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Abstract

In the last few years, the research interest in Vision-and-
Language Navigation (VLN) has grown significantly. VLN
is a challenging task that involves an agent following human
instructions and navigating in a previously unknown envi-
ronment to reach a specified goal. Recent work in literature
focuses on different ways to augment the available datasets
of instructions for improving navigation performance by ex-
ploiting synthetic training data. In this work, we propose
AIGeN, a novel architecture inspired by Generative Adver-
sarial Networks (GANs) that produces meaningful and well-
formed synthetic instructions to improve navigation agents’
performance. The model is composed of a Transformer de-
coder (GPT-2) and a Transformer encoder (BERT). During
the training phase, the decoder generates sentences for a
sequence of images describing the agent’s path to a partic-
ular point while the encoder discriminates between real and
fake instructions. Experimentally, we evaluate the quality of
the generated instructions and perform extensive ablation
studies. Additionally, we generate synthetic instructions for
217K trajectories using AIGeN on Habitat-Matterport 3D
Dataset (HM3D) and show an improvement in the perfor-
mance of an off-the-shelf VLN method. The validation anal-
ysis of our proposal is conducted on REVERIE and R2R and
highlights the promising aspects of our proposal, achieving
state-of-the-art performance.

1. Introduction
In the last decade, we have witnessed remarkable results
in Natural Language Processing, Computer Vision, and
Robotics [6]. More recently, increasing interest has been
devoted to research at the intersection between these three
domains [5, 31, 44]. In line with this trend, our work fo-
cuses on the Vision-and-Language Navigation (VLN) task.
When performing VLN, an agent or a robot can perceive
the 360◦ view of the environment and is given human in-
structions such as “Go to the living room and bring me the
remote on the table”. The agent has to follow the instruc-
tions and navigate an unknown environment to reach the

specified goal and stop there.
However, human-generated instructions needed for

training such architectures are costly and time-consuming
to obtain. The resulting lack of annotated training data is
one of the key factors in making VLN a challenging task.
Recent work [11, 16, 20, 56] has focused on generating in-
structions at a lower cost by employing methods for syn-
thetic instruction generation. For example, Guhur et al. [20]
and Chen et al. [11] showed that generating synthetic in-
structions and augmenting the data, improves the navigation
performance of the agent. Nevertheless, Guhur et al. [20]
used image-caption pairs from the web on a prohibitive to-
tal number of 140K environments. Instead, Chen et al. [11]
generated synthetic instructions using trajectories sampled
on HM3D dataset [47] which is composed of 900 environ-
ments; our approach aims at improving the generation qual-
ity of such instructions.

As can be seen in Fig. 1, we propose AIGeN, a novel
computational model that can generate synthetic instruc-
tions starting from unlabeled navigation paths in an environ-
ment. Our proposed model combines a multimodal Gener-
ative Pre-Trained Transformer (GPT) [7] and Bidirectional
Encoder Representations from Transformers (BERT) [15]
in an adversarial manner to generate high-quality instruc-
tions. In particular, the model consists of a Transformer
decoder (GPT-2) that generates sentences describing the
agent’s path, using a sequence of images from the environ-
ment and the associated object detections extracted using
Mask2Former [13]. The BERT-like encoder, instead, serves
as a discriminator and is trained to distinguish between real
and fake instructions.

Using our approach to augment the training data of
REVERIE and R2R datasets, we show that our AIGeN-
generated instructions help to improve the results of a VLN
model achieving state-of-the-art performance. Additionally,
we validate the quality of the proposed method by evaluat-
ing the generated instructions using image description met-
rics [49] and comparing the downstream navigation perfor-
mance of different configurations of our model, showing
that producing well-formed synthetic instructions is bene-
ficial for the training of a navigation agent.
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Figure 1. We present AIGeN, a novel GAN-like model for generating instructions given a sequence of images. Synthetic instructions can
be used as training data for a VLN model to improve its navigation performance.

2. Related Work

Vision-and-Language Navigation. VLN is a task where
an agent needs to learn to navigate in a previously un-
known environment by following step-by-step natural lan-
guage instructions [3, 19]. Thus, the VLN task requires
the agent to understand visual and textual cues and their
correlation and plan its movements accordingly. This
makes VLN a challenging task, which has attracted remark-
able research efforts. While this work focuses on VLN
in indoor environment, there are also works that empha-
size VLN in outdoor environments [9, 42, 58] Early work
proposed a sequence-to-sequence long short-term memory
for action inference [3] and adopted a panoramic action
space with a module to generate synthetic instructions [16].
Ma et al. [39] proposed a self-monitoring agent, and a
method combining progress inference with learned heuris-
tic [40]. Landi et al. [29] used dynamic convolution filters.
RCM [57], instead, used reinforcement learning to improve
cross-modal matching. Recently, Transformer-based mod-
els [52] have been gaining popularity among VLN meth-
ods. For example, PRESS [33] applied pretrained BERT to
encode instructions. VLN⟳BERT [24] implemented a re-
current BERT to model time dependencies. SIA [37] and
PTA [30] used Transformers for multimodal fusion, and
HAMT [10] directly used Transformers to exploit episode
history. Among graph-based methods, Hong et al. [23] im-
plemented graphs to model relations between the scene, ob-
jects, and instructions, while DUET [12] and KERM [34]
used topological maps with a dual-scale graph Transformer
to encode long-term action planning and fine-grained cross-
modal understanding. Additionally, AZHP [17] proposed
a hierarchical navigation process instead of a single-step
planning scheme.

Instruction Generation. A different direction of research
on VLN is followed by studies that present methods for aug-
menting available datasets. Besides the already mentioned
Fried et al. [16], Majumdar et al. [41] proposed a Trans-

former model that transfers visual grounding learned from
image-text pairs from the web to VLN. Other research work
samples random trajectories and generates instructions us-
ing online rental marketplaces [20] and a large-scale dataset
of indoor environments [11, 27]. Our approach improves
the generation of synthetic instructions by aligning the vi-
sual input features with the generated text using the same
number of trajectories as Chen et al. [11].

The most common Transformer-like networks used
in Natural Language Processing (NLP) applications are
BERT [15], GPT [7], BART [32] and Text-to-Text Trans-
fer Transformer (T5) [46]. While BERT consists of only
the encoder part of the Transformer, GPT consists of its de-
coder part. BERT is beneficial for tasks like Visual Question
Answering (VQA), e.g. [38, 50]. On the other hand, GPT
is useful for text generation or summarization [7]. More-
over, Visual Language Models (VLMs) [1] have been used
to generate text, given images, and textual words. Chen et
al. [11] proposed to use a GPT-2 decoder that acts like
a speaker model to generate instructions for VLN. In this
study, we use a GPT-2 decoder that generates language in-
structions, while BERT encoder discriminates whether the
instructions correspond to the given sequence of images as
real or fake.
Generative Adversarial Networks. While GANs have
been applied effectively for generating images [18], they
have been seldom applied to generate instructions that con-
sist of discrete tokens as it is difficult to backpropagate
through discrete tokens. Previous works rely on REIN-
FORCE [14] or using Gumbel-Softmax [48] to allow for
backpropagation. Recently, Transformer networks were
used in an adversarial manner, however, these approaches
were used for the generation of images [25, 26].

3. Proposed Method
AIGeN is used to describe an agent’s trajectory in natural
language and is composed of an instruction generator (vi-
sually depicted in Fig. 2) and an instruction discriminator.
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Figure 2. Architecture of the instruction generator model that generates VLN instructions. The model is fed with a sequence of images and
object names, and it is prompted to generate instructions using a BOS token. The instructions are generated token by token until the EOS
token.

Both models are trained simultaneously using an adversarial
approach, which aims at improving the performance of the
generator and the quality of the generated instructions. The
overall model is shown in Fig. 3. To the best of our knowl-
edge, this is the first approach that combines Transformer
networks and a GAN-like training procedure for generating
synthetic navigation instructions.

3.1. Instruction Generator

The generator is a language model in charge of describing
the actions needed to reach the target location. The pro-
posed model exploits a pretrained language model which
is finetuned conditioning on visual inputs to achieve multi-
modal capabilities similar to Alayrac et al. [1]. However,
instead of just using GPT-2 decoder for instruction gener-
ation, we use it in combination with BERT in a GAN-like
manner to generate better-quality instructions.

The overall approach takes the images from the environ-
ment the agent has to traverse and feeds them into a pre-
trained ResNet-152 [22] encoder to obtain image features.
Next, when generating instructions on Habitat-Matterport
3D (HM3D) environments, all the objects in the given se-
quence of images are extracted using Mask2Former [13]
trained on ADE20K to enrich the visual features with ob-
ject names. This input is fed into the decoder along with the
first BOS token using the concatenation of visual features
and object names as a prompt for the language model. The
GPT-2 decoder is trained to predict the subsequent language
tokens to generate a complete language instruction that de-
scribes the actions of the agent until the last image. Dif-
ferently from [1], AIGeN flattens the tokens from both im-
ages and text before feeding them into the GPT-2 decoder.
Furthermore, to effectively segregate the visual information
from the textual information, position and segment embed-
dings are used in addition to the tokens, as shown in Fig. 2.

The result of the generation is defined starting from the
output of the decoder following the BOS, autoregressively
generating instructions token by token and allowing back-

propagation through sampled tokens using the Gumbel-
Softmax [48] trick.

3.2. Instruction Discriminator

The inputs of the BERT encoder are image features, tokens
of the names of objects in the images, and an instruction.
Similarly to the inputs for GPT-2 decoder, the images are
first fed into a pretrained ResNet-152 [22] visual encoder
to obtain image features. Then, a fully connected layer fol-
lowed by a sigmoid function is used to process the results
from BERT output. The output is simply real or fake; real if
the given instruction matches the given sequence of images
and fake otherwise. Finally, binary cross-entropy loss is
used to minimize the error between the generated output and
the actual output (real or fake). A well-trained discrimina-
tor should classify ground-truth instructions as real and the
generated instructions as fake. Like the decoder, BERT in-
put employs position embeddings and segment embeddings
in addition to token embeddings.

3.3. Adversarial Training

Our method, shown in Fig. 3, follows an adversarial train-
ing approach, where the generator G is trained to fool the
discriminator D, while the discriminator is taught to distin-
guish between real and fake instructions. The generator is
trained to generate instructions as close to the ground-truth
instructions as possible by minimizing the cross-entropy
loss between the generated instructions and the ground-
truth instructions. The generator loss is defined as:

LG = − log(D(IG,x)), (1)

where IG ∈ G(x) is the generated instruction and x is the
sequence of images belonging to the trajectory.
The discriminator has to discriminate between the ground-
truth instructions as real instructions and the generated in-
structions as fake instructions. Consequently, the discrimi-
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Figure 3. Schema of the proposed generative-adversarial framework for synthetic instruction generation. The GPT-2 decoder acts as
a generator while the BERT encoder acts as a discriminator. Both models are trained simultaneously. The generator generates fake
instructions token by token until it reaches the EOS token. The discriminator has to detect whether the instructions corresponding to a
given sequence of images is real (ground-truth) or fake (generated).

nator loss is:

LD = − log(1−D(IG,x))− log(D(IR,x)), (2)

where IR ∈ R(x) is the ground-truth instruction. The train-
ing is performed simultaneously both on the generator and
the discriminator.

4. Experiments
4.1. Experimental Setup

We present experimental results using the model proposed
in Section 3 employing two VLN datasets as benchmark,
REVERIE [45] and R2R [3]. Both datasets consist of nav-
igation sequences composed of 360◦ images that are col-
lected on the nodes of navigation graphs on Matterport3D
environments [8] and each navigation sequence is associ-
ated with three ground-truth textual instructions. The main
difference between the two datasets is that REVERIE in-
structions include interactions with specific target objects
that the model is required to identify, whereas R2R instruc-
tions only specify the trajectory to be followed. In this
study, we only consider the frontal view of the 360◦ images,
with a field of view of 60◦. The training of AIGeN uses a
learning rate of 0.0002, batch size of 6, and Adam [28] as
optimizer. For the GPT-2 decoder, unless otherwise stated
we use a medium-sized version with L = 12, d = 768,
H = 12, where L is the number of layers, d is the model
dimensionality and H is the number of attention heads.
The visual features used by the model are extracted using
ResNet-152. For the BERT encoder, we use a hidden size
of 768, 12 layers, and an intermediate size of 3072. Overall,
AIGeN has 289M model parameters and is trained for ≈ 36
hours on a single NVIDIA RTX6000 GPU.

We evaluate the navigation performance using the fol-
lowing navigation metrics: trajectory length in meters (TL);

success rate (SR), i.e. the fraction of episodes where the
agent can reach the goal position within 3 meters; oracle
success rate (OSR), that is the success rate using an ora-
cle stop policy; success rate weighted by path length (SPL);
and navigation error (NE). The object grounding ability of
the agents on REVERIE dataset is evaluated using remote
grounding success (RGS) which is the ratio of successfully
followed instructions, and RGS weighted by path length
(RGSPL).

Instead, to quantitatively evaluate our model on text gen-
eration, we use metrics commonly used for image descrip-
tion [49], namely BLEU [43], METEOR [4], ROUGE [36],
CIDEr [53], and SPICE [2]1. All these metrics are obtained
by comparing the predicted instruction with the ground-
truth instruction in terms of their n-grams (where an n-gram
is a sequence of n consecutive words). While all these
metrics are commonly used for evaluating cross-modal de-
scription, only CIDEr and SPICE have been specifically de-
signed for this task. The others (BLEU, METEOR, and
ROUGE) have indeed been proposed for evaluating trans-
lation and summarization. According to recent literature,
CIDEr showcases the best alignment with human judgment.

4.2. Experimental Results on VLN

The navigation experiments on VLN are performed con-
sidering an off-the-shelf state-of-the-art VLN method fine-
tuned with the instructions generated by our approach. We
adopt DUET [12], which is based on a dual-scale graph
Transformer to perform long-term action planning and fine-
grained cross-modal understanding by exploiting topolog-
ical maps that are built during the episode. DUET has a
two-step training as described by Chen et al. [12], that is

1We compute image description metrics using the code provided at the
following link: https://github.com/tylin/coco-caption
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Val Unseen
TL SPL↑ SR↑ OSR↑ RGS↑ RGSPL↑

Seq2Seq [3] 11.1 2.8 4.2 8.1 2.2 1.6
SMNA [39] 9.1 6.4 8.2 11.3 4.5 3.6
RCM [57] 12.0 7.0 9.3 14.2 4.9 3.9
FAST-MATTN [45] 45.3 7.2 14.4 28.2 7.8 4.7
SIA [37] 41.5 16.3 31.5 44.7 22.4 11.6
Airbert [20] 18.7 21.9 27.9 34.5 18.2 14.2
ProbES [35] 18.0 22.8 27.6 33.2 16.8 13.9
VLN⟳BERT [24] 16.8 24.9 30.7 35.0 18.8 15.3
HAMT [10] 14.1 30.2 33.0 36.8 18.9 17.3
DUET [12] 22.1 33.7 47.0 51.1 32.2 23.0
KERM [34] 21.9 35.4 50.4 55.2 34.5 24.5
AZHP [17] 22.3 36.6 48.3 53.6 34.0 25.8
HM3D-AutoVLN* [11] 24.3 39.4 54.0 60.0 34.6 25.2
DUET + AIGeN 19.5 41.9 54.4 57.7 35.1 26.9

Table 1. VLN metrics for our approach and competitors on REVERIE Val Unseen. * denotes finetuning on our computing architecture.

Val Unseen Test Unseen
TL SPL↑ SR↑ NE↓ TL SPL↑ SR↑ NE↓

Seq2Seq [3] 8.39 - 22 7.81 8.13 18 20 7.85
PRESS [33] 10.36 45 49 5.28 10.77 45 49 5.49
SSM [54] 20.70 45 62 4.32 20.39 46 61 4.57
EnvDrop [51] 10.70 48 52 5.22 11.66 47 51 5.23
PREVALENT [21] 10.19 53 58 4.71 10.51 51 54 5.30
RelGraph [23] 9.99 53 57 4.73 10.29 52 55 4.75
ProbES [35] 11.58 55 61 4.03 12.43 56 62 4.20
Airbert [20] 11.78 56 62 4.01 12.41 57 62 4.13
VLN⟳BERT [24] 12.01 57 63 3.93 12.35 57 63 4.09
MARVAL [27] 10.15 61 65 4.06 10.22 58 62 4.18
DUET [12] 13.94 60 72 3.31 14.73 59 69 3.65
KERM [34] 13.54 60 72 3.22 14.74 59 70 3.61
HAMT [10] 11.46 61 66 2.29 12.27 60 65 3.93
AZHP [17] 14.05 61 72 3.15 14.95 60 71 3.52
DUET + AIGeN 13.72 63 73 2.92 14.20 61 71 3.33

Table 2. VLN experiments on the Val Unseen split of R2R dataset.

composed of a pretraining phase on four auxiliary tasks and
the finetuning on the VLN task. We perform the pretraining
phase following [11], and then we finetune the pre-trained
model augmenting REVERIE and R2R training splits with
our synthetic instructions. AIGeN-generated instructions
are produced using 217K randomly sampled trajectories on
Habitat-Matterport 3D (HM3D) [47] dataset, a large-scale
dataset of indoor photorealistic environments. We use the
same paths used and released by Chen et al. [11], and we
generate one synthetic instruction for each sequence of ob-
servations. The navigation model is pre-trained and fine-
tuned for a total of ≈ 32 hours, 12 and 20 respectively, on a
single NVIDIA RTX6000 GPU, and is compared with cur-
rent state-of-the-art VLN models on REVERIE and R2R.

The navigation results on REVERIE in Table 1 show that
our approach achieves state-of-the-art performance on SPL
and both object grounding metrics while remaining com-
petitive on the other metrics. In particular, our instruction

set gives a boost in generating effective trajectories towards
the goal, which is reflected by SPL and RGSPL. For ex-
ample, our approach shows an improvement of 8.2 and 3.9
on SPL and RGSPL with respect to the baseline DUET.
For fairness of comparison, we re-trained HM3D-AutoVLN
on our computing infrastructure following [11] (denoted
as HM3D-AutoVLN*). The comparison between HM3D-
AutoVLN* and our approach highlights the effectiveness of
AIGeN-generated instruction since the difference between
the two methods on VLN is defined by the quality of the
synthetic instructions exploited to finetuned DUET. When
running this comparison, our approach outperforms HM3D-
AutoVLN* on the main navigation metrics, and in particu-
lar, on success rate weighted by path length (SPL) shows an
improvement of 2.5.

Furthermore, analyzing the experiments on R2R dataset
in Tab. 2, our method provides state-of-the-art results on
SPL and SR for both validation and test unseen splits, prov-
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Val Seen Val Unseen
Model BLEU-1 METEOR ROUGE CIDEr SPICE BLEU-1 METEOR ROUGE CIDEr SPICE

AIGeN (Medium) 0.487 0.222 0.457 0.869 0.318 0.412 0.166 0.378 0.461 0.213
AIGeN w/o detect. 0.409 0.188 0.416 0.358 0.196 0.357 0.141 0.347 0.132 0.123
AIGeN 0.484 0.228 0.465 0.890 0.329 0.421 0.179 0.393 0.486 0.228

Table 3. Image description experiments using our model with different size configurations and without using the detections on REVERIE.

Val Unseen
TL SPL↑ SR↑ OSR↑ RGS↑ RGSPL↑

AIGeN (Medium) 20.0 41.2 54.3 60.1 35.1 26.5
AIGeN w/o detect. 23.4 38.9 52.5 59.4 34.6 25.7
AIGeN 19.6 41.9 54.4 57.7 35.1 26.9

Table 4. Experimental comparison of VLN performance of different configurations of our model on REVERIE dataset.

%Novel Unigrams Bigrams Div-1 Div-2

Ground truth - 3675 21551 0.019 0.113
AIGeN w/o adv. training 22.7% 2970 15928 0.016 0.086
AIGeN 100.0% 14783 43013 0.072 0.210

Table 5. Evaluation of the diversity of synthetic instructions using AIGeN before and after the GAN fine-tuning compared with the ground
truth instructions on REVERIE training split.

ing that our approach can generate synthetic instructions
that are beneficial for multiple VLN datasets. Comparing
our method with respect to the baseline DUET, AIGeN-
generated instructions allow an improvement in SPL of 3.0
and 2.0 respectively on the validation “unseen” and test “un-
seen” splits. Overall, these results support our claim that
well-formed synthetic instructions help the agent to learn
better navigation and object localization in a VLN setting.

4.3. Ablation Study

We validate the components of our approach by comparing
different configurations of AIGeN on synthetic instructions
generation in Table 3 and on navigation in Table 4.

Starting from Table 3, the first row shows the perfor-
mance of the generator that is trained from scratch. As
can be seen, training the instruction generation model from
scratch provides a maximum CIDEr of 0.869 on the “seen”
split, and 0.378 on the “unseen” split, without reaching the
results of the overall method. Following, we ablate the pro-
posed model in terms of input modalities analyzing the con-
tribution given by the object detections, and comparing it
with a model that is trained using only visual features and
textual instructions. All the metrics related to AIGeN with-
out detections, especially CIDEr and SPICE, are consid-
erably lower than the metric values computed for AIGeN.
This result confirms the importance of employing object de-
tections as input features. We speculate that when there are
no object words provided, the model is not able to identify
which object in the scene it has to attend to. Therefore, the
target objects in the generated sentences are often different

from those in the ground-truth instructions even when the
landmark is correctly recognized.

Moving on to the navigation experiments in Table 4, we
compare the performance of the VLN model on REVERIE
dataset augmenting the training data with the instructions
generated by different configurations of our approach. In
this case, AIGeN surpasses its counterparts by an important
margin on all the metrics. The improvement on the SPL
over the Medium configuration that is trained from scratch
is 0.7, and it becomes 3.0 when considering AIGeN w/o
detections. The ablation study validates the effectiveness
of the components of the model in both text generation and
downstream vision-and-language navigation.

4.4. Diversity Analysis

To assess the quality of the synthetic instructions and mea-
sure the diversity of the generation, in Table 5 we com-
pute diversity metrics commonly used for image caption-
ing [49, 55] comparing the diversities of AIGeN-generated
instructions with the ground-truth annotations of the trajec-
tories of REVERIE training split. The comparison is per-
formed by producing synthetic instruction using AIGeN be-
fore and after the adversarial fine-tuning phase.

The metrics used for this study are the ratio of the num-
ber of novel sentences, i.e. not contained in the dataset, to
the number of ground-truth sentences, the number of unique
words (Unigrams); the number of unique couples of consec-
utive words (Bigrams); Div-1; and Div-2. Div-1 and Div-2
are respectively the ratio of unique unigrams and bigrams
to the total number of unigrams.
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(a)
GT: Go to the white room with 4 basins opposite the lounge pool and turn on the faucet on the left closest to the entrance
AIGeN: Walk to the bathroom with the white sink and turn on the faucet

(b)
GT: Go to the hallway with the black chairs on level 2 and sit in the second chair from your right
AIGeN: Go to the dining room and bring me the chair that is nearest to the door

(c)
GT: Go to the lounge on level 1 and sit down on the armchair
AIGeN: Go to the dining room and with a lint roller clean the arm chair which is against the wall

(d)
GT: Go to the laundry room on the first floor and sort out the cluttered cleaning products on the dryer
AIGeN: Go to the laundry room on level 1 and bring me the clothes on the rack opposite the dryer

Figure 4. Sample image sequences from REVERIE Val Unseen split with corresponding ground-truth instruction and synthetic instructions
generated using AIGeN. The images in each sequence have been reduced to 8 to facilitate the graphical presentation and we only show the
frontal image of the panoramic observation at each timestep.

Looking at the results, it is evident that the fine-tuning
phase using an adversarial approach helps to generate in-
structions that do not retrace the ground truth instruction,
with the consequence of improving the diversity of the
dataset. In fact, while the generated instructions without us-
ing the GAN-like training present a small number of novel
sentences, AIGeN returns a completely novel set of instruc-
tions. Furthermore, AIGeN with the adversarial fine-tuning
can increase the number of unigrams and bigrams sampled
from the word dictionary even with respect to the ground
truth annotations. This result is also reflected by Div-1 and
Div-2 metrics that present a significant increase with respect
to the ground truth instructions.

4.5. Qualitative Analysis

Finally, Fig. 4 and 5 show examples of sequences of in-
put images with corresponding ground-truth instructions (if
available) and generated instructions using AIGeN.

In Fig. 4 all four samples have been taken from the
“unseen” validation split of REVERIE, so that AIGeN has
never seen these environments during training. We provide
two positive samples in (a) and (b) as well as two nega-

tive ones in (c) and (d). For both (a) and (b), the gener-
ated instruction is similar to the ground-truth instruction and
matches the given sequence of images. In fact, the land-
marks bathroom in (a) and the dining room in the hallway
in (b) are correctly recognized. Furthermore, both synthetic
instructions refer to the correct target object, respectively
“faucet” and “chair”. In the case of (c) instead, the gen-
erated instruction and the ground-truth instruction identify
the wrong landmark, with the lounge that is recognized as
a dining room by our model. However, the target object
“armchair” is still recognized correctly. Finally, in the case
of (d), the generated instruction and the ground-truth one,
refer to different target objects. While the correct target
objects are the “cluttered cleaning products” on the dryer,
AIGeN refers to the “clothes on the rack” as the target ob-
jects. Nevertheless, the laundry room is correctly identified
by our model.

Moving on to Fig. 5, we showcase three qualitative sam-
ples using trajectories from HM3D. As HM3D is unlabeled,
in this case, there is no ground-truth annotation available,
and we only provide the instructions generated by AIGeN.
The first example in (e) identifies the office and the target
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(e) AIGeN: Go to the office on level 1 and clean the desk

(f) AIGeN: Go to the kitchen and turn off the light closest to the entrance

(g) AIGeN: Go to the laundry room and clean the mirror above the sink

Figure 5. Sample image sequences from HM3D with corresponding synthetic instructions generated using AIGeN. The images in each
sequence have been reduced to 8 to facilitate graphical presentation, and we only show the frontal image of the panoramic observation at
each timestep.

object “desk” correctly in the final observation of the se-
quence. In the second trajectory shown in (f), the target
object (“light”) in the kitchen is correctly recognized. Fi-
nally, in the third trajectory (g), the kitchen is identified as
a laundry room, and the correct target object “window” is
misidentified as a “mirror”.

These results demonstrate that even when the visual
quality of the environment is low due to 3D reconstruc-
tion, AIGeN is capable of generating valuable instructions
for vision-and-language navigation providing correct direc-
tions identifying objects and landmarks.

5. Conclusions

We proposed a computational model for synthetic instruc-
tion generation, based on the state-of-the-art NLP models
GPT-2 and BERT. Our model leverages a GAN-like struc-
ture and takes sequences of images as input to generate
instructions for the path traversed by the agent to reach
its target location. The model has been trained and vali-
dated on REVERIE instructions and achieved high image
description metric results when comparing the generated in-
structions with the ground-truth instructions. Subsequently,
we prove that using our synthetic instructions to augment a
VLN dataset, such as REVERIE or R2R, improves the per-
formance of a VLN method achieving state-of-the-art per-
formance on both navigation and object grounding metrics.

6. Limitations
In our experimental section, we extract the labels of the
objects in the last panoramic view of each navigation tra-
jectory using Mask2Former [13] trained on ADE20K. The
labels of these objects are tokenized to obtain their embed-
dings which are then concatenated with the image embed-
dings and the instructions embeddings. Relying on detec-
tion labels the model can identify the target objects within
each episode and potentially understand the surrounding
context and landmarks. This time-consuming procedure is
necessary as the words derived from the object labels help to
generate coherent instructions for the provided image sets.

As can be seen in the ablation study presented in Table 3
and Table 4, the instruction quality and navigation perfor-
mance of AIGeN without the object detections are worse
than those of the complete approach. Future work could
focus on generating instructions directly from the image se-
quence trying to fill the gap with the approach using up-
stream object detection.
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