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Abstract

In this paper we create an RGB-D 3D object detector

targeted at indoor robotics use cases where one modality

may be unavailable due to a specific sensor setup or a sen-

sor failure. We incorporate RGB and depth fusion into the

recent Cube R-CNN framework with support for selective

modality dropout. To train this model, we augment the

Omni3DIN dataset with depth information, leading to a di-

verse dataset for 3D object detection in indoor scenes. In

order to leverage strong pretrained networks, we investi-

gate the viability of Transformer-based backbones (Swin,

ViT) as an alternative to the currently popular CNN-based

DLA backbone. We show that these Transformer-based im-

age models work well based on our early-fusion approach

and propose a modality dropout scheme to avoid the dis-

regard of any modality during training, facilitating selec-

tive modality dropout during inference. In extensive exper-

iments, our proposed RGB-D Cube R-CNN outperforms an

RGB-only Cube R-CNN baseline by a significant margin on

the task of indoor object detection. Additionally, we ob-

serve a slight performance boost from the RGB-D training

when inferring on only one modality, which could for ex-

ample be valuable in robotics applications with a reduced

or unreliable sensor set. Code and scripts to recreate the

RGB-D dataset can be found at: https://github.com/

VisualComputingInstitute/omni3d-rgbd

1. Introduction

The ability to robustly detect 3D objects and to estimate

their poses and extents is an important capability for embod-

ied agents, e.g. robots that navigate and interact with a 3D

scene. This is a challenging perception task due to the large

variety of objects encountered, e.g. in typical household or

industrial scenarios, varying camera intrinsics, and limited

amounts of training data due to costly 3D labels. Recently,

Brazil et al. [4] introduced Omni3D, a large diverse RGB

3D object detection dataset for indoor and outdoor scenes.

Accompanying the dataset, they propose the Cube R-CNN

approach, which shows promising results for the task of 3D

object detection from RGB image, extending a Faster R-

CNN detector with a simple 3D cube head. One key contri-

bution of Cube R-CNN is the use of a virtual depth, allow-

ing it to be trained and evaluated on a wide range of images

that do not necessarily share the same camera intrinsics.

Moreover, the method predicts bounding boxes with 9 de-

grees of freedom, i.e. full rotation, compared to most other

existing approaches that assume axis-aligned objects [25–

27, 31]. Especially when objects of interest can be tilted

(e.g. leaning against a wall), they are being held by a hu-

man, or the camera pose is dynamic, such 9 degrees of free-

dom detection is relevant. Motivated by robotics scenarios

with diverse sensor setups that often contain an additional

depth modality, we propose a multi-modal extension of the

Cube R-CNN detection framework to RGB-D inputs. While

specialized approaches exist that use point cloud architec-

tures [25, 26, 32], we are interested in extending a generic

RGB backbone such as DLA [39], Swin Transformers [22]

or ViTs [8] to RGB-D inputs. This has two key advantages:

1) Modalities, including depth, can be dropped out during

training to increase robustness to missing modalities during

inference, which is not possible for methods directly work-

ing on point clouds. 2) We can utilize strong pretrained

image models, avoiding the need to train an RGB-D model

from scratch on datasets with less variability. Realizing this

extension to RGB-D inputs brings with it a number of inter-

esting questions and design choices, which we thoroughly

examine in this paper. 1) Architecture: Which common ar-

chitectures can be used in such a setting without creating

highly specific fusion modules or novel multi-modal archi-

tectures altogether? 2) Modality fusion: At what point in the

architecture should the information from RGB and D chan-

nels be combined? We experimentally compare early and

late fusion strategies based on state-of-the-art Transformer

architectures. 3) Model training: How should we best train
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the resulting model? While using networks pretrained on

large datasets has become the de facto standard for initializ-

ing RGB-based backbone networks, it is not obvious how to

best re-use these initializations when training with an addi-

tional depth modality. We also employ a modality dropout

scheme during training, ensuring the model cannot simply

learn to ignore a modality and additionally making it more

robust to missing modalities during inference. Here, we

systematically evaluate different dropout strategies. In our

experiments we focus on the indoor part of the Omni3D

dataset, (Omni3DIN), which merges subsets of SUN RGB-

D [33], Hypersim [30], and ARKitScenes [3]. While all of

these datasets consist of RGB-D images, Omni3DIN solely

provides the RGB images. We retrofit the missing depth

images, creating Omni3DIN RGB-D, enabling us to study

RGB-D-based 3D object detectors on Omni3DIN. We are,

to our best knowledge, the first to conduct systematic RGB-

D experiments on such a diverse and large-scale indoor 3D

dataset. We show that our proposed RGB-D Cube R-CNN

outperforms an RGB-only Cube R-CNN baseline by a sig-

nificant margin on the task of indoor object detection. De-

pending on the exact setup of modality dropout, our model

gracefully reverts to the performance of an RGB-only ver-

sion and in some settings even outperforms models trained

on a single modality.

2. Related Work

2.1. 3D Object Detection

The field of 3D object detection is diverse in terms of input

representation used (RGB, RGB-D or point clouds), and de-

grees of freedom (DoF) of the output (translation, scale, ro-

tation). Most current methods for 3D object detection are

point-cloud-based [9, 25–27, 32, 36], which directly uti-

lize the geometric structure of the scene, either given by

a point cloud or by backprojecting RGB-D images to 3D.

However, our focus in this paper is on 3D object detec-

tion from multi-modal RGB-D data even when one modal-

ity is absent, making point cloud methods not applicable

to our research due to their dependency on depth informa-

tion. Meanwhile, 2D-based methods are inherently relevant

for us. ImVoxelNet [31] operates only on RGB images and

uses a dense voxel representation of intermediate features

to predict 3D boxes with 7DoF. [18] is an example of an

RGB-based 9DoF categorical 3D object detection and pose

estimation approach. Cube R-CNN [4] is a recently pro-

posed method for image-based 3D object detection. It was

introduced as a baseline on a new dataset called Omni3D

which covers outdoor and indoor scenarios. Cube R-CNN

extends the Faster R-CNN [29] architecture with a 3D cube

head to predict 3D bounding boxes in a camera agnostic

virtual depth space. For more details about the architecture,

see Sec. 3.2. However, none of the aforementioned methods

investigate how additional depth information could improve

the performance. We chose Cube R-CNN as our base archi-

tecture, leveraging the extensible 2D architecture capable of

predicting 9DoF 3D bounding boxes and create an RGB-D

extension. To train our model, we utilize the associated di-

verse Omni3D dataset, which we extend to a multi-modal

RGB-D dataset.

2.2. Image­based RGB­D Fusion

Recent work demonstrates that leveraging multiple visual

modalities like RGB and depth jointly improves perfor-

mance in downstream tasks including classification [10],

2D segmentation [10, 41], or 3D object detection [20].

Many fusion strategies exist to fuse the color and depth

modalities, such as early, mid, or late fusion [11, 19, 27, 41].

Some of these methods introduce fairly complicated new

modules and architecture changes. Recently, work has been

done on joint training on multi-modal data using a single

Transformer-based architecture [10, 35]. Omnivore [10], a

Swin Transformer-based [22] approach, is trained for clas-

sification on multiple visual modalities, namely images,

videos, and RGB-D data. Instead of developing a special-

ized architecture, the modalities are simply integrated by

extending the input token space of the Transformer in such

a way that the model can operate given only one modal-

ity during inference, but can still implicitly learn from the

synergy of multiple modalities. They use an early fusion

technique for the RGB-D modalities, by embedding both

modalities with separate networks and fusing them by ad-

dition. This is of particular interest to us since it allows

us to use a standard network with only few modifications.

Furthermore, we also drop the RGB image randomly to en-

courage the model to also use depth cues, which addresses

the weak modality problem discussed by Liu et al. [20].

2.3. Modality Dropout

Recent developments have yielded unified Transformer-

based architectures, that can cope with all visual modalities

by simply extending the input embedding space [10, 15].

These unified architectures allow modalities to be optional,

for example through some sort of modality dropout [7, 10,

15]. This could enable the model to be jointly trained

on multiple modalities, without a hard requirement for all

modalities to be available during inference, which can be

useful in robotic setups where sensor setups can vary and

might be more limited on certain platforms [24].

3. RGB-D Cube R-CNN

In this section, we introduce our proposed method, RGB-D

Cube R-CNN. Our contributions are twofold: We extend the

Omni3DIN dataset to RGB-D, and show that by leveraging

a Transformer-based encoder paired with modality dropout,
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Figure 1. Overview of our RGB-D Cube R-CNN. The overall architecture follows the original Cube R-CNN [4], however, we use RGB-D

inputs and experiment with different backbones.

we can boost AP3D performance and outperform the Cube

R-CNN baseline with a DLA34 backbone.

3.1. Dataset

The Omni3D dataset encompasses two distinct subsets:

Omni3DIN and Omni3DOUT, representing indoor and out-

door environments, respectively. Our primary focus in

this work lies on indoor scene understanding, making

Omni3DIN particularly pertinent. Omni3DIN is itself a su-

perset of subsets from SUN RGB-D [33], Hypersim [30]

and ARKitScenes [3]. However, while these all are RGB-

D datasets, Omni3D consists only of their RGB modalities.

We extended Omni3DIN to RGB-D by re-adding the depth

modality of the original datasets. Each of the different sub-

sets uses a different depth format though, so we first have to

convert them to one common format. For SUN RGB-D, we

used a Python-based version of the official Matlab code to

convert their depth data to metric depth. For ARKitScenes,

depth is already provided in millimeters. Hypersim pro-

vides Euclidean distances to the camera origin, which we

convert to depth in meters using the given camera intrinsics.

As input to our network, instead of using the raw depth in

meters, we use inverse depth given by

inv(x) =
1

1 + c · x
∈ [0, 1]

where x is the depth in meters, which is always positive,

and c is a scale factor. This maps the depth into a more

well-behaved interval between [0, 1]. In all our experiments

we set c to 0.5.

3.2. Method

Our method is built upon the recently introduced Cube R-

CNN by Brazil et al. [4], which itself is based on the

Faster R-CNN [29] architecture. Faster R-CNN employs

a vision backbone, such as a ResNet [12] with a feature

pyramid network [17], that encodes an RGB image into a

spatial feature map. The features are further processed by

a region proposal network (RPN) that predicts region of in-

terests (RoIs) based on predefined anchor boxes with dif-

ferent scales and aspect ratios. Subsequently, a box predic-

tion head is applied to the features of each RoI to predict

a class category and a refined 2D bounding box. The con-

tributions of Cube R-CNN [4] are manifold. The RPN ob-

jective is redefined by adopting a new IoU based approach

instead of the objectness. A novel cube head is introduced

for 3D bounding box regression. Furthermore, the training

objective is based on a virtual depth which makes it camera

agnostic. We use the same architectural design as Cube R-

CNN for the RPN and the RoI heads. Moreover, our method

employs the same training objectives and optimization pro-

cedure.

A 3D bounding box is defined by its eight corner points

and parameterized by 13 parameters for translation, scale

and rotation that are predicted by the cube head. Given the

focal length f and principal point p of the camera’s intrin-

sics, the 2D bounding box r and the predictions of the pro-

jected 3D center on the image plane relative to the 2D RoI,

[u, v], and the depth of the center point z, the object center

in world coordinates is computed as:

X(u, v, z) = (
z

fx
(rx + urw − px),

z

fy
(ry + vrh − py), z).

The box dimensions d are computed as a diagonal matrix in

form of:

d(w̄, h̄, l̄) = diag(exp(w̄)w0, exp(h̄)h0, exp(l̄)l0),

where w̄, h̄, l̄ are the log-normalized width, height and

length, respectively, and w0, h0, l0 category-specific pre-

computed means. The pose of an object is parameterized

by a 6D continuous vector p that represents the allocentric

rotation and is converted to the egocentric rotation matrix

R(p). The eight corners of the final 3D bounding box are

computed by

B3D(u, v, z, w̄, h̄, l̄,p) = R(p)d(w̄, h̄, l̄)Bunit +X(u, v, z)
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Figure 2. Different RGB dropout approaches. 2a Omnivore’s pre-

embedding dropout. 2b Our post-embedding dropout.

where Bunit is an axis-aligned and origin-centered unit box

represented by eight corners. An overview of the architec-

ture and the 3D box parametrization is illustrated in Fig. 1.

Backbones Cube R-CNN adopts the DLA34 [39] back-

bone paired with a standard FPN. DLA is a common

choice within the monocular 3D object detection commu-

nity [6, 18, 21, 42, 43], for other tasks, backbones such as

ResNets [12] or Swin Transformers [22] are more common

though. We investigate whether the DLA34 backbone can

be replaced with modern and popular Transformer-based

architectures, specifically Swin or Vision Transformer [8]

(ViT). Swin possesses an inherent feature hierarchy akin to

that found in ResNet, making it seamlessly compatible with

the conventional FPN. On the other hand, ViT lacks a built-

in hierarchy. To address this limitation, we rely on the Sim-

pleFeaturePyramid (SFP) proposed by Li et al. [16]. SFP

generates a synthetic hierarchy by sampling from the fea-

tures of the last ViT layer.

Modality Fusion Common modality fusion approaches

are early and late fusion. Inspired by Girdhar et al. [10],

we use a simple but effective early fusion method. Af-

ter each modality is embedded by a separate single con-

volutional layer, their embeddings are fused by summation

before they are further processed by the encoder. We in-

corporate normalization for the embedding, considering the

original embedding implementation from the correspond-

ing backbone. We additionally examined late fusion using

two different approaches. In the first method, the modality

embeddings are processed by a shared encoder, while in the

second, these embeddings are individually processed using

separate encoders enccolor, encdepth for each each modality

respectively. In both cases, the outputs of the modalities are

combined through summation.

Modality Dropout One problem in multimodal fusion is

that the model can ignore one of the modalities [10, 15]. To

avoid the network from ignoring one modality and to direct

it towards exploiting the synergy of both modalities, we add

modality dropout. Besides forcing the model to consider

both modalities, it allows us to omit one modality during

inference without retraining, e.g. when switching from an

RGB-D to an RGB-only or depth-only sensor (at the cost

of performance degradation). The former motivation was

also followed by Omnivore for their RGB-D embedding

by dropping color 50% of the time, but our implementa-

tion differs decisively: Our dropout is implemented after

the embedding computation, but before the fusion opera-

tion, as depicted in Fig. 2, whereas Omnivore dropped the

color channels by setting the color input to zero before the

embedding. During training time, we either drop color or

depth by sampling probabilities pc, pd for dropping color or

depth from a multinomial distribution defined by the prob-

abilities [pc, pd, 1− (pc + pd)].

4. Experiments

4.1. Implementation Details

We build upon the official Cube R-CNN implementation

by Brazil et al. [4] based upon PyTorch3D [28] and De-

tectron2 [38]. The original Cube R-CNN was trained us-

ing 48 16GB V100 GPUs, however, since we have fewer

hardware resources available, we first aimed at creating a

reduced training schedule, while still achieving representa-

tive results. We trained all our models on 8 V100 32GB

GPUs with a batch size of 8 images per GPU, thus reduc-

ing the total batch size of 128 to 64 images per batch. We

linearly scale the standard Cube R-CNN learning rate, the

learning rate schedule, and the number of iterations accord-

ingly. For our experiments and ablations we only use 50%
of the iterations while observing only a small performance

degradation (see the first two lines of Tab. 1). Our model is

optimized using stochastic gradient descent with a learning

rate of 0.04 and a momentum of 0.9. During a warm-up

phase, the learning rate is linearly increased from an initial

value of 0.01% of the final learning rate for the first 3.125%
of iterations. Subsequently, a step-scheduling is applied at

60% and 80% of iterations with a factor of 0.1. Addition-

ally, we use weight decay with a coefficient of 0.0001. We

augment the data by random horizontal flipping and scal-

ing during training, as done by [4]. We experimented with

other reduced learning rate schedules, as well as optimizers

(e.g. AdamW [23]), however, we found this simple scaling

to be the most effective. Using this setup, we can train an

(Omni) Cube R-CNN within roughly ∼2 days while using

significantly fewer GPUs. We rely on the Cube R-CNN im-

plementation of the DLA34 model which is initialized with

official ImageNet 1k weights. For both ViT-S [8] and Swin-

T [22], we use the implementations of Detectron2. Unless

specified otherwise, we use ImageNet 1k checkpoints pro-

vided by the timm library [37] for initializing encoders and
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color embeddings, whereas additional depth input layers,

as well as Cube R-CNN specific layers are initialized from

scratch. The latter applies also to our RGB-D version of

DLA34. Notably, the timm checkpoints employed for ViT

were trained utilizing the AugReg techniques as detailed in

[34]. All RGB-D backbones use the same sum-embedding

layer to produce fused tokens from RGB and depth modali-

ties.

Swin In our experiment we use a Swin-T architecture

with a patch size of 4, a window size of 7 and a path drop

rate of 0.2. The outputs of stages [0, 1, 2, 3] are used to

form a hierarchical feature pyramid that is processed by a

standard FPN [17].

Vision Transformer (ViT) We use a standard ViT-S ar-

chitecture with a patch size of 16 and a path drop rate of 0.1.

The input images are rescaled and padded to 512×512. The

outputs of layers [3, 5, 8, 11] are processed by a SimpleFea-

turePyramid (SFP) [16] to form a feature hierarchy.

4.2. Evaluation Metrics

We evaluate using the standard 2D/3D average precision

metrics as defined by Brazil et al. [4].

AP3D Our focus lies on the 3D average precision (AP3D).

We compute the intersection-over-union (IoU3D) with full

9 degrees of freedom (3D position, 3D rotation, 3D object

extents) using the the exact Fast IoU3D [4]. The mean AP is

computed over all 38 classes of Omni3DIN, and several dif-

ferent 3D IoU thresholds τ ∈ [0.05, 0.10, . . . , 0.50]. Here

we also ignore objects with high occlusion/truncation, or

objects that appear tiny after projection to the image plane.

AP2D Although our main focus is on 3D detection, we

additionally report 2D metrics. The AP is based on the

IoU between the 2D box head predictions and the 2D

bounding box of the 3D ground truth cube projected to

the image plane. It is computed for IoU thresholds τ ∈

[0.50, 0.55, . . . , 0.95]. Note the AP2D uses stricter thresh-

olds since the overlap of 2D boxes in general is bigger than

the overlapping volume of 3D cubes. Both the 2D box and

the 3D cube prediction heads process RoIs independently,

hence the 2D and 3D performance are not directly tied to

each other and the AP2D should not be considered as a proxy

for the 3D performance.

4.3. Backbones

In Tab. 1 we compare the effect of different backbones.

The first and second line show that our reduced training

setup obtains slightly lower scores than the original Cube

R-CNN model by Brazil et al. [4], however, we require

RGB RGB-D

Backbone AP2D AP3D AP2D AP3D

DLA34[4] 19.28 15.04 - -

DLA34 18.28 14.24 24.26 17.22

Swin-T 19.54 15.33 22.25 26.18

ViT-S 13.90 12.45 16.19 21.34

Table 1. Results on the Omni3DIN datasets for Cube R-CNN

trained with different backbones and with RGB or RGB-D inputs.

The first line shows the original RGB Cube R-CNN results, with

our reduced training schedule we achieve similar performance. All

backbones benefit from the additional depth input.

Backbone Fusion Shared weights AP2D AP3D

Swin-T Early 6 22.25 26.18

Swin-T Late 6 19.95 24.25

Swin-T* Late : 20.93 25.01

ViT-S Early 6 16.19 21.34

ViT-S Late 6 14.04 19.61

ViT-S Late : 14.34 20.15

Table 2. Results on Omni3DIN RGB-D for different sum-fusion

approaches. The Swin-T model marked with * was trained with a

smaller learning rate as it would diverge otherwise.

significantly fewer GPUs to train this model. We train all

other models with the same reduced setup, performances

might thus increase slightly with a longer schedule, how-

ever, in the following we will compare to our DLA34 base-

line. Looking at the different backbones, Swin-T actually

outperforms DLA34, both compared to our shorter sched-

ule, as well as the original results. The ViT-S backbone on

the other hand performs worse. We found the main reason

for this to be more severe overfitting of the model, since

the ViT backbone actually converged to a better train set

performance. We also briefly experimented with a ViT-B

model, but this only exacerbated the problem further. Now

turning to models trained on RGB-D inputs, we can see

some interesting effects on the right side of Tab. 1. All

three backbone architectures see significant gains in both

AP2D and AP3D. DLA34 gets the biggest boost in AP2D

(about 6%, getting the absolute best performance in this

metric), but both Transformer-based methods get a signif-

icantly larger performance boost in AP3D, where Swin-T

gets a major boost of almost 11%. Further analyzing these

differences, Fig. 3 shows that almost all classes benefit from

the added depth modality, where some classes, such as pil-

low or television, were almost not detected based on the

RGB input alone. Since the DLA34 backbone sees a sig-

nificantly smaller AP3D improvement from the added depth

modality, in the remainder of the paper we will focus on the

two Transformer-based backbones.
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Figure 3. AP3D differences per category between models trained with RGB-D and RGB respectively. Both Swin and ViT see large

improvements for certain categories, in most cases significantly bigger than the DLA34 backbone. In almost no cases the performance

drops based on the added depth input. The numbers at the top of the bars indicate the resulting performance of the RGB-D model.

4.4. Modality Fusion Strategies

Inspired by the Omnivore [10] approach, we use an early

input fusion by adding the RGB and depth embeddings in

the first layer. While such an early fusion worked sub-

optimally for CNNs, it seems to empirically work well for

Transformer-based approaches. However, in principle we

can also pass these embeddings through separate networks

and add their outputs, resulting in a late fusion scheme. In

Tab. 2 we compare these two settings, where for the late

fusion scheme we can additionally compare what happens

when sharing the weights between the two separate net-

works. Here it should be noted that the first layer creat-

ing the embeddings is always specific to the RGB/depth

input. While these experiments are by no means exhaus-

tive, in our case the early fusion approach consistently per-

forms best, although with additional tuning or other setups,

it is likely that a late fusion approach could also perform

well. The early fusion has the clear advantage that the com-

pute increase is negligible though, whereas late fusion in-

curs a major runtime and memory increase, plus the addi-

tional weights when using individual encoders. For ViT ad-

ditional settings could be interesting, where further tokens

are simply computed for each modality separately and con-

catenated into a bigger set of tokens, but we decided not to

pursue this here due to the quadratic increase in complexity.

4.5. Modality Dropout

When building upon a strong RGB pretrained network and

simply adding an additional depth input, there is no real

guarantee that the network learns to incorporate the new

input in a meaningful way. To encourage it to learn from

the depth, we examine different modality dropout strategies.

Some approaches, such as [7, 10], suggest dropping the

color modality before embedding by setting the color chan-

nels to zero, which we refer to as pre-embedding dropout.

Omnivore [10] embeds RGB and RGB-D tokens separately

and encodes them with the same encoder, which can be in-

terpreted as dropping depth after embedding, resulting in

similar behavior to our approach. Our dropout only takes

place after the embedding and before the fusion, therefore

we refer to it as post-embedding dropout.

Dropout Implementations We have ablated the two dif-

ferent dropout approaches, which are depicted in Fig. 2,

with our Transformer backbones and listed the results in

Tab. 4. The results highlight that for both backbones our

post-embedding strategy performs best. While the differ-

ence in performance for ViT is not significant, a substantial

difference is observed for Swin. We further analyzed our

approach for different dropout settings, which are summa-

rized in Tab. 3. For Swin the improvements based on dif-

ferent dropout settings is not that large and often actually

decreases the scores, however, small gains can be obtained.

Especially dropping the color and thus forcing the model

to learn from the depth channel is somewhat effective to

boost the scores. For ViT the possible improvements are

actually a bit better and in general dropping more seems to

help quite a bit. A possible reason could be that this pre-

vents the model from overfitting too strongly which seems

to be a problem in general with the ViT architecture. While

the optimal dropout setting is different for the two back-

bones, it seems to be important that the networks are trained

with some samples that contain both the color as well as the

depth channels since the models trained only of either color

or depth images perform significantly worse when evaluated

on the RGB-D input.

Test-time Dropout Tab. 5 and Tab. 6 show the perfor-

mance of our RGB-D Cube R-CNN when evaluated only on

either RGB or depth. Depending on the modality dropout

settings used during training, when only providing color

images, most models gracefully degrade to performances

similar to a model trained only on RGB (see Tab. 1). One

of the settings actually outperforms the model trained only

on RGB, indicating that using depth as privileged informa-

tion during training can still be valuable to obtain a stronger

model, similar to for example the Mask3D approach [14].

The performances when only evaluating on depth are much

higher though. While one might suspect that it is an easier

task to predict accurate 3D bound boxes from a depth im-
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Training Modality Swin-T ViT-S

RGB D RGB-D AP2D AP3D AP2D AP3D

0% 0% 100% 22.25 26.18 16.19 21.34

25% 0% 75% 22.34 23.35 16.80 20.38

0% 25% 75% : : 16.39 22.01

50% 0% 50% 21.35 20.11 14.98 16.10

0% 50% 50% 22.77 27.08 17.03 23.08

25% 25% 50% 23.71 25.73 18.68 23.97

50% 25% 25% 23.01 22.57 17.17 19.24

50% 50% 0% 17.48 12.47 9.98 2.53

25% 50% 25% 22.86 25.52 18.34 23.96

Table 3. Results of different modality dropout probabilities for

Swin-T and ViT-S on Omni3DIN RGB-D. The first three columns

represent the percentage of training samples with a specific modal-

ity. While not all settings help, improvements are possible for both

architectures. One Swin-T setup diverged (marked with :).

Swin-T ViT-S

Dropout AP2D AP3D AP2D AP3D

Post-embedding 22.77 27.08 17.03 23.08

Pre-embedding 19.56 23.19 16.66 23.01

Table 4. Results on Omni3DIN RGB-D for different modality

dropout approaches as illustrated in Fig. 2. For this ablation, only

the color modality is dropped for 50% of the samples, since both

methods drop the depth in the same way.

age, it is somewhat surprising that a model initialized with

a strong RGB-based ImageNet pretraining can cope so well

when the color information is no longer present.

4.6. ViT Initializations

In our experiments the ViT backbone suffered from over-

fitting the most. However, since Vision Transformers are

interesting for all kinds of reasons, e.g. their very nice han-

dling of additional inputs and their general widespread use

for all kinds of applications, we investigated these in more

detail. While modality dropout did indeed boost perfor-

mance quite a bit, there is still a fairly large gap to the Swin

Transformer performance. We also experimented with the

window attention approach proposed by Li et al. [16] with

little effect. Orthogonal to this, we also looked into using

self-supervised learning on the same RGB-D data, as an ad-

ditional pretraining step. For this, we considered DINO [5]

and Barlow Twins [40]. Tab. 7 shows that pretraining with

Barlow Twins gives a similar boost as modality dropout.

Further adding modality dropout during pretraining addi-

tionally boosts the AP2D score, and combining these two

setups yields even better results, slowly approaching the

Swin-T performance. DINO pretraining using the same

Training Modality Swin-T ViT-S

RGB D RGB-D AP2D AP3D AP2D AP3D

25% 0% 75% 19.07 14.24 13.93 12.24

50% 0% 50% 19.35 15.38 13.59 12.02

25% 25% 50% 18.53 13.85 14.18 12.55

50% 25% 25% 20.05 15.49 14.58 12.83

25% 50% 25% 17.99 13.15 13.64 12.05

50% 50% 0% 18.81 14.33 14.48 12.79

Table 5. Results of different modality dropout settings when evalu-

ated on RGB inputs. We omit settings without RGB only training

samples. While performances drop significantly, the models do

not completely fail and for Swin-T some settings result in better

performance than when only training on RGB.

Training Modality Swin-T ViT-S

RGB D RGB-D AP2D AP3D AP2D AP3D

0% 25% 75% : : 14.08 19.71

0% 50% 50% 21.44 25.65 15.26 21.09

25% 25% 50% 20.64 23.21 15.96 21.75

50% 25% 25% 20.65 21.50 15.58 20.39

25% 50% 25% 21.19 24.23 16.07 22.00

50% 50% 0% 20.40 21.99 16.04 21.27

Table 6. Results of different modality dropout settings when eval-

uated on depth inputs. We omit settings without depth only train-

ing samples. Performances drop significantly less than in the

RGB-only case indicating all models learned to utilize depth even

though they were initialized with ImageNet weights (:: diverged).

setup on the other hand made performance worse, which

we hypothesize is due to stability issues, likely caused by

not being able to train with smaller batch sizes. As Bar-

low Twins does not require large batch sizes, we did not

encounter similar issues here. We tried similar setups for

the Swin Transformer, but here in all cases the plain pre-

trained ImageNet initialization performed best. In gen-

eral this shows that some form of additional self-supervised

learning is an interesting venue for improvements and other

methods such as MAE [13] or data2vec [1, 2] could be in-

teresting alternatives here.

4.7. Qualitative Results

Fig. 4 shows qualitative results from a Cube R-CNN and

an RGB-D Cube R-CNN, both using a Swin-T backbone.

In general our RGB-D Cube R-CNN manages to detect ad-

ditional objects, but especially predicts boxes with better

alignments in 3D space. Additional qualitative results, in-

cluding side-by-side backbone comparisons can be found in

the supplementary material (Sec. 6).
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Figure 4. Qualitative results for our final Swin-T Cube R-CNN on samples from Omni3DIN. Each set of five images shows the RGB image,

depth image, the ground truth and the top view from predictions trained on RGB only (left) and RGB-D (right).

Init SSL Pretraining Modality AP2D AP3D

IN1k RGB-D 16.19 21.34

IN1k Drop 18.68 23.97

IN1k Barlow Twins RGB-D 18.35 24.05

IN1k Barlow Twins Drop 19.43 23.96

IN1k Barlow Twins + Drop Drop 20.42 24.95

IN1k DINO + Drop Drop 17.20 22.33

Table 7. Results of different initializations and self-supervised

learning strategies for ViT-S trained on RGB-D. The modality col-

umn indicates if modality dropout was used during the final Cube

R-CNN training. Some setups can boost the scores significantly.

5. Conclusion

We extended the Omni3DIN dataset by adding depth to form

a new multi-modal RGB-D dataset. We integrated both

RGB and depth modalities into Cube R-CNN, while explor-

ing recent Transformer-based models, i.e. Swin and ViT,

as alternatives to the DLA model. Our findings showcase

that Swin matches the performance of DLA in the RGB do-

main, whereas ViT faces challenges with overfitting. How-

ever, by incorporating depth into the models based on an

early fusion method, both Swin and ViT models surpass

DLA in terms of 3D precision, with Swin exhibiting par-

ticularly strong results. In our experiments early fusion out-

performed both late fusion approaches, while at the same

time saving a significant amount of compute due to not

having two separate backbones. We introduced a post-

embedding modality dropout approach, which aims to avoid

disregarding a modality during training and to allow selec-

tive modality dropout during inference. Furthermore, it acts

as a regularization for ViTs. With our extensive ablations,

we have shown that modality dropout can improve perfor-

mance on RGB-D, while achieving similar or slightly better

results when training on both modalities but utilizing only

one modality during inference. This robustness to missing

modalities during inference renders it especially interest-

ing for indoor robotics applications where sensors might

fail or be absent. While only inferring on RGB images

most models gracefully revert to the performance of models

trained on RGB only, whereas only using depth during in-

ference performs significantly better, indicating that the pre-

trained models can deal well with the encountered modal-

ity shift. To further improve the performance of ViTs, we

explored different initialization strategies motivated by re-

cent advancements in self-supervised learning allowing us

to partially bridge the initial gap between ViT- and Swin-

based training. Altogether, our proposed approach presents

a viable RGB-D based 3D object detector that achieves sig-

nificantly improved quantitatively and qualitatively results

compared to the RGB-only baseline.
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