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In this supplementary material, we provide more detailed
information about the implementation of LAformer in Sec-
tion A, the experimental results in Section B, and the dis-
cussion of limitations in Section C.

A. Implementation details

Format of vectorization. To obtain the sparse vector en-
coding of the input data–trajectories and lane segments–in
a unified vector form, the input vector size is set to 32. Fol-
lowing the approach in [3, 4], for agent encodings, the first
ten dimensions are dedicated to vt = [dt,s, dt,e, a], where
dt,s denotes the start point (2-dim), dt,e denotes the end
point (2-dim), a denotes an agent’s trajectory attributes,
i.e., the timestamp (1-dim), object type (3-dim one-hot en-
coding for autonomous vehicles, target agent and others),
vector length (1-dim), and relative time steps to the first ob-
served time step (1-dim). The remaining dimensions are
zero-padded. For lane segment encodings, the last eleven
dimensions are dedicated to vn = [dn,s, dn,e, a, dn,pre].
Similarly, four dimensions are for the start and end points. a
describes the lane segment attributes, i.e., its index among
all the lane segments (1-dim), the semantic attributes of a
lane segment such as if it is at an intersection (1-dim), if it
belongs to a left-turn lane (1-dim) or a right-turn lane (1-
dim), and if it has traffic control (1-dim). dn,pre (2-dim)
indicates the predecessor of the start point. The remaining
dimensions are zero-padded. It should be noted that the di-
mensions of the vector can be easily modified to include
more or less attribute information.

Sliced lane segments. Following the approach in LTP [9]
to model the intention of the target agent more precisely, we
utilize sliced lane segments. Specifically, the length of each
lane centerline segment is cut into 5meters or remains as
the original length if the lane is shorter than 5meters, with
a 1meter resolution as the interval between two continuous
centerline 2D positions. The ablation study on the length

of sliced lane segments has been thoroughly conducted in
[9]. Therefore, interested readers are referred to the paper
for more detailed information.

Global Interaction Graph (GIG). Figure 1 denotes the
operation of GIG. The unified vectorized trajectories and
lane centerlines are encoded to learn agent-to-environment
and agent-to-agent interactions via the attention mecha-
nism [8]. First, two parallel embedding modules of iden-
tical structures extract spatial-temporal features from agent
trajectory or lane segment vectors. Namely, a multi-layer
perceptron (MLP) embeds each input vector into a fixed-
length embedding independently. Subsequently, a gated re-
current unit (GRU) learns spatial-temporal features from the
sequence of the trajectory or lane vectors and outputs their
corresponding latent feature maps. The output features of
agents’ trajectories are hi for ∀i ∈ {1, . . . , Ntraj} and lane
segments are cj for ∀j ∈ {1, . . . , Nlane}. Then, two three-
layer cross-attention networks designed for modeling agent-
to-environment interactions – Agent2Lane and Lane2Agent
– have the agents attended to the lanes and vice versa. The
outputs of Agent2Lane and Lane2Agent are used to update
cj and hi, respectively. Afterwards, the GIG further ex-
plores the self-attention mechanism that also learns agent-
to-agent interactions. Hence, the finally updated hi and cj
after the GIG consider both agents’ motion dynamics and
scene contexts globally.

Ground truth label of the lane scores. The temporally
dense lane scoring module employs a binary cross-entropy
loss Llane to optimize the motion and lane segment align-
ment probability estimation. To search for the ground truth
lane segment at time step t, a distance function is used fol-
lowing the approach in [4]. Specifically, we use the shortest
Euclidean distance between the set of all centerline 2D po-
sitions in the j-th lane segment Cj

1:N and the ground truth
position Yt as the distance metric, where N denotes the to-
tal vector length of this lane segment. The ground truth
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Figure 1. The agent-to-environment and agent-to-agent interac-
tion module. First, the target’s motion and the lane segments are
encoded through Agent2Lane and Lane2Agent. Then, the encoded
features are concatenated as the input for a global interaction graph
with the self-attention mechanism.

label of the lane score sj,t equals one only if it has the min-
imum distance over all the other lane segments; otherwise,
the ground truth label equals zero. It should be noted that
this distance metric is applied to each time step for the mo-
tion and lane segment alignment.

Output of the final predicted trajectories. When utiliz-
ing the motion refinement module, the final predicted tra-
jectories for each target agent are obtained by adding the
predicted trajectories from the first stage (S1) and the pre-
dicted offset from the second stage (S2). It is defined as
Ŷ = ŶS1 +∆ŶS2.

Network setting. Only the lane segments that are within
50m (Manhattan distance) of the target agent are sampled
as the scene contexts. λ1, λ2, and λ3 for the weights of the
loss terms are set to 10, 5, and 2, respectively. The sensitiv-
ity analysis of these weights of the loss terms is presented
in the main paper.

The hidden dimension of all the feature vectors in
LAformer is set to 128. The activation functions used in the
intermediate layers are Rectified Linear Units (ReLU). Sim-
ilar to [11], we utilize the Softmax function to normalize
the predicted π̂m and ground truth probability πm of each
mode. For the Laplacian decoder, we use ELU(.)+1+ϵ, the
Exponential Linear Unit (ELU) activation function with ϵ to
ensure positive values for the probability estimation, where
ϵ is set to 1e−3. In both Argoverse 1 and nuScenes, we set
the learning rate to 1e−3.

We use a two-stage training scheme. In the first stage,
all the modules except for the motion refinement module
are trained using the Adam optimizer [5]. It should be
noted that the temporally dense lane-aware module was
trained jointly with the decoder. Only the refinement mod-
ule was trained in the second stage because we first need
to get decent predictions as anchors for the second stage.
LAformer was trained for ten epochs for the first stage
and nine epochs for the second stage on the Argoverse 1

dataset. It was trained for 50 epochs for both stages on
the nuScenes dataset. The training time on 8xRTX3090
cards with each stage was about 8 hours. The source code
of LAformer is available at https://github.com/
mengmengliu1998/LAformer.

B. More details about the experimental results
The implementation of DenseTNT and HiVT. To en-
sure a fair comparison with DenseTNT and HiVT, we
re-implemented them using their publicly available code.
Since the trained model of DenseTNT is not provided, we
trained the offline DenseTNT (w/ 100ms optimization) from
scratch with the default settings 1. The retrained DenseTNT
achieves similar results to those reported in their paper. This
retrained model is used to generate qualitative results for
comparison. We use the publicly available trained model of
HiVT 2 to generate qualitative results for comparison.

Figure 2 presents additional scenarios at different inter-
sections in Argoverse 1. It can be observed that all the mod-
els can generate at least one mode of prediction that is close
to the corresponding ground truth trajectories with respect
to the moving directions. In general, LAformer achieves
more accurate predictions with respect to the final steps.
Compared to DenseTNT, LAformer generates more scene
compliant predictions in scenarios 2⃝ and 5⃝. It can also be
observed in 2⃝ and 4⃝ that the goal-based model DenseTNT
may predict trajectories that are not smoothly connected to
the selected goals by optimization. This is because the se-
lected goals and the predicted complete trajectories are not
generated sequentially simultaneously. Compared to HiVT,
LAformer generates more diverse predictions in the lateral
directions in 3⃝ and 5⃝, where the target vehicle has the
potential to make a left or right turn while entering the re-
spective intersections. However, HiVT only predicts driv-
ing straight forward. In 2⃝, LAformer uses the temporally
dense lane-aware module to select only the top aligned lane
segments for scene-compliant trajectory prediction, while
some of the modes predicted by HiVT are not feasible with
respect to the lane boundaries.

C. Limitation
Failed cases. Figure 3 presents the failed scenarios in Ar-
goverse 1. For example, in the leftmost scenario, LAformer
predicts driving through or turning right, while the vehicle
makes a left turn. A similar situation can be seen in the
second leftmost scenario when the vehicle starts to make a
slight left turn. In these turning scenarios, the observations
do not provide sufficient cues (only with the observation
of forward driving), and it is challenging to correctly pre-
dict the target vehicle’s driving intention when it makes a

1https://github.com/Tsinghua-MARS-Lab/DenseTNT
2https://github.com/ZikangZhou/HiVT
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Figure 2. Qualitative comparison of different models in complex scenarios on the Argoverse 1 [2] validation set. Each row represents a
unique scenario at an intersection and each column from left to right represents the results predicted by DenseTNT [4], HiVT [11], and
LAformer, respectively. This figure is better visualized in zoomed-in and color mode.



Figure 3. Failed prediction results on Argoverse 1 [2] validation set.

Figure 4. Failed prediction results on the nuScenes [1] validation set. Predicted trajectories are presented in red color and the corresponding
ground truth trajectories are presented in green color.

turn at a later time point. In the middle scenario, although
LAformer predicts the correct driving intention of the ve-
hicle, its predictions do not well overlap with the vehicle’s
driving speed and heading. Predictions with large distance
errors can be found in the two right scenarios as well. In
these scenarios, the target vehicle makes a lane change at a
later time point, leading to increased difficulties in captur-
ing the vehicle’s speed profile. In these challenging cases,
additional information cues such as collaborative perception
and vehicle-to-infrastructure communication may be neces-
sary [10] to further facilitate trajectory prediction for au-
tonomous driving.

Figure 4 presents the failed scenarios in nuScenes. Simi-
lar to the scenarios in Argverse 1, we can see that LAformer
has difficulties predicting the target vehicle’s driving inten-
tion when it makes a left turn in the rightmost scenario and
makes a lane change in the two middle scenarios. This is
because the vehicle was observed to be driving along on the
road, and it made the change at a much later time point.
LAformer misses the change cues and only predicts that the
vehicle drives with the same moving pattern as it was ob-
served. Interestingly, we also found that in the rightmost
scenario, LAformer predicts some of the trajectories that are
not compliant with the scene constraints. In this scenario,
the vehicle is moving slowly in a dead-end. There is no fur-
ther lane information available in the vehicle’s driving di-
rection. Hence, LAformer cannot make all scene-compliant
predictions.

In addition, similar to [3, 4, 6, 7, 9], LAformer is an

agent-centric approach that produces independent predic-
tions for the target agent. Event though the inference speed
of LAformer is decent, c.a. 10Hz for 12 agents, it is slower
than the scene-centric approach HiVT (more information
about the computational cost is given in the main paper).
The lane selection module aims to let the model focus on
the most potential lane segments to better align motion and
lane information. To estimate the alignment, the module
needs to compute the binary classification score at each time
step for each potential lane, which is not optimal for saving
memories and increasing speed.
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