yi and f : vi → yi, where yi denotes
the predicted matching music class labels in the training

dataset. During the testing stage, video and music can be
matched by estimating the cosine similarity between their
features, i.e., cos(mi, vi). For music already included in the
training dataset, we can directly use yi as the matched one.

3.2. Cross-Modality Training Objectives

Softmax loss is commonly used in the classification
problem to minimize intra-class and maximize inter-class
distances, which is formulated as:

LS(xi,W) = − log
eWyi

·xi∑N
k=1 e

Wk·xi

, (1)

where W is the prototype, i.e., the weight of the last layer in
a network, Wk is the weight of the k-th class, N is the total
number of classes, xi is the feature, and yi is the ground
truth class label of xi. In this paper, the xi is either video
features or music features. To further improve the decision
boundary between different classes, CosFace [24] proposed
lifting the features and prototypes to a hyper-sphere by in-
troducing a scaling term s and a margin µ:

cos(θk,i) =
Wk · xi

∥Wk∥ · ∥xi∥
,

LC(xi,W) =− log
es·[cos(θyi,i)−µ]

es·[cos(θyi,i)−µ] +
∑N

k ̸=yi
es·cos(θk,i)

.

(2)
Since Equation (2) is based on the angles between intra

and inter classes (i.e., θyi,i and θk,i) in a normalized feature
space, the features xi are optimized within a hyper-sphere.

Cross-Modality Lifting Loss. To solve the video-music
matching task as a metric learning problem, we aim at lift-
ing video and music features to the same hyper-sphere. In
this way, we can match the videos to their most appropriate
music by calculating the cosine similarity between them.
Hence, we propose the “Cross-Modality Lifting Loss” by
adopting a shared prototype W for both video and music
features, and consider the modality-to-prototype distances:

LLL(vi,mi,W) = LC(vi,W) + αLC(mi,W) , (3)

where (vi,mi) are input music feature and video feature,
and α is a hyper-parameter.

Cross-Modality Similarity Loss. Although our proposed
cross-modality lifting loss can effectively minimize the intra
and maximize the inter class distances, we found that only
considering the modality-to-prototype distance still leads to
a sub-optimal performance since videos and music are even-
tually matched based on their features instead of their pro-
totypes during the testing stage. In order to overcome this
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Figure 2. Overview of the proposed VMCML framework for video-music matching. Given a pair of video and music, the video encoder
is applied to extract video features and the music encoder is adopted to collect music features(Sec. 3.3). There are two parts of the music
encoder, and we concatenate their output as music features. In the training step, we calculate the cross-modality lifting loss for the video
and music separately from video features and music features by utilizing the same shared head (Sec. 3.2). Hence, calculate the cross-
modality similarity loss between video features and music features(Sec. 3.2). In the testing step (the right side of the figure), we treat the
task as a classification problem on seen music set and calculate the cosine similarity between video and music on unseen music set to match
video with appropriate music (Sec. 3.3).

limitation, we follow [21] to adopt “Cross-Modality Simi-
larity Loss” aiming at addressing the video-to-music feature
distances to improve our downstream video-music match-
ing performance:

cos(xi,xj) =
xi · xj

∥xi∥ · ∥xj∥
,

LSL(vi,mi,m
′
i) = max[0, cos(vi,m

′
i)− τ ]

+ 1− cos(vi,mi) ,

(4)

where (vi,mi) indicates a positive video-music pair
queried according to the ground truth music label of vi,
(vi,m

′
i) indicates a negative one randomly sampled from

the dataset, and τ is a selected margin value. With cross-
modality similarity loss, we can apply direct constraints in-
between the predicted video and music features, and con-
sider modality-to-modality distances, which provides con-
sistent video-music matching schemes under both training
and testing stages.

3.3. VMCML Framework

Video Encoder. To extract video features, we adopt a
R(2+1)D ResNet-18 [22], pretrained on Kinetics-400 [11]
and followed by a fully-connected layer to infer the video
features with embedding size l, as our video encoder.

Music Encoder. we firstly calculate the Mel spectro-
grams of the input music and adopt a ResNet-18 [7] pre-
trained on ImageNet [3] to extract the high-level music fea-

tures. In addition, inspired by [29], we use openSMILE [5]
to extract the low-level music features, including MFCC,
voice intensity, pitch, etc. The low-level and high-level fea-
tures are then fused by concatenation and we infer the final
music features by passing the fused features into an addi-
tional fully-connected layer with embedding size l.

Training and Testing. During each training iteration, we
use a pair of video and music for calculating LLL (Equa-
tion (3)). For LSL (Equation (4)), we randomly sample a
negative music for calculation. The final training objective
is established as:

L(vi,mi,m
′
i) = LLL(vi,mi,W) + βLSL(vi,mi),m

′
i),
(5)

where m′
i indicates a randomly-sampled negative music,

and β is a hyper-parameter.
During the testing stage, the seen music and unseen mu-

sic sets are evaluated with different schemes, as illustrated
in the right part of Fig. 2. For seen music set, the video fea-
tures are inferred from our video encoder, while the music
features are directly pulled from the trained prototype since
the trained prototype can represent the feature center of each
training music, which can significantly reduce the inference
time of unseen music features. For unseen music set, the
music features are extracted from our music encoder.

Finally, we match the videos and music by calculat-
ing the cosine similarity between their features and select
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Dataset Training Validation Seen Music Unseen Music
#Video #Music VpM #Music VpM #Music VpM #Music VpM

MSV 150000 265 400 265 20 265 80 125 140

Youtube-8M [1] 5678 4654 1 NA NA NA NA 1024 1024

Table 1. Details of datasets. The music for training, validation and seen music set is the same. Because the video-music pair is one-to-one
mapping in Youtube-8M [1] dataset, validation and seen music are not included. VpM indicates the number of matching videos for each
music.

the top 20 music clips with the highest similarities as the
matched music list.

4. Experiments
In this section, we describe the datasets including MSV

and Youtube-8M [1] in Sec. 4.1. The implementation de-
tails and evaluation metric are presented in Sec. 4.2. More-
over, we provide quantitative and qualitative results for the
comparison between our approach and state-of-the-art tech-
niques in Sec. 4.3. The ablation study is in Sec. 4.4.

4.1. Dataset

We summarize the details about the datasets in Table 1
and further illustrate them as follows.

MSV. Matching short videos with background music re-
quires a suitable dataset, but there are limitations of public
datasets 1. The TikTok Dataset [10] only provides videos
without a music component. The Youtube-8M [1] dataset
contains both video features and music features, but most
of the music consists of the original sound of the videos
and each piece of music is only matched to a single video.
Additionally, most videos are longer than one minute. To
overcome these limitations, we collect videos with back-
ground music from a well-known multimedia platform. We
randomly download the music and filter out music that(1)
is the original sound of the video or (2) was uploaded by
the video uploaders. We randomly download the corre-
sponding videos for each song and there are no gender or
age restrictions for uploaders. Furthermore, we exclude
videos longer than 20 seconds. The video resolution is
down-sampled by one-fourth to reduce data size. Our Mu-
sic for Short Video (MSV) dataset comprises approximately
150,000 video-music samples, each 8 seconds long, with
one frame per second. We used the uploader’s choice of
background music as the ground truth for each sample. In
summary, the dataset includes 390 music, split into a seen
music set (265 clips) and an unseen music set (125 clips).

1The dataset used in CMVAE is not publicly available.

The seen music set was randomly divided into training, val-
idation, and testing sets, with a ratio of 20:1:4, respectively,
for 500 corresponding videos. The unseen music set con-
tains 140 videos for each music, with no music present in
the training music set. We will release MSV dataset after
the acceptance by the conference. Both video and music
will be released as binary features, and the link to the origi-
nal site is provided.

Youtube-8M [1]. Youtube-8M [1] is not ideal for our pro-
posed use case since the majority of the music in video-
music pairs is the natural sound from the video. We follow
CEVAR [21] to conduct experiments on a random subset of
6000 clips. We use the pre-computed video-level features
in the dataset: a single vector for audio information and a
single vector for visual information in a video. All experi-
ments use these fixed pre-computed features. Youtube-8M
includes video genre classification labels that indicate the
topic of the video clip, and CEVAR utilized the labels as
additional training signals. We ignore the video genre clas-
sification labels to make the experiment setting the same as
our MSV dataset.

4.2. Implementation Details

We implement our proposed framework using three
NVIDIA RTX 3090 with PyTorch [18]. All of the net-
work parameters, including video encoder, music encoder,
and shared prototype, are jointly optimized by Equation (5).
Adam [13] optimizer is adopted with learning rate 1e-5, and
both the margin values µ and τ are set to 0.2. The weight
decay is set to 0.002, and the batch size is set to 128 for all
models. The embedding size l of video and music features
is set to 256. Hyper-parameters are selected based on the
evaluation metric on the validation set at recall@10. α and
β in Equation (3) and (5) are 0.38 and 2, respectively.

Evaluation Metric. The evaluation metric Recall@K is
denoted as:

Recall@K =
∑

v∈Vte

#̇Hitsv@K (6)
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Seen Music Unseen Music
Recall@1 Recall@5 Recall@10 Recall@20 Recall@1 Recall@5 Recall@10 Recall@20

VMCMLCosface 0.2056 0.3562 0.4409 0.5450 0.0170 0.0678 0.1329 0.2526
VMCMLArcface 0.1685 0.2772 0.3370 0.4203 0.0145 0.0673 0.1298 0.2455

Random 0.0037 0.0188 0.0377 0.0754 0.0080 0.0400 0.0800 0.1600
CEVAR [21] 0.1883 0.3319 0.4188 0.5300 0.0156 0.0613 0.1153 0.2170
CMVAE [29] 0.0277 0.0817 0.1316 0.2040 0.0112 0.0474 0.0906 0.1740

Table 2. Comparison the performance (Recall@K) between the proposed VMCML with baseline methods on MSV. VMCMLCosface indi-
cates that the cross-modality lifting loss of the framework is CosFace loss [24]; VMCMLArcface represents that the cross-modality lifting
loss of the framework is ArcFace loss [4]. All architectures we implement use the same video encoder and music encoder.

Seen Music Unseen Music
Recall@1 Recall@5 Recall@10 Recall@20 Recall@1 Recall@5 Recall@10 Recall@20

ResNet-18 0.2056 0.3562 0.4409 0.5450 0.0170 0.0678 0.1329 0.2526
Vggish 0.1999 0.3453 0.4325 0.5358 0.0121 0.0574 0.1129 0.2155

Table 3. Comparison of Resnet18 and Vggish for music encoder backbone on VMCML architecture. Vggish is the backbone originally
used by CMVAE as the music encoder.

where Vte denotes the set of testing video. The Recall@K
indicates the percentage of queries for which the model re-
turns the correct item in its top K result.

4.3. Experimental Results

Baselines. To demonstrate the effectiveness of the pro-
posed framework, we compare our VMCML with the
state-of-the-art video-music matching approaches. 1) CE-
VAR [21]: the approach adopting softmax loss for video-
music matching. 2) CMVAE [29]: the approach adopting a
variational auto-encoder for video-music matching.

Comparison on MSV. The quantitative results on our
proposed MSV dataset is shown in Table 2. In general,
our proposed method outperforms the other baselines in
all metrics. Compared to CMVAE, we found that learn-
ing the distribution of videos and music with a variational
auto-encoder might not be a satisfying solution for video-
music matching task, and our method improved Recall@10
by 2.4% on seen music and 46.7% on unseen music . On the
other hand, although CEVAR also learns a shared prototype
with a softmax loss function, we improve Recall@10 by
5.3% on seen music and 15.3% on unseen music. We found
that lifting video and music features to a hyper-sphere by
our cross-modality lifting loss is necessary for improving
the decision boundary between classes.

In addition to the comparison with SOTA approaches,
we also compare the performance difference between Cos-
Face and ArcFace loss functions. We empirically found that
CosFace leads to a better training convergence, and thus

Figure 3. Recall@20(%) with different margin parameters µ on
CosFace [24] and ArcFace [4]. We implement the experiments
with VMCML on seen music set.

we adopt CosFace to lift our video and music features to
a shared hyper-sphere. Moreover, we conduct experiments
for selecting the best margin value µ in Equation (3) as
shown in Fig. 3. We evaluate the recall@20 performance
on the seen music set of MSVD by increasing µ from 0.01
to 0.2. The results indicate that CosFace achieves better per-
formance and training stability than ArcFace does. As µ in-
creases from 0.1 to 0.2, the variation of the ArcFace perfor-
mance is approximately 0.1, while the variation of CosFace
performance is smaller than 0.01. These findings suggest us
to adopt CosFace in our cross-modality lifting loss.

Furthermore, as shown in Table 3, we compare the per-
formance of two different backbones adopted in our music
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encoder. 1) Vggish: the backbone adopted by CMVAE. 2)
ResNet-18, a more advanced residual network [7]. The per-
formance of ResNet-18 outperforms Vggish at all metrics
on both seen music and unseen music despite the fact that
Vggish is pretrained on Audio Set [6]. However, the results
of adopting Vggish in our VMCML framework still outper-
form other SOTA approaches on seen music set in Table 2.

Comparison on Youtube-8M [1]. We also evaluate our
method on the Youtube-8M, a cross-modal video and music
retrieval benchmark dataset, and compare it with SOTA ap-
proaches. Our evaluation is performed on the 1024 video-
music pairs given by the repository of CEVAR. Since the
features provided by Youtube-8M are one-dimensional, we
use the original CEVAR backbone instead of R(2+1)D and
2D ResNet-18. The backbone consists of a set of fully con-
nected layers that transform the original features into em-
beddings, with each hidden layer using ReLU as the acti-
vation function. Our results, presented in Table 4, demon-
strate the effectiveness of VMCML for cross-modal video
and music matching on both seen music and unseen music.
Compared to CEVAR, our approach improves Recall@10
by a factor of 2 on unseen music. These results convincingly
demonstrate better applicability of our proposed method
than other methods.

Unseen Music
Recall@1 Recall@5 Recall@10 Recall@20

VMCML 0.0645 0.0879 0.1250 0.1807

Random 0.0010 0.0049 0.0098 0.0195
CEVAR [21] 0.0105 0.0356 0.0621 0.1041
CMVAE [29] 0.0039 0.0147 0.0273 0.0469

Table 4. Comparison between the proposed VMCML with state-
of-the-art method on Youtube-8M [1]. Because the video features
and music features in Youtube-8M [1] are one-dimensional, the
video encoder and music encoder used in this experiment are fully
connected layers.

Qualitative Comparison. To further address the perfor-
mance difference between our VMCML and CEVAR, we
visualize the predicted top-5 matched music in unseen mu-
sic for video in Fig. 4 on MSV dataset. The matched mu-
sic is sorted based on similarity scores in descending order,
with the ground truth one highlighted by red boxes. From
the first example, we can observe that the VMCML method
predicts the ground truth music with the highest similarity
score, while CEVAR cannot even find the ground truth one
in the top-5 matched list. Also, by visualizing the similarity
of the prediction shown in Fig. 4 (c), we found that the sim-
ilarity scores of CEVAR for each music only vary in a small

range, while VMCML produces higher variances between
different music.

4.4. Ablation Study

Low-Level Feature. We conduct an ablation study for
the effectiveness of low-level music features extracted
from openSMILE feature extraction toolkit, including
CHROMA, loudness, and pitch. We compared the video-
music matching performance with and without low-level
features on both seen music and unseen music. The results
are presented in Table. 5. The results suggest that low-level
features are crucial for video-music matching tasks. Partic-
ularly on unseen music, the performance of Recall@5 is im-
proved by 1.8 times due to the fact that the pitch of the mu-
sic provides information about the tempo and speed, which
are directly associated with the alignment between actions
in videos with the drum beats in the music. Additionally, the
changes in music volume with time are also an important
cue for matching video and music, which further improves
the matching performance. Furthermore, we conduct exper-
iments involving low-level music features with and without
high-level music features to assess their effectiveness. The
results indicate that considering only low-level features neg-
atively impacts performance. This occurs because our train-
ing method elevates video features and music features to
the same hyper-sphere, wherein low-level features remain
unchanged during training stage.

Seen Music
Recall@1 Recall@5 Recall@10 Recall@20

w/ llf 0.2056 0.3562 0.4409 0.5450
w/o llf 0.1776 0.3109 0.3939 0.5042

Unseen Music
Recall@1 Recall@5 Recall@10 Recall@20

w/ llf 0.0170 0.0678 0.1329 0.2526
w/o llf 0.0147 0.0381 0.1079 0.2087

Table 5. Compare VMCML performance on both seen and un-
seen music sets when training with and without music low-level
features (llf).

Similarity Loss. The effect of cross-modality similarity
loss is shown in Table 6. The similarity loss aims at dis-
criminating the features between a positive and a negative
pairs of video and music inputs, and consider modality-to-
modality distances for further improving matching perfor-
mance. Hence, our results show that incorporating the sim-
ilarity loss improves performance on both seen music and
unseen music, indicating that video-music matching task
can benefit from this technique.
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Figure 4. Qualitative of VMCML for matching video and music is visualized by two examples in unseen music set, and the comparison
method CEVAR is shown. (a) are videos (in the blue box). (b) are the top five matching music (in the yellow box) ranked by their similarity
score the video, with the ground truth is in the red box. (c) are the top-20 similarity score.

Seen Music
Recall@1 Recall@5 Recall@10 Recall@20

w/ LSL 0.2056 0.3562 0.4409 0.5450
w/o LSL 0.1958 0.3206 0.3935 0.4840

Unseen Music
Recall@1 Recall@5 Recall@10 Recall@20

w/ LSL 0.0170 0.0678 0.1329 0.2526
w/o LSL 0.0123 0.0596 0.1166 0.2186

Table 6. Comparison of the performance when training with and
without similarity loss on VMCML.

5. Conclusion

In this work, we develop a cross-modal framework VM-
CML, which addresses the challenges in music recommen-

dation for new users or new music give short-form videos.
VMCML constructs a shared embedding space between
video and music representations effectively by adopting
CosFace loss based on margin-based cosine similarity loss.
Also, we collect a large-scale dataset (MSV) which contains
390 individual music clips and the corresponding matched
150,000 videos. We demonstrate that our approach achieves
state-of-the-art performance for matching video and music
on Youtube-8M and our MSV datasets.
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