
Exploring the Role of Audio in Video Captioning

Yuhan Shen† * Linjie Yang‡ Longyin Wen‡ Haichao Yu‡ Ehsan Elhamifar† Heng Wang‡

† Northeastern University ‡ ByteDance

Abstract

Recent focus in video captioning has been on designing
architectures that can consume both video and text modal-
ities, and using large-scale video datasets with text tran-
scripts for pre-training, such as HowTo100M. Though these
approaches have achieved significant improvement, the au-
dio modality is often ignored in video captioning. In this
work, we present an audio-visual framework, which aims
to fully exploit the potential of the audio modality for cap-
tioning. Instead of relying on text transcripts extracted via
automatic speech recognition (ASR), we argue that learning
with raw audio signals can be more beneficial, as audio has
additional information including acoustic events, speaker
identity, etc. Our contributions are twofold. First, we ob-
served that the model overspecializes to the audio modality
when pre-training with both video and audio modality, since
the ground truth (i.e., text transcripts) can be solely pre-
dicted using audio. We proposed a Modality Balanced Pre-
training (MBP) loss to mitigate this issue and significantly
improve the performance on downstream tasks. Second, we
slice and dice different design choices of the cross-modal
module, which may become an information bottleneck and
generate inferior results. We proposed new local-global fu-
sion mechanisms to improve information exchange across
audio and video. We demonstrate significant improvements
by leveraging the audio modality on four datasets, and even
outperform the state of the art on some metrics without re-
lying on the text modality as the input.

1. Introduction
Large-scale pre-training [3, 18, 29, 38, 47, 57, 65] plays

a key role in boosting modern deep learning models. It is
even more so for vision and language tasks, such as video
captioning [1,10,32,36,41,45,56,63,64], where leveraging
large video datasets with text supervision for pre-training is
essential to achieve competitive results. However, manually
annotating captions for video datasets is costly and not scal-
able. Thus existing video captioning datasets [46,59,61,68]
are often limited in size.
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To address this challenge, recent work collected datasets
from instructional videos, where ASR transcripts can be
used as text supervision, e.g., How2 [42], CrossTask [71],
HowTo100M [30], HD-VILA-100M [62], etc. This has es-
tablished a new trend of pre-training on large-scale video
datasets with text transcripts for video captioning [14, 28,
43]. We argue that text transcripts from ASR only includes
partial information from audio, and hypothesize end-to-
end learning using the audio modality can potentially lead
to better performance, since audio can provide additional
information (shown in Fig. 1) including acoustic events,
speaker identity, etc.

More specifically, our paper seeks to better understand
the following questions:

• To what extent, can the audio modality improve video
captioning?

• How can the potential of the audio modality be fully
realized in an audio-visual framework for captioning?

To this end, we start with a simple multi-modal pre-training
framework for video captioning with ASR transcripts as su-
pervision (shown in Fig. 2), and look into different com-
ponents that may hinder the performance of the pre-trained
audio-visual model on the downstream datasets.

First, we observed that simply jointly training of the au-
dio and video modalities may result in degenerated mod-
els that overspecialize to audio modality and underfit on
video modality. As text transcripts are used as video cap-
tions during pre-training, the model essentially learns to
cheat and solve the ASR problem instead of extracting in-
formation from both visual and audio signals. To mitigate
this issue, we proposed the Modality Balanced Pre-training
(MBP) loss that takes into account both the unimodal losses
and cross-modal loss. We introduce a weighting mechanism
to balance different modalities during training. Fig. 4 shows
that our MBP loss enforces the model to focus on the under-
fitted video modality and drives the final loss much smaller.

Second, we thoroughly investigated the design of the
cross-modal fusion module, which is responsible for the in-
formation exchange between audio and video modality. An
improperly designed cross-modal fusion module may be-
come an information bottleneck and result in inferior per-
formance for video captioning. We proposed new local-
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Audio Description: [Baby Crying] [Woman Speech:
oh, no baby] [Woman laughter]

GroundTruth: A baby fusses and cries while a woman talks and laughs.
Video-only: A baby is laying down and yawning while being held by a person.
Video+Text: A baby sneezes and then sneezes several times.
Video+Audio: A woman is laughing and talking to a baby and the baby is 
crying.

Audio Description: [Girl: What’s this? Pencil.] [Man: 
Pencil.] [Girl: What’s this?] [Man: I don’t know]

GroundTruth: A little girl is pointing to pictures in a book while an adult talks 
to her. 
Video-only: A baby is sitting on a couch looking through a children's book.
Video+Text: A little boy is holding a pencil in front of a pencil sharpener.
Video+Audio: A little girl is reading a book while a man talks to her.

Figure 1. Audio provides critical complementary information in multi-modal video captioning. We show two examples of generated
captions when we input 1) only video, 2) video and ASR text, and 3) video and audio. Audio can provide additional information that
cannot be obtained from visual modality or ASR text, e.g., sound of crying, laughter, and speaker gender.

global fusion modules to encourage the information flow
across different modalities. We analyzed the relevance of
the annotated captions to the audio modality on downstream
datasets, and observed that the local fusion modules are
more beneficial to the flow of fine-grained information like
single words in speech, while the global fusion modules are
more effective on holistic information like acoustic events
or scenes. The local-global design is able to capture in-
formation at different granularities, and mingle audio and
video information at different levels. Compared with exist-
ing designs, our local-global fusion has shown empirically
better results.

By combining the two contributions, we demonstrate
that audio is crucial to video captioning and provides both
speech and non-speech information. Fig. 1 shows a few ex-
amples on how our model effectively integrates the informa-
tion from both the audio and video modality, and generates
better captions than video-only and video-text variants.

We summarize our contributions as follows:

• Proposed to pre-train video captioning models based
on video and audio modalities, and demonstrated the
benefits of audio on four benchmarks.

• Proposed the MBP loss to balance different modali-
ties automatically during training, and ease the issue
of overspecialization to the audio modality.

• Did an extensive evaluation on the effects of differ-
ent cross-modal fusion modules on audio-visual video
captioning, and proposed a novel local-global fusion
module to effectively integrate audio and video infor-
mation.

2. Related Work
Video Captioning. Most works in video captioning [1,
10, 32, 36, 55, 56, 63, 67] focus on designing a better model

to generate text descriptions given precomputed video fea-
tures via an encoder-decoder framework. SwinBert [25]
attempted to train the encoder-decoder framework directly
from raw video pixels. In addition to visual modality, some
works studied video captioning from visual data and ASR
texts [13, 28, 43, 44, 46, 50]. A few prior works also studied
audio-visual video captioning [7, 15, 40, 51], but they are
often limited to small-scale video captioning datasets and
precomputed input features. To the best of our knowledge,
we propose the first end-to-end audio-visual video caption-
ing framework.

Multi-Modal Pre-training. A growing number of works
are investigating multi-modal pre-training in videos, e.g.,
video-text pre-training [20,28–30,35,47,66] and video-text-
audio pre-training [3, 4, 41, 65], which mostly adopt con-
trastive learning and/or masked language modeling to learn
better representations for downstream tasks. As only en-
coders are trained for multiple modalities, a separate de-
coder needs to be trained on top of the encoders for gener-
ative tasks such as video captioning. MV-GPT [43] shows
the benefits of pre-training an end-to-end encoder-decoder
framework to video captioning. Unlike MV-GPT that re-
lies on ASR text as input, our framework directly uses
video and audio. A Textless Vision-Language Transformer
(TVLT) [49] was recently proposed to take visual and au-
dio inputs for multi-modal representation learning without
ASR inputs. However, the pre-trained TVLT is a discrim-
inative model that cannot be directly applied to generative
tasks. While a multi-modal network receives more infor-
mation and is expected to boost performance, recent works
[16, 33, 37, 58] have identified a key challenge in training
a multi-modal network that one modality may converge
faster than other modalities and undermine the representa-
tion learning of other modalities. We propose a Modality
Balanced Pre-training objective to mitigate this issue and
facilitate a powerful audio-visual video captioning model.
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(PCC)  mix it      with     the    water  [EOS]

(PNC)  you    can    just  measure  it     [EOS]

Figure 2. Overview of our audio-visual video captioning framework. We design two tasks for caption generation during pre-training:
Predict Current Caption (PCC) and Predict Next Caption (PNC). For downstream fine-tuning, we only adopt PCC because the goal is to
predict current caption given the input frames and audio.

Cross-Modal Fusion. Given the representations of multi-
ple modalities, a cross-modal fusion module [17,29,30,38]
fuses these representations into a shared space to gener-
ate cross-modal representations. In order to fuse a se-
quence of representations generated by Transformers [53],
there are two major types of cross-modal fusion modules:
merged fusion, and cross fusion. In merged fusion, the
two modalities are concatenated and fed into a Transformer
block [21, 23, 28, 57]. In cross fusion, the two modalities
are fed into different Transformer blocks with cross atten-
tion [27,43,44,48,52]. Besides, some recent works propose
variants of cross-modal fusion modules that use bottleneck
tokens [31] or prune single-modal units [60] to control the
flow of cross-modal interaction.

3. Audio-Visual Video Captioning
In this section, we propose our methods for audio-visual

video captioning. In Sec. 3.1, we present an overview of our
framework. In Sec. 3.2, we describe our MBP loss to bal-
ance different modalities during pre-training. In Sec. 3.3,
we investigate different cross-modal fusion modules and
propose a local-global fusion module to improve informa-
tion flow between audio and video at different granularities.

3.1. Framework Overview

As shown in Fig. 2, we follow the common practice
in video captioning [28, 43] and use an encoder-decoder
framework including four main modules: a video encoder,
an audio encoder, a cross-modal encoder, and a caption de-
coder, all of which are Transformer architectures [53].

Given a video, the video encoder extracts a sequence of
D-dim video embeddings φv ∈ RNv×D from the frames,
and the audio encoder extracts a sequence of D-dim au-
dio embeddings φa ∈ RNa×D from the audio spectro-
gram, where Nv and Na are the numbers of video to-
kens and audio tokens. Then, we employ a cross-modal
encoder fΘ(·) to generate multi-modal embeddings φc ∈
R(Na+Nv)×D for cross-modal interaction. Finally, we use
a decoder gΘ′(·) conditioned on φc to output the captions
auto-regressively. By default, we use Video Swin Trans-
former [26] as the video encoder, and Audio Spectrogram

Transformer [12] as the audio encoder.
Inspired by [43], we design two tasks during pre-

training: Predict Current Caption (PCC) and Predict Next
Caption (PNC). Given the audio-visual embeddings as the
context, we feed two BOS (Beginning of Sentence) tokens
to the caption decoder for caption generation, namely BOS1
and BOS2, which initiate the prediction of the current and
next caption respectively. The PNC task enforces the model
to anticipate future events, which is more challenging and
requires higher level of semantic understanding. Note that
this multi-task training is only used for pre-training. For
downstream fine-tuning, we only feed BOS1 token to the
decoder as the goal is to predict the current caption.

3.2. Modality Balanced Pre-training

With captions as supervision, a commonly used objective
is to minimize the negative log-likelihood:

L = L(gΘ′(fΘ(φ
a, φv)), y), (1)

where L is the cross entropy loss and y is the ground-truth
caption. We refer to this loss as audio-video decoder loss,
as both audio and video features are input into the decoder.

Prior works [3, 29, 43, 57, 65, 66] have proved that
large-scale pre-training is essential to multi-modal learn-
ing. Thus, we pre-train our audio-visual video caption-
ing model on a large-scale video dataset before fine-tuning
it on downstream captioning datasets. Although there are
some large-scale datasets for video-language pre-training,
e.g., HowTo100M [30] and HD-VILA-100M [62], they lack
manually annotated captions and use ASR transcripts as text
supervision. One significant issue based on our experiments
(Fig. 4) is that the model tends to learn only from the audio
and ignore the video modality, since the ASR caption can
be solely derived from human speech in the audio. Even
with the two tasks for current and future caption predictions,
the model still favors the audio features when predicting the
current caption.

To address the issue, we propose MBP to balance differ-
ent modalities during training. We add losses for audio-only
and video-only predictions to improve the learning of the
two modalities. To measure how well the model exploits a
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Figure 3. Three different cross-modal fusion designs. Superscripts a, v denote audio and video modalities. Q, K, V represent query, key,
and value in multi-head attention models. For clarity, we use dot lines to denote the flow of global tokens in (c).

certain modality, we first define the following two losses:

La = L(gΘ′(fΘ(φ
a,0)), y);

Lv = L(gΘ′(fΘ(0, φ
v)), y),

(2)

where we set video embeddings to all-zeros to get the audio-
only decoder loss La, and set audio embeddings to all-zeros
to get the video-only decoder loss Lv based on Eq. (1). We
refer to La or Lv as mono-modal losses. If a mono-modal
loss is small, it means that the corresponding modality is
well utilized by the model. We then measure the gap be-
tween the multi-modal loss and the mono-modal losses by
a Mono-to-Multi Discrepancy (MMD) index:

Ga = (La − L)2;Gv = (Lv − L)2, (3)

where Ga and Gv measure the discrepancy between audio-
only/video-only decoder loss and audio-video decoder
loss, respectively. Inspired by G-Blend [58] that uses
Overfitting-to-Generalization Ratio (OGR) to iteratively
update training weights for different modalities, we guide
the weights of mono-modal losses based on whether the
modality is well utilized by the model:

Lpretrain = L+ waLa + wvLv, (4)

where wa and wv are weights updated over iterations:

w(t)
m = βw(t−1)

m + (1− β)w̃(t)
m ,m ∈ {a, v}, (5)

where β ∈ (0, 1) is a smoothing hyperparameter, t is the it-
eration number, and w̃

(t)
m is obtained using a softmax func-

tion over the MMD of two modalities at the current itera-
tion:

w̃(t)
m =

exp (αG
(t)
m )∑

m′ exp (αG
(t)

m′)
,m ∈ {a, v}, (6)

where α > 0 is a temperature hyperparameter. If Gm is
large for a certain modality, we will assign a higher weight
wm for modality m in Eq. (4). This strategy enforces the
model to attend more to modality m and mitigate its over-
specialization to the other modality. As the optimization

progresses and the gaps Ga and Gv change over time, we
dynamically adjust wa and wv according to Eq. (5) to en-
hance the underfitted modality. Our strategy can be easily
extended to more than two modalities, which is out of the
scope of this work.

3.3. Cross-Modal Fusion: Beyond Cross Attention

In addition to the MBP objective, the cross-modal en-
coder is another component where different modalities in-
teract with each other. In this section, we explore different
design choices for the cross-modal fusion module to better
leverage the audio modality for video captioning.

3.3.1 Background

Given Nq d-dim query vectors Q ∈ RNq×d, and Nv

key-value pairs, K,V ∈ RNv×d, an attention function
maps queries to output vectors with a scaled dot prod-
uct: Att(Q,K,V) = Softmax(QKT

√
d
)V. A Transformer

(TFMR) layer consists of a Multi-Head Attention (MHA)
module and a Feed-Forward Block (FFB), denoted by
Transformer(X,Y) = FFB(MHA(X,Y,Y)).

3.3.2 Cross-Modal Fusion

As mentioned in Sec. 3.1, we feed the audio tokens φa ∈
RNa×D and the video tokens φv ∈ RNv×D into a cross-
modal encoder for cross-modal fusion. Below we introduce
two popular fusion methods.

In merged fusion (Fig. 3a), the tokens of two modalities
are concatenated and then passed into Transformer blocks:

φa
i+1, φ

v
i+1 = Transformeri([φ

a
i ;φ

v
i ], [φ

a
i ;φ

v
i ]). (7)

Audio tokens φa
i and video tokens φv

i are the inputs of the
i-th Transformer layer. Each audio token can attend to all
audio and video tokens, and it is the same for video tokens.

In cross fusion (Fig. 3b), each modality has its own
Transformer layers, and different modalities exchange in-
formation via cross attention, i.e., one modality is used as
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the context (keys and values) of the other modality:

φa
i+1 = Transformerai (φ

a
i , φ

v
i ),

φv
i+1 = Transformervi (φ

v
i , φ

a
i ).

(8)

Each layer has two modality-specific Transformers.

3.3.3 Global Cross Fusion

We use “local fusion” to denote the fusion modules in (7)(8)
as the interaction is among local tokens, regardless of intra-
modality or inter-modality. However, only using local inter-
action can be sub-optimal, as local tokens may be noisy and
less informative for cross-modal interaction. To select more
salient features, we introduce global tokens Ga and Gv for
each modality (Fig. 3c), which serve as a global represen-
tation of the audio clip or the video clip. Instead of using
all video tokens as the context for audio tokens, we use the
global video token as the context:

φa
i+1, G

a
i+1 = Transformerai ([φ

a
i ;G

a
i ], [φ

a
i ;G

v
i ]),

φv
i+1, G

v
i+1 = Transformervi ([φ

v
i ;G

v
i ], [φ

v
i ;G

a
i ]).

(9)

We restrict all cross-modal attention to be via the global
tokens, and local tokens are only used for intra-modal at-
tention. The global token of the first cross layer is learnable
and is initialized with a Gaussian distribution.

3.3.4 Local-Global Fusion

Local and global tokens capture information in different
granularities. Local tokens capture local features such as
words in the speech or objects in a video frame, while global
tokens capture high-level concepts like sounds of laughter
or people gathering on a street. To leverage multigranular
information, we propose to combine local fusion and global
cross fusion. Let φa(G)

i+1 and φ
v(G)
i+1 denote the embeddings

from global cross fusion in Eq. (9), and φ
a(L)
i+1 and φ

v(L)
i+1 de-

note the embeddings from local fusion in Eq. (7) or Eq. (8),
we compute an average of these embeddings before feeding
them into the next layer, i.e.,

φm
i+1 = (φ

m(G)
i+1 + φ

m(L)
i+1 )/2, m ∈ {a, v}. (10)

This unified fusion module is named as “local-global fu-
sion”, and is able to progressively refine the tokens us-
ing both local and global guidance. We name this variant
with merged fusion as “local-global merged fusion”, and
the variant with cross fusion as “local-global cross fusion”.

4. Experiments
4.1. Pre-training and Downstream Datasets

We use the HowTo100M dataset [30] for pre-training,
and four video captioning datasets, including YouCook2

0 10 20 30 40 50 60 70 80 90 100
Training Epoch

100

2 × 100

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s (
lo

g-
sc

al
e)

w/o MBP, audio-video loss
w/o MBP, audio-only loss
w/o MBP, video-only loss
w/ MBP, audio-video loss
w/ MBP, audio-only loss
w/ MBP, video-only loss

Figure 4. The pre-training losses without and with MBP. (Solid
lines: without MBP. Dotted lines: with MBP.)

[68], MSRVTT [61], VATEX [59] and ActivityNet-
Captions [46] for evaluation. We use four evaluation met-
rics: BLEU-4 (B) [34], METEOR (M) [5], ROUGE-L (R)
[24], and CIDEr (C) [54].

HowTo100M consists of 1.2M YouTube instructional
videos. We download videos with ASR transcripts and
audio from YouTube, and remove unavailable videos, re-
sulting in 1.08M videos in total. Following [28], we start
with a single ASR sentence and iteratively expand the video
clip forward/backward by adding nearby sentences until the
clip is longer than 5 seconds. YouCook2 contains 2, 000
cooking videos with 15.4k video clips. Each video clip
is annotated with a single sentence. MSRVTT contains
10k open-domain video clips for video captioning. Each
video clip is annotated with 20 captions. VATEX consists
of 41, 250 videos. Each video is annotated with 10 English
captions and 10 Chinese captions, and we use the English
captions. ActivityNet-Captions is a video paragraph cap-
tioning dataset consisting of 100k captions for 20k long
videos. To be consistent with the other datasets, we train
our model on sentence-level captions. Following [69], we
compose paragraph-level captions by simply concatenat-
ing sentence-level captions and evaluate the performance at
paragraph-level. Please see the supplementary material for
more details.

The performance of video captioning is closely tied to
the language styles of the annotations, so we analyzed how
relevant the annotated captions are to the audio modality on
each dataset in the supplementary material. As an observa-
tion, a large portion of YouCook2 captions are mentioned
in speech, and the captions on VATEX are most relevant to
acoustic events, scenes, or sound patterns among the four
datasets. We will show how the audio relevance affects the
performance in Sec. 4.3.
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MBP PCC PNC YouCook2 MSRVTT VATEX ActivityNet-Captions
B M R C B M R C B M R C B M R C

G-Blend [58] ✓ ✓ 19.4 23.4 48.6 208.5 44.0 29.6 62.4 55.1 38.0 24.9 52.1 68.7 11.6 16.1 30.6 25.3

✓ 15.9 20.2 43.0 166.8 41.4 28.5 60.7 47.6 31.2 21.9 47.7 50.7 10.0 14.6 28.4 20.1
✓ ✓ 18.5 22.7 47.0 192.4 44.7 29.9 62.7 53.5 36.9 24.7 51.7 67.5 11.3 15.5 30.2 24.7

✓ ✓ 17.2 21.7 45.8 184.2 42.0 28.4 60.8 48.4 31.2 22.0 48.0 51.4 10.4 14.9 28.9 20.2
✓ ✓ ✓ 20.6 24.2 49.6 217.0 46.0 30.6 64.0 57.0 38.8 25.9 52.9 73.5 11.7 16.1 30.7 26.1

Table 1. Ablation studies on multi-modal pre-training with our audio-visual captioning framework from Fig. 2. MBP: Modality Balanced
Pre-training; PCC: Predict Current Caption; PNC: Predict Next Caption.

Fusion YouCook2 VATEX
B M R C B M R C

cross 19.5 23.4 48.9 211.2 37.8 24.7 52.0 68.9
merged 19.9 23.6 49.1 210.7 38.4 25.1 52.3 71.1
global 18.6 22.9 48.0 202.3 39.2 25.5 52.8 72.6

local-global cross 19.9 23.9 49.2 213.9 38.6 25.8 53.0 73.4
local-global merged 20.6 24.2 49.6 217.0 38.8 25.9 52.9 73.5

Table 2. Ablation studies on cross-modal fusion modules.

4.2. Experimental Setup

Video Encoder: We sample 16 frames from each video
clip. The frames are fed into the Video Swin Transformer
[26] initialized with the weights pre-trained on Kinetics 600
[6] and tokenized into Nv = 8× 7× 7 = 392 video tokens.
Then we add a linear layer to project the dimension of each
video token to D = 768, to be consistent with the other
modules.
Audio Encoder: We first extract log mel spectrogram of the
audio. Following [65], each audio is resampled to 22,050Hz
and divided into frames of 1536 samples with hop length of
588. Then we apply 64 mel-scale filters. We use a 12-layer
Transformer on audio spectrogram to output Na = 64 audio
tokens with feature dimension of 768.
Cross Encoder: We use a 3-layer Transformer as the cross-
modal encoder. The feature embeddings of different modal-
ities will be added with the position embedding and token
type embedding to distinguish the position and modality of
the tokens. We comprehensively compare the results of the
cross-modal fusion methods introduced in Sec. 3.3. Overall,
local-global merged fusion performs best, so we use local-
global merged fusion unless stated otherwise.
Caption Decoder: We use a 3-layer Transformer as the
caption decoder. In training, we use causal masking to en-
sure that only history inputs are used. In testing, we use
beam-search with beam width of 5 for caption generation.
Training Details: We pre-train the model on HowTo100M
for 100 epochs using Adam optimizer [19]. The base learn-
ing rate for pre-training is 10−4 and we use a linear de-
cay learning rate schedule with a warm-up of 10% training
epochs as in [28]. For fine-tuning, we set the initial learning
rate as 10−5. It is noted that we employ modality balancing

during pre-training but not during downstream fine-tuning,
to allow the model to adapt to the more informative modal-
ity for caption generation.

4.3. Results and Discussions

Multi-modal pre-training objectives. We evaluate the ef-
fects of our pre-training objectives in Tab. 1. Our proposed
MBP improves the performance by a large margin on four
datasets. The addition of Predicting Next Caption leads to
a remarkable boost as well. We also compare MBP with
G-Blend [58]: G-Blend aims to reduce overfitting, which
happens when the model performs well on the training set
but fails to generalize, whereas MBP aims to reduce over-
specialization, which happens when the model performs
well on a single modality but fails on the other modalities.
Hence, G-Blend updates mono-modal weights by comput-
ing Overfitting-to-Generation Ratio while MBP uses Mono-
to-Multi Discrepancy. As shown in Tab. 1, G-Blend also
improves the performance, but MBP consistently outper-
forms G-Blend, showing its suitability in avoiding overspe-
cialization in audio-visual captioning pre-training. In Fig. 4,
we show the training curve with and without MBP, includ-
ing multi-modal loss (audio-video loss) and mono-modal
losses (audio-only loss and video-only loss). Note that for
the experiments without MBP, audio-only loss and video-
only loss are only computed for analysis and not back-
propagated. Although the two audio-video losses have sim-
ilar scales, both audio-only loss and video-only loss are re-
duced with MBP, especially for video-only loss. We conjec-
ture that the model reduces overspecialization to the audio
modality and learns to better utilize the video modality with
MBP. Though there is only a small decrease in the audio-
video training loss, the performance on downstream tasks
are significantly improved (see Tab. 1), which demonstrates
the effectiveness of our pre-training objective.
Cross-modal fusion modules. We conduct ablation stud-
ies on cross-modal fusion in Tab. 2. Comparing the two
local fusion modules, merged fusion performs favorably
against cross fusion. Compared with local fusion modules,
global cross fusion performs better on VATEX but performs
worse on YouCook2. We note that annotated captions are
very related to audio events and scenes on VATEX while
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Modalities YouCook2 MSRVTT VATEX ActivityNet
B M R C B M R C B M R C B M R C

A 13.4 17.6 38.5 138.9 32.3 23.9 54.3 24.8 15.4 15.6 37.6 14.2 6.3 11.2 24.5 6.6
V 11.7 18.0 41.5 139.2 42.6 28.5 61.0 52.0 36.4 24.6 51.2 67.3 9.7 14.4 27.8 21.3

V+A 20.6 24.2 49.6 217.0 (77.8↑) 46.0 30.6 64.0 57.0 (5.0↑) 38.8 25.9 52.9 73.5 (6.2↑) 11.7 16.1 30.7 26.1 (4.8↑)
V+T 19.1 23.3 48.7 205.6 (66.4↑) 43.3 29.1 61.7 53.4 (1.4↑) 37.7 25.2 52.0 69.0 (1.7↑) 11.2 15.9 29.4 24.9 (3.6↑)

V+A+T 20.9 24.4 49.9 221.6 (82.4↑) 46.4 30.2 64.1 57.3 (5.3↑) 39.1 26.3 53.4 73.7 (6.4↑) 11.8 16.1 30.9 26.4 (5.1↑)

Table 3. The performance when we input different modalities (V: video, A: audio, T: text). The top two results are in bold and underline.
We also show the improvement of multi-modal video captioning over the video-only method in terms of CIDEr.

Method Pre-training dataset/model Inputs B M R C

MV-GPT † HT100M + GPT-2 V+T 21.9 27.1 49.4 221.0
MART - V 8.0 15.9 - 36.0

SwinBert - V 9.0 15.6 37.3 109.0
ActBert HT100M V 5.4 13.3 30.6 65.0

M-MASS YT8M-cook + Recipe1M V+T 12.0 18.3 39.0 123.0
Value HT100M + TV V+T 12.4 18.8 40.4 130.4

UniVL HT100M V+T 17.4 22.4 46.5 181.0

Ours HT100M V+A 20.6 24.2 49.6 217.0
Ours HT100M V+T 19.1 23.3 48.7 205.6
Ours HT100M V+A+T 20.9 24.4 49.9 221.6

(a) YouCook2

Method Pre-training dataset/model Inputs B M R C

MV-GPT † HT100M + GPT-2 V+T 48.9 38.7 64.0 60.0
CLIP4VLA † HT100M + AudioSet + CLIP V+A+T 46.7 31.1 64.4 58.0

SwinBert - V 45.4 30.6 64.1 55.9
MMCNN - V+A 42.7 28.5 61.5 47.2

MGSA - V+A 45.4 28.6 - 50.1
Decembert HT100M V+T 45.2 29.7 64.7 52.0

UniVL HT100M V+T 41.8 28.9 60.8 50.0

Ours HT100M V+A 46.0 30.6 64.0 57.0
Ours HT100M V+T 43.3 29.1 61.7 53.4
Ours HT100M V+A+T 46.4 30.2 64.1 57.3

(b) MSRVTT

Method Pre-training dataset/model Inputs B M R C

CLIP4VLA † HT100M + AudioSet + CLIP V+A+T 36.4 25.0 54.7 59.7
SwinBert - V 38.7 26.2 53.2 73.0
MGRMP - V 34.2 23.5 50.3 57.6

Value HT100M + TV V+T 32.9 24.1 50.1 58.1

Ours HT100M V+A 38.8 25.9 52.9 73.5
Ours HT100M V+T 37.7 25.2 52.0 69.0
Ours HT100M V+A+T 39.1 26.3 53.4 73.7

(c) VATEX

Method Pre-training dataset Inputs B M R C

VTransformer ActivityNet V 9.31 15.54 - 21.33
Transformer-XL ActivityNet V 10.25 14.91 - 21.71

MART ‡ ActivityNet V 9.78 15.57 30.63 22.16
COOT ‡ HT100M V 10.85 15.99 31.45 28.19

Ours HT100M V+A 11.73 16.14 30.68 26.11
Ours HT100M V+T 11.22 15.94 29.40 24.92
Ours HT100M V+A+T 11.83 16.14 30.93 26.38

(d) ActivityNet-Captions

Table 4. Comparison to SOTA. The top two results are in bold and underline. † use pretrained GPT-2 [39] or CLIP [38], so the results are
not comparable. ‡ use relationships between sentences to generate paragraphs.

Caption: A man in a suit skillfully plays the violin in front of a large window.

ASR: “I'm just going to put on a handful of some fresh, clean baby spinach.”
Caption: Add spinach to the bread slices.

Mid Frame Global Fusion Local Fusion

Figure 5. Attention maps from the audio modality to RGB space
for global or local fusion. Top: VATEX. Bottom: YouCook2.

the captions are largely covered by speech on YouCook2.
The results show that global cross fusion helps the flow of
holistic information, e.g., acoustic events, while local fu-
sion helps fine-grained information, e.g., single words in
speech. Moreover, adding global cross fusion improves on

both local fusion modules. Overall, local-global merged fu-
sion performs best, showing the advantages of using both
local and global tokens for cross-modal fusion. Since there
are only a few global tokens, they do not bring much extra
computational cost. Compared with merged fusion, local-
global merged fusion increases FLOPs by only 6.96% (from
316G to 338G), but produces substantially better results.
Attention maps. Fig. 5 visualizes the attention maps for
global and local fusion modules using Attention Rollout [2].
We visualize the attention maps summed over all the frames
in the video clip as in [31]. We observe that global fusion
focuses on salient regions related to acoustic events (piano),
while local fusion attends to the key words in speech (“put”
and “spinach”).
Results with different modalities. Tab. 3 shows the re-
sults when we input different modalities. For audio-only
and video-only methods, we zero-mask the other modal-
ity at the cross-modal encoder. For V+T setting, we use
BERT [18] to replace the audio encoder. For V+A+T set-
ting, we use global cross fusion between video and audio,
and use merged fusion between video and text, to lever-
age the salient information in audio and text. On all four
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datasets, integrating audio (V+A) significantly improves
compared to the video-only method. Besides, comparing
V+A with V+T, audio consistently outperforms text. Partic-
ularly, on VATEX, compared with the video-only method,
V+A improves CIDEr by 6.2%, while V+T only improves
by 1.7%, showing that audio conveys more information
than ASR texts. The comparisons between V+A+T and
V+T also demonstrate the benefits of incorporating audio
for video captioning. In addition, V+A+T further improves
the CIDEr score by 4.6% on YouCook2 on the basis of the
V+A method, probably because the ASR text contains more
accurate semantic words than audio. On the other datasets
where the speech is not dominant in the annotated captions,
V+A+T performs very closely to V+A, showing that audio
can cover the major information in speech while bypass-
ing the time-consuming process of ASR [49]. In Fig. 1, we
show two qualitative results on VATEX. In the first video,
audio provides more information about laughter and cry-
ing, which the ASR text does not contain. In the second
video, V+T mistakenly recognizes the little girl as a boy
and misses the information that a man talks to her, while
V+A corrects the error and adds the missing description by
leveraging the information in audio.

Comparison with SOTA. In Tab. 4, we compare our meth-
ods with state-of-the-art (SOTA) methods on four datasets.
On YouCook2, the V+T methods, i.e., M-MASS [14], Value
[22], and UniVL [28], significantly outperform the video-
only methods MART [36], ActBert [70], and SwinBert [25],
demonstrating the importance of speech in enhancing re-
sults on this dataset. Our V+A method further improves
the performance by directing learning from the audio. On
MSRVTT, compared with two prior audio-visual video cap-
tioning works, MMCNN [51] and MGSA [7], our V+A
method increases the CIDEr score by 6.9%, highlighting
the benefits of pre-training. Notably, our V+A method
also outperforms the SOTA video-only method SwinBert,
which uses densely sampled video frames, and V+T meth-
ods, Decembert [50] and UniVL [28], both pre-trained on
HowTo100M. On VATEX, our V+A method substantially
outperforms the video-only method MGRMP [8] and the
V+T method Value [22], and performs similarly to the
SOTA SwinBert, excelling in two metrics. A line of re-
cent works in video captioning like MV-GPT [43] and
CLIP4VLA [41] leverage large-scale pre-trained text gen-
erative models, e.g. GPT-2 [39], or vision-text models, e.g.
CLIP [38], which is not the focus of our work, so a fair
comparison is infeasible. We mark their results in gray for
reference, but we note that our model is still comparable
or even better in some metrics. On ActivityNet-Captions,
our method clearly outperforms VTransformer [69] and
Transformer-XL [9]. Notably, without using any relation-
ships between sentences to generate paragraphs, our method
can achieve better performance than MART [36] and COOT

[11], which exploit relationships across sentences [11, 36]
during both training and inference. Please refer to the sup-
plementary material for more qualitative results.

5. Discussions on Societal Impact
Video captioning makes videos more accessible to all

users, including users with accessibility issues, e.g. lowvi-
sion and blind users. Furthermore, audio-visual video cap-
tioning also benefits users with hearing disability by includ-
ing text descriptions of the audio modality. However, our
framework is a data-driven system, so the quality of gen-
erated captions may be biased to the distribution of train-
ing data. As our pre-training data are obtained from on-
line YouTube videos, our system may produce harmful cap-
tions that contain toxic contents or social biases present
in the training data. To avoid undesirable effects, care-
ful examination is required before adopting the outputs of
our framework for real-world applications. Another ethical
concern on using YouTube videos is how to protect user pri-
vacy. In our experiments, we download the videos currently
available on YouTube. Therefore, if a user deletes a video
from their YouTube channel, we will not be able to use the
videos.

6. Discussions on Limitations
Our approach is not always successful in the fusion of vi-

sual and audio modalities. A potential direction is to design
a more intelligent cross-modal fusion module to dynami-
cally update the weights of different modalities for cap-
tion generation. Besides, the dominance of the modality
is dataset-dependent, and we pre-trained our audio-visual
video captioning model on the HowTo100M dataset, where
audio dominates due to the use of ASR transcripts as text
supervision. We did not verify the effectiveness of our pro-
posed modality balancing pre-training strategy on vision-
dominant datasets due to the lack of such large-scale pre-
training datasets with video-text pairs. We believe that our
proposed approach has the potential to be advantageous in
those settings, and it could be explored in future research.

7. Conclusion
We present an end-to-end pre-training framework for

audio-visual video captioning. A novel modality balanced
pre-training loss is proposed to balance the learning of dif-
ferent modalities during pre-training, which demonstrates
the effectiveness for audio-visual video captioning. We
also comprehensively investigate different cross-modal fu-
sion modules for audio-visual fusion and propose a new
local-global fusion module. Our model can capture differ-
ent types of information in human speech and background
sounds, achieving comparable or even better results against
the models using ASR text or complex language models.
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