
ZInD-Tell: Towards Translating Indoor Panoramas into Descriptions

Supplementary Material

Figure 7. The User Interface (UI) is designed to collect relevancy scores from human evaluators. The left pane displays the floorplan
images in a carousel, accompanied by their respective floor num. The bottom section indicates the number of homes being annotated.
On the right, evaluators are presented with a random description from γ(J∗

H) or γ(T ∗
H). Evaluators review the description and examine

the corresponding floorplan(s) in the carousel (shown in two images: floor 01, floor 02). They then select a ‘relevancy score’ and
click ‘submit’. After that, the UI refreshes, presenting a new home and description. If an evaluator wishes to annotate at a later time, they
can select “New Sample” to view a different home.

In the supplementary material, we investigate additional
aspects of the dataset, followed by ablation study experi-
ments. Initially, the construction of the User Interface (UI)
and evaluation collection procedures are discussed. Sub-
sequently, a comprehensive experiment on the embedding
space of the ZInD-Tell dataset is conducted. This is fol-
lowed by an analysis of the room label distribution in the
dataset and its correlation with the J∗

H and γ(J∗
H). Fur-

thermore, the module-wise performance of ZInD-Agent is

examined, along with a detailed exposition of the imple-
mentation steps for the naı̈ve methods. Finally, we present
a home (panorama and floorplan images) with the corre-
sponding descriptions predictions from both ZInD-Agent
and the naı̈ve methods, followed by syntactic and seman-
tic evaluation scores.
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Figure 8. Embedding Space Visualization using ‘all-MiniLM-
L6-370v2’ in 3-D space using for the descriptions γ(J∗

H), γ(T ∗
H).

10. Manual Evaluation of Home Descriptions
The user interface (UI) used for manual evaluation of home
descriptions is shown in Figure 7. The left pane displays
floorplan images in a carousel format. Given the possibil-
ity of multiple floorplans, evaluators can navigate through
these images. The floorplan id is displayed in the bottom
left corner of each image. Subsequently, a random descrip-
tion from the set {γ(J∗

H), γ(T ∗
H)} is chosen and displayed

in the right pane, which continues for 1575 homes. Hence,
each evaluator evaluates 3150 descriptions. They are tasked
with assessing the consistency of the description with the
corresponding floorplans and assigning a relevancy score
on a Likert scale ranging from 1 to 10. Upon submission,
the score is recorded, and the floorplan’s description is not
presented to the evaluator again. This process is repeated
for each home. The bottom left of Figure 7 shows the an-
notation progress for homes, with a home marked as com-
plete once both descriptions in {γ(J∗

H), γ(T ∗
H)} are evalu-

ated. Notably, evaluators are unaware of the specific source
({γ(J∗

H) or γ(T ∗
H)}) of each description, ensuring an unbi-

ased assessment. Data records are managed in JSON for-
mat.

11. More Analysis on the Embedding Space
In this section, we revisit the embedding visualization con-
ducted in Figure 5 of the main paper. We initially mapped
γ(J∗

H) into a 384-dimensional embedding space using the
‘all-MiniLM-L6-370-v2’ sentence encoder5, followed by a
reduction to three dimensions using t-SNE. As a follow-up
experiment, we undertake two tasks: first, visualizing the
distribution of embeddings using γ(T ∗

H), and second, com-
puting the average cosine similarity between pairs of em-
bedding points within the same home. As depicted in Figure
8, the embedding spaces of both γ(J∗

H) and γ(T ∗
H) appear

nearly identical visually. The pairwise cosine similarity is

5https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Figure 9. Room label distribution in corpora containing descrip-
tions of all homes γ(J∗

H), γ(T ∗
H).

0.89 ± 0.04, suggesting that the descriptions are semanti-
cally very similar. We further extend the embedding space
analysis to {γ(J∗

H), γ(T ∗
H)} using three larger models: T5

[22], DeBERTa [12], and MPNet [26]. The cosine simi-
larities obtained are 0.97 ± 0.01 for T5, 0.97 ± 0.02 for
DeBERTa, and 0.92 ± 0.03 for MPNet-based embeddings.
These results corroborate our assertion in Section 5 regard-
ing the superior semantic discernment of larger models.

12. Syntactic Similarity Analysis
In this section, we conduct further analyses on γ(J∗

H) and
γ(T ∗

H). Unlike the computation of pairwise cosine dis-
tances, i.e., semantic similarities in the embedding space,
we undertake a comparative assessment using conventional
sentence evaluation metrics. This approach aims to examine
the syntactic (structural) similarity of descriptions for each
home. Such evaluation is crucial for ensuring syntactic di-
versity between γ(J∗

H) and γ(T ∗
H). We utilize the same

metrics previously applied in Section 7.2. The performance
outcomes for the entire dataset (1575 homes) and the test
set (158 homes) are presented in Table 3. These results in-
dicate that while the descriptions exhibit high semantic sim-
ilarity (up to 0.97), they are not syntactically identical. This
observation suggests potential implications for future ex-
periments with ZInD-Tell. Despite both γ(J∗

H) and γ(T ∗
H)

conforming to similar word and n-gram distributions, as ob-
served in Figures 4b, 4a, they differ significantly in a one-to-
one syntactic comparison, thus offering sufficient diversity
for an end-to-end model to learn from the descriptions.

13. Room Label Distribution Across ZInD-Tell
In this section, we present an alternative technique for com-
puting the distribution of room labels. As depicted in Figure
3b, the initial study computed these distributions directly

Table 3. Pair-wise Syntactic Similarity Analysis of ZInD-Tell

Set BLEU-2 BLEU-4 ROUGEL METEOR CIDEr
Full 39.10± 5.59 18.18± 4.25 33.17± 4.72 37.19± 4.34 41.38± 3.67
Test 46.67± 6.68 27.29± 6.58 44.62± 6.47 42.78± 5.59 46.91± 5.47
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Figure 10. Conversion of Equirectangular Panorama Image into Cubefaces. On the left, the equirectangular panorama image, denoted
as Iij and indexed as 0, is decomposed into six (256 × 256) cubeface images, as depicted on the right. These cubefaces are assigned
indices, which are referenced in Tables 5 and 6 for discussing classification accuracy.

from J∗
H . Our analysis investigates whether γ(J∗

H) and
γ(T ∗

H) yield similar distributions. This examination is piv-
otal in ascertaining that the LLM does not favor frequently
occurring labels in generating descriptions. We conduct a
quantitative analysis to confirm the impartiality of the de-
scriptions, despite the high relevance scores from evalua-
tors, as outlined in Table 1. Our method employs a Part-
of-Speech (POS) tagging approach for extracting nouns as
potential room indicators and quantifying their occurrence
relative to the label dictionary, as shown in Figure 3b. This
approach is uniformly applied to γ(J∗

H) and γ(T ∗
H) corpora.

In Figure 9, we present the distributions. Notably, the orig-
inal distribution in J∗

H (Figure 3b) predominantly features
‘closet’, while in γ(J∗

H) and γ(T ∗
H), it ranks fifth. This shift

suggests that the generated descriptions diversify the focus
on various rooms. For instance, the top three room labels in
both γ(J∗

H) and γ(T ∗
H) are ‘bedroom’, ‘living room’, and

‘hallway’, illustrating a comprehensive interior description.
Additionally, γ(J∗

H) and γ(T ∗
H) exhibit similar label fre-

quencies, with notable deviations. Specifically, γ(J∗
H) de-

scribes ‘hallway’ 6813 times, while γ(T ∗
H) emphasizes it

7157 times. We attribute these differences to the syntactic
and semantic variances discussed in Sections 12 and 11.

14. Module-wise Performance of ZInD-Agent
In this section, we evaluate the performance of each
component within the zero-shot ZInD-Agent baseline.

Room Classification: This zero-shot module, imple-
mented using CLIP [25] with ‘ViT-B/32’ image and text
encoder, processes mean-pooled cubeface images extracted
from indoor panorama images, excluding floor and ceiling
images due to their limited informational content (discussed
in Section 6.2). We experimented with all combinations of
7 images (one panoramic and six (256 × 256) cubefaces,
detailed in Figure 10), employing mean pooling to ascertain

the optimal arrangement for classification accuracy. Results
are presented in Table 5. Notably, omitting ceiling images
enhances accuracy, reaching a peak of 30.38%, on pre-
dicting 22 room labels. Directly utilizing equirectangular
images yields a comparable accuracy of 30.08%. A subse-
quent experiment focusing on top-5 classification accuracy
(Table 6) revealed the highest accuracy of 69.68% when
combining the equirectangular image with front and back
images. This leads to two key insights: first, the modest
top-1 room classification accuracy underscores the need
for further research in this area; second, while cubemap
images are crucial for top-1 classification, equirectangular
images significantly influence top-5 prediction accuracy.
The sentences per room label used for producing CLIP text
embeddings are shown in Table 4.

Layout Estimation and W/D/O Approximation: As
delineated in Section 6.3, we use a modified HorizonNet
[27] trained for simultaneous room and W/D/O layout pre-
diction. Utilizing the pre-trained module, we adhere to its
reported performance in [16]. To assess layout estimation
accuracy, the research compares the 2D Intersection over
Union (IoU) between predicted and actual layouts. The
W/D/O evaluation, following 1D projection, is based on 1D
IoU accuracy. On the ZInD test set, the module achieved
an IoU accuracy of 85% for room layout estimation. For
W/D/O detection, it attained a 70% accuracy threshold
in 1D IoU, with F1 scores of 0.91, 0.89, and 0.67 for
windows, doors, and openings, respectively. This indicates
a relatively lower score in openings detection, attributed by
the authors to annotation errors in the ZInD dataset.

Room-to-Room Connectivity: We adopt SALVe [16]
as our core implementation, as delineated in Section 6.4.
SALVe, rigorously trained on the ZInD training set and
evaluated against its test set, is tasked with predicting global



Table 4. CLIP Descriptions for Rooms. Descriptions assigned to each room facilitate sentence embeddings, aiding in room classification.

Room Description

Bedroom a space with potential for a cozy bedroom setup, typically including areas for a bed and wardrobe

Bathroom an empty bathroom space, commonly featuring areas for a toilet, shower, and sink

Basement a spacious and empty basement area, often used for storage or recreational purposes

Playroom an open space suitable for a playroom setup, ideal for children’s activities and toys

Storage a room designated for storage, potentially with shelves or cabinets for organization

Laundry an area for laundry, typically with connections for a washer and dryer

Livingroom a large empty space ideal for a living room, often featuring areas for sofas and a TV

Kitchen an empty space with potential for a kitchen, usually including fittings for a sink, cabinets, and appliances

Hallway a connecting hallway, spacious and empty, typically leading to other rooms

Pool an area for an indoor or outdoor pool, often accompanied by poolside fittings

Balcony an open balcony space, empty but with potential for outdoor seating and a view

Closet a smaller room for storage, possibly a walk-in closet with shelving and hanging space

Stair a space with staircases, connecting different floors or levels

Diningroom an open area suitable for a dining setup, typically including space for a dining table and chairs

Garage a spacious garage area, empty, often used for vehicle parking and storage

Yard an outdoor yard space, open and versatile for landscaping or outdoor activities

Other a room with unspecified or variable characteristics, adaptable to different uses

Fireplace a space centered around a fireplace, potentially a focal point in a living or sitting room

Pantry a smaller area designated for pantry or food storage, often with shelving

Hall an empty hall, versatile for various uses, possibly connecting different areas

Foyer an entrance foyer, spacious and welcoming, often leading to main living areas

Patio an outdoor patio space, open and adaptable for outdoor furniture and activities

poses from an unordered collection of floor-level panorama
images. This inference facilitates the construction of a pose
graph, subsequently refined through GTSAM optimization
[9]. The technique method achieved a localization accuracy
of 60.70%, a pivotal metric influencing the accuracy of
the ensuing room-to-room connectivity graph. Although
60.70% does not represent an exemplary level of accuracy,
it is currently the state-of-the-art approach that exploits
co-visibility among panoramas to estimate the pose graph,
and by extension, the connectivity graph. Importantly,
the accuracy of this module significantly affects the de-
scription generation phase of ZInD-Agent, as the predicted
descriptions should align closely with the spatial floor-level
geometry.

15. More Details on the Naı̈ve Methods

Here, we provide additional details about the implementa-
tion of the naive methods discussed in Section 7.

CLIP-R: As previously stated, we aggregate (mean-
pool) the embeddings of all panorama images associated
with each home. For text encoding, the limitation of CLIP

models to 77 tokens necessitates splitting each home’s
description into segments not exceeding this token count.
Subsequently, we employ the CLIP sentence encoder on
these segments to obtain their embedding vectors, which
are then aggregated through mean-pooling to facilitate the
final vector for performing home retrieval evaluation.

BLIP-2: This model generally produces a single cap-
tion per image. Therefore, we input each panorama image
of a home into the model, yielding a series of captions
that individually describe each image. These captions are
subsequently consolidated into a single paragraph. The
resulting combined description is then used for bench-
marking on the ZInD-Tell dataset, with results presented in
Table 2.

16. Empirical Parameters Setup

In Section 4.2, we discussed various parameters for extract-
ing geometry information. The door-based connectivity an-
gle threshold is set to θd = 10◦, with a corresponding dis-
tance threshold of βd = 0.1 units. For opening-based con-
nectivity, these thresholds are θo = 5◦ and βo = 0.1 units,



Table 5. Top-1 CLIP Classification Accuracy on the ZInD-Tell Test Set. The Comb. column represents the set of images used for mean-
pooling, while the Acc. column indicates the corresponding accuracy values. Image 0 is the equirectangular image, and the remaining six
are the extracted cubeface images from image 0 (an example shown in Figure 10).

Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc.

(0,) 24.62 (2, 4) 25.22 (0, 3, 5) 22.20 (2, 4, 6) 27.30 (0, 2, 4, 5) 26.97 (2, 3, 5, 6) 23.56 (1, 2, 3, 4, 6) 30.38

(1,) 25.16 (2, 5) 20.27 (0, 3, 6) 23.68 (2, 5, 6) 23.38 (0, 2, 4, 6) 27.81 (2, 4, 5, 6) 26.79 (1, 2, 3, 5, 6) 27.63

(2,) 20.54 (2, 6) 24.40 (0, 4, 5) 24.68 (3, 4, 5) 23.08 (0, 2, 5, 6) 25.73 (3, 4, 5, 6) 24.40 (1, 2, 4, 5, 6) 28.93

(3,) 15.54 (3, 4) 23.47 (0, 4, 6) 26.06 (3, 4, 6) 24.89 (0, 3, 4, 5) 25.61 (0, 1, 2, 3, 4) 29.38 (1, 3, 4, 5, 6) 28.02

(4,) 21.57 (3, 5) 16.83 (0, 5, 6) 22.59 (3, 5, 6) 19.70 (0, 3, 4, 6) 26.94 (0, 1, 2, 3, 5) 27.21 (2, 3, 4, 5, 6) 26.97

(5,) 11.34 (3, 6) 19.22 (1, 2, 3) 26.91 (4, 5, 6) 23.59 (0, 3, 5, 6) 23.38 (0, 1, 2, 3, 6) 28.69 (0, 1, 2, 3, 4, 5) 29.20

(6,) 16.11 (4, 5) 20.78 (1, 2, 4) 28.93 (0, 1, 2, 3) 27.96 (0, 4, 5, 6) 25.85 (0, 1, 2, 4, 5) 28.51 (0, 1, 2, 3, 4, 6) 30.08

(0, 1) 26.33 (4, 6) 23.95 (1, 2, 5) 25.22 (0, 1, 2, 4) 28.81 (1, 2, 3, 4) 29.32 (0, 1, 2, 4, 6) 28.81 (0, 1, 2, 3, 5, 6) 28.02

(0, 2) 25.49 (5, 6) 16.95 (1, 2, 6) 28.08 (0, 1, 2, 5) 26.61 (1, 2, 3, 5) 26.61 (0, 1, 2, 5, 6) 27.45 (0, 1, 2, 4, 5, 6) 28.99

(0, 3) 21.99 (0, 1, 2) 27.12 (1, 3, 4) 27.81 (0, 1, 2, 6) 27.96 (1, 2, 3, 6) 28.33 (0, 1, 3, 4, 5) 28.11 (0, 1, 3, 4, 5, 6) 28.42

(0, 4) 25.76 (0, 1, 3) 26.55 (1, 3, 5) 23.86 (0, 1, 3, 4) 28.14 (1, 2, 4, 5) 28.14 (0, 1, 3, 4, 6) 28.48 (0, 2, 3, 4, 5, 6) 28.11

(0, 5) 22.23 (0, 1, 4) 27.24 (1, 3, 6) 25.94 (0, 1, 3, 5) 25.82 (1, 2, 4, 6) 29.44 (0, 1, 3, 5, 6) 26.64 (1, 2, 3, 4, 5, 6) 29.44

(0, 6) 23.50 (0, 1, 5) 24.31 (1, 4, 5) 25.97 (0, 1, 3, 6) 27.06 (1, 2, 5, 6) 27.39 (0, 1, 4, 5, 6) 27.39 (0, 1, 2, 3, 4, 5, 6) 29.62

(1, 2) 26.24 (0, 1, 6) 25.88 (1, 4, 6) 27.75 (0, 1, 4, 5) 26.33 (1, 3, 4, 5) 27.03 (0, 2, 3, 4, 5) 27.75

(1, 3) 24.22 (0, 2, 3) 25.40 (1, 5, 6) 24.59 (0, 1, 4, 6) 28.11 (1, 3, 4, 6) 28.75 (0, 2, 3, 4, 6) 28.08

(1, 4) 26.76 (0, 2, 4) 27.51 (2, 3, 4) 25.76 (0, 1, 5, 6) 25.88 (1, 3, 5, 6) 24.74 (0, 2, 3, 5, 6) 25.67

(1, 5) 22.08 (0, 2, 5) 24.68 (2, 3, 5) 22.05 (0, 2, 3, 4) 28.14 (1, 4, 5, 6) 27.45 (0, 2, 4, 5, 6) 27.63

(1, 6) 25.43 (0, 2, 6) 26.15 (2, 3, 6) 24.04 (0, 2, 3, 5) 24.98 (2, 3, 4, 5) 25.82 (0, 3, 4, 5, 6) 26.09

(2, 3) 22.32 (0, 3, 4) 26.21 (2, 4, 5) 25.43 (0, 2, 3, 6) 26.15 (2, 3, 4, 6) 27.27 (1, 2, 3, 4, 5) 28.96

Table 6. Top-5 CLIP Classification Accuracy on the ZInD-Tell Test Set. The Comb. column represents the set of images used for mean-
pooling, while the Acc. column indicates the corresponding accuracy values. Image 0 is the equirectangular image, and the remaining six
are the extracted cubeface images from image 0 (an example shown in Figure 10).

Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc. Comb. Acc.

(0,) 64.10 (2, 4) 64.04 (0, 3, 5) 64.01 (2, 4, 6) 60.87 (0, 2, 4, 5) 64.83 (2, 3, 5, 6) 57.25 (1, 2, 3, 4, 6) 65.25

(1,) 66.79 (2, 5) 55.75 (0, 3, 6) 64.62 (2, 5, 6) 53.00 (0, 2, 4, 6) 65.49 (2, 4, 5, 6) 58.16 (1, 2, 3, 5, 6) 62.65

(2,) 61.57 (2, 6) 56.83 (0, 4, 5) 63.53 (3, 4, 5) 59.25 (0, 2, 5, 6) 61.03 (3, 4, 5, 6) 56.50 (1, 2, 4, 5, 6) 62.23

(3,) 56.08 (3, 4) 62.78 (0, 4, 6) 63.53 (3, 4, 6) 60.78 (0, 3, 4, 5) 65.07 (0, 1, 2, 3, 4) 68.72 (1, 3, 4, 5, 6) 62.20

(4,) 60.33 (3, 5) 52.10 (0, 5, 6) 54.30 (3, 5, 6) 51.55 (0, 3, 4, 6) 65.70 (0, 1, 2, 3, 5) 67.06 (2, 3, 4, 5, 6) 60.06

(5,) 38.82 (3, 6) 54.81 (1, 2, 3) 66.76 (4, 5, 6) 52.91 (0, 3, 5, 6) 60.81 (0, 1, 2, 3, 6) 68.39 (0, 1, 2, 3, 4, 5) 66.76

(6,) 42.75 (4, 5) 55.60 (1, 2, 4) 67.57 (0, 1, 2, 3) 69.59 (0, 4, 5, 6) 60.36 (0, 1, 2, 4, 5) 67.27 (0, 1, 2, 3, 4, 6) 67.81

(0, 1) 68.66 (4, 6) 56.26 (1, 2, 5) 63.50 (0, 1, 2, 4) 69.17 (1, 2, 3, 4) 66.79 (0, 1, 2, 4, 6) 67.93 (0, 1, 2, 3, 5, 6) 65.88

(0, 2) 67.90 (5, 6) 44.10 (1, 2, 6) 63.74 (0, 1, 2, 5) 67.48 (1, 2, 3, 5) 64.13 (0, 1, 2, 5, 6) 65.55 (0, 1, 2, 4, 5, 6) 65.97

(0, 3) 67.81 (0, 1, 2) 69.65 (1, 3, 4) 67.30 (0, 1, 2, 6) 67.75 (1, 2, 3, 6) 64.92 (0, 1, 3, 4, 5) 67.18 (0, 1, 3, 4, 5, 6) 65.91

(0, 4) 66.52 (0, 1, 3) 69.68 (1, 3, 5) 63.50 (0, 1, 3, 4) 68.72 (1, 2, 4, 5) 64.40 (0, 1, 3, 4, 6) 67.66 (0, 2, 3, 4, 5, 6) 64.28

(0, 5) 58.94 (0, 1, 4) 68.81 (1, 3, 6) 64.49 (0, 1, 3, 5) 67.36 (1, 2, 4, 6) 64.46 (0, 1, 3, 5, 6) 65.58 (1, 2, 3, 4, 5, 6) 62.99

(0, 6) 58.73 (0, 1, 5) 66.18 (1, 4, 5) 62.62 (0, 1, 3, 6) 68.39 (1, 2, 5, 6) 59.67 (0, 1, 4, 5, 6) 65.01 (0, 1, 2, 3, 4, 5, 6) 65.82

(1, 2) 67.33 (0, 1, 6) 66.06 (1, 4, 6) 63.47 (0, 1, 4, 5) 66.94 (1, 3, 4, 5) 64.28 (0, 2, 3, 4, 5) 65.13

(1, 3) 67.00 (0, 2, 3) 68.45 (1, 5, 6) 55.48 (0, 1, 4, 6) 66.67 (1, 3, 4, 6) 65.52 (0, 2, 3, 4, 6) 66.33

(1, 4) 67.03 (0, 2, 4) 67.66 (2, 3, 4) 64.13 (0, 1, 5, 6) 62.93 (1, 3, 5, 6) 60.12 (0, 2, 3, 5, 6) 63.41

(1, 5) 59.94 (0, 2, 5) 64.34 (2, 3, 5) 60.39 (0, 2, 3, 4) 67.24 (1, 4, 5, 6) 60.00 (0, 2, 4, 5, 6) 63.29

(1, 6) 59.97 (0, 2, 6) 64.65 (2, 3, 6) 60.72 (0, 2, 3, 5) 65.31 (2, 3, 4, 5) 62.08 (0, 3, 4, 5, 6) 62.99

(2, 3) 62.81 (0, 3, 4) 67.24 (2, 4, 5) 60.97 (0, 2, 3, 6) 66.64 (2, 3, 4, 6) 62.50 (1, 2, 3, 4, 5) 64.56



respectively. Additionally, we enforced a constraint that
the centroid of the rooms connected by doors or openings
should not exceed a distance of 0.3 units. These parameters
remained consistent across all evaluated homes.

17. Output Visualization
In this section, we present an example demonstrating the
panorama images of a home in Figure 11, along with the
descriptions predicted by both the naı̈ve method and the
ZInD-Agent module, as detailed in Table 7. Specifically,
Figure 11 displays the floor-wise panorama image sets on
each row. Also, in left of each row, the corresponding floor-
plans are shown for added clarity. The outputs from the
naı̈ve BLIP-2 method and the ZInD-Agent module are de-
picted in the top two rows of Table 7, respectively. The
Ground Truth description, γ(J∗

H), appears in the last row.
Additionally, the Table includes explicit values of the eval-
uation metrics in the rightmost column. Notably, ZInD-
Agent surpasses the naı̈ve BLIP-2 in both qualitative as-
sessments and metric evaluations. However, inaccuracies
in the ZInD-Agent’s descriptions regarding room labels and
connectivity are observed. These discrepancies are likely
due to the modular performances discussed in Section 14,
suggesting that enhancing individual modules could signif-
icantly improve overall description quality. We also advo-
cate that an end-to-end learning technique might overcome
the current limitations of module-wise ZInD-Agent by in-
corporating novel features directly from panorama images
for more accurate description generation.



Floor 01

Floor 02

Floor 03

Entry room

Figure 11. Example Home with Panorama and Floorplan Images. This example depicts a home comprising three floors. In the left
column, the ground-truth floorplan image of each floor is displayed. Corresponding to each floorplan, the primary panorama images are
presented. The models (BLIP-2 and ZInD-Agent) receive exclusively these floor-wise panorama images. Additionally, they have access
to the panorama image ID of the entry room, highlighted in a green box. Table 7 shows the descriptions generated from the BLIP-2 and
ZInD-Agent.



Table 7. Comparative Descriptions from BLIP-2 and ZInD-Agent based on input floor-level panorama images as illustrated in Figure
11. The Ground-Truth (GT) description is presented in the final row. For each generated description (e.g., BLIP-2), the corresponding
evaluation metrics (BLEU-2, BLEU-4, METEOR, CIDEr, ROUGEL, and Embedding Similarity) are listed in the last column, arranged
sequentially.

Method Generated Description Scores

BLIP-2

a camera shot of a long hallway in a house. a view from a fish eye lens of a hallway. the bottom half of a large empty room. this
is a panoramic view of the hallway. a white sink sitting next to a toilet next to a mirror. a panorama of a hallway and living
room. a hallway view looking into an empty house. a house with wood floors, a staircase, and a door. a room that has hardwood
floors in it. a large panoramic picture showing an empty room. a kitchen with lots of white appliances in it. the outside of an
empty living room. an empty empty room with a white wall and door. an empty white room with a wooden floor and rack. there
is a door and some furniture in the room. an empty hallway with a kitchen and dining area. a fisheye lens view of an empty
white room. a big bathroom with a big mirror above the sink. the panorama view of the living room of the apartment. a
bathroom with a toilet and a light fixture. a panoramic view of the inside of a bedroom. there is a kitchen, living room,
bathroom and closet in this picture. a bathroom with a tub, shower, toilet and sink. the living room has a large wood floor. a
view of an empty living room and empty kitchen. an empty room with a wooden floor and white walls

11.63

2.81

16.58

19.31

17.10

0.53

ZInD-Agent

This elegant three-story residence begins with a welcoming foyer on the first floor, introducing you to a world of comfort and
style. The large dining room, notable for its absence of windows, creates a focused and cozy atmosphere for memorable
dinners. It’s complemented by very large doors, enhancing the sense of openness and connectivity to the surrounding areas.
Nearby, a very large room centered around a fireplace offers a perfect spot for relaxation, especially during cooler evenings.
Practicality is not forgotten, with a medium-sized bathroom conveniently located on this floor. Additionally, a large bedroom
provides a private and serene retreat for rest. Moving to the second floor, you’ll find a diverse collection of spaces designed for
leisure and enjoyment. A small, bright yard area, illuminated by very large windows, offers an inviting touch of the outdoors.
The floor boasts a very large balcony, ideal for outdoor relaxation and enjoying views. There are two living rooms: one very
large, perfect for family gatherings and entertainment, and a smaller one for more intimate moments. A very small laundry
room adds everyday practicality to this floor. The presence of a small storage room meets additional storage needs. The
highlight here is the very large pool area, promising endless fun and a perfect spot for relaxation. A small foyer elegantly
connects these diverse areas. The third floor combines private and functional spaces. A medium-sized hallway links various
rooms, including a large storage area and a very large pantry, providing ample storage solutions. The medium-sized kitchen is
perfectly suited for culinary adventures. There’s also a very small balcony, offering a private space for solitude and reflection.
The floor includes a small foyer and stair area, ensuring efficient flow between rooms. A medium yard area, playroom, and a
very large garage add to the floor’s functionality. The small basement offers versatile space, adaptable for various needs. This
floor also features a very small living room and a medium-sized fireplace room, each designed for comfort and coziness, and a
very small dining room for intimate meals. Throughout the home, large windows and doors in every room ensure that natural
light enhances the ambiance, making the spaces feel open and airy. This residence is designed to cater to a variety of lifestyles,
whether it’s hosting guests or enjoying quiet, family moments, blending elegance with practicality in a harmonious balance.

25.99

9.25

27.08

30.23

32.48

0.73

GT

Welcome to this magnificent property that promises a blend of comfort and luxury. As you step into the property, you are
greeted by a very large foyer, the entry Welcome to this magnificent property that promises a blend of comfort and luxury. As
you step into the property, you are greeted by a very large foyer, the entry point of the house. The foyer is spacious and
welcoming, with three very large doors leading to different parts of the house. To the left, a door opens into a medium-sized
closet, perfect for storing your coats and shoes. To the right, another door leads to a very large garage, spacious enough to
accommodate your vehicles and provide ample storage space. Moving up to the second floor, you will find a medium-sized
stairway that leads to a very large living room. The living room is a sight to behold with two very large windows that let in an
abundance of natural light. It also has a very large door that opens to the rest of the house. Adjacent to the living room is a
medium-sized hallway that leads to a medium-sized bathroom with a very large door. The hallway also opens up to a very large
kitchen, perfect for those who love to cook. Next to the kitchen, you will find a medium-sized closet that leads to a very large
dining room. The dining room is a perfect place for family meals, with a very large window that provides a beautiful view while
you dine. The third floor of the house is where you will find the bedrooms. A large hallway connects all the rooms on this floor.
The hallway has four medium-sized doors leading to a medium-sized laundry room, a large bathroom, a small bedroom, and a
very large bedroom. The very large bedroom is a luxurious retreat with four windows of varying sizes, providing a panoramic
view of the surroundings. The third floor also houses another very large bedroom with three large windows, a large closet, and a
very large bathroom. There is also a small bedroom and a small closet on this floor. This property is a perfect blend of luxury
and comfort, with its spacious rooms, large windows, and well-planned layout. It promises a comfortable and luxurious living
experience. of the house. The foyer is spacious and welcoming, with three very large doors leading to different parts of the
house.
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