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In this supplementary material, we include:

• Additional implementation details.

• Details on audio relevance analysis.

• Additional qualitative results.

1. Additional Implementation Details
Paragraph Video Captioning on ActivityNet-Captions:
ActivityNet-Captions contains one reference for each video
in the training set and two references for each video in the
validation/testing set. Following [12], we use ground-truth
segments and sentences for training. For validation/testing,
we use the ground-truth segments from the first reference
in validation/testing set and evaluate against the two refer-
ences.
Video Encoder: We sample 16 frames from each video
clip. We equally divide each video clip into 16 segments
and randomly sample 1 frame from each segment during
training. For testing, we uniformly sample 16 frames.
The frames are resized and cropped into images of size
224×224. Each video clip with the size of 16×224×224×3
is fed into the Video Swin Transformer [8] initialized with
the weights pre-trained on Kinetics 600 [1] and tokenized
into Nv = 8 × 7 × 7 = 392 video tokens. Following
prior works [7, 8], given the raw video frames of the size
T ×H ×W × 3, where T is the number of frames, H ×W
is the image height and width, and 3 is the RGB channels,
the size of the output features of Video Swin Transformer
is T

2 × H
32 × W

32 × 8C, where C is the channel dimension.
In our experiments, the input size of the video encoder is
16× 224× 224× 3 and the channel dimension is C = 128,
so the output size is 8 × 7 × 7 × 1024. To be consistent
with the token dimension of the other modules, we add a
linear layer to map the feature dimension into 768. Hence,
the number of video tokens is Nv = 8 × 7 × 7 = 392 and
the token dimension is D = 768.
Audio Encoder: Our implementation of the audio encoder
is similar to that in [11]. Each audio is resampled to
22,050Hz and divided into frames of 1536 samples with
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hop length of 588. Then we apply 64 mel-scale filters and
take logarithm on the amplitude to get the log mel spec-
trogram. To tackle the variable length of audios, we set
a maximum length of frames as 256 (∼6.8 sec.). The au-
dio clips shorter than 256 frames will be zero-padded and
longer clips will be down-sampled to be 256 frames. As a
result, the dimension of input mel-spectrogram is 256× 64
for each audio. We use a 12-layer Transformer with 12 at-
tention heads on audio spectrogram. We apply the linear 1-
dimensional layout on the spectrogram as in [11] rather than
a two-dimensional (image-like) one in [4], as we notice 1-
dimensional layout is more suitable for fine-grained audio
events like speech. The Transformer produces audio fea-
tures of dimension 256 × 768 and then, following [11], we
apply an average pooling by a factor of four to resize the se-
quence to a length of Na = 64 audio tokens. During train-
ing, we use time and frequency masking as in SpecAug-
ment [10] for data augmentation. The time mask parameter
is set as 32 and the frequency mask parameter is set as 128.

Cross Encoder: We use a 3-layer Transformer with 12 at-
tention heads as the cross-modal encoder. The feature em-
beddings of different modalities will be added with the po-
sition embedding and token type embedding to distinguish
the position and modality of the tokens.

Training Details: We pre-train the model on HowTo100M
for 100 epochs using Adam optimizer [6]. For each video,
we sample three video-caption pairs from a long video in
one iteration. Empirically, we found the MBP loss not sen-
sitive to the two hyperparameters β and α. We set β = 0.99
and α = 10 for all the experiments. We pre-train the model
on 64 Nvidia Tesla A100 GPUs and it takes around five
days. The base learning rate is 10−4 and we use a lin-
ear decay learning rate schedule with a warm-up of 10%
training epochs as in [9]. For fine-tuning, we set the ini-
tial learning rate as 10−5. We train the model for 5 epochs
on YouCook2 and MSRVTT, 10 epochs on VATEX, and 30
epochs on ActivityNet-Captions.
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Figure 1. The ARS of top 100 words.

Audio Description: [Men singing] [Loud music in the
background]

GroundTruth: A man sings into a microphone in front of a crowd of people.
Video-only: A man is standing at a bar and smoking a cigarette.
Video+Text: A man is smoking a pipe while a group of people watch.
Video+Audio: A man is singing into a microphone at a bar.
Video+Audio+Text: A man is singing while music is playing in the background.

Audio Description: [Camel bell ringing] [Child crying]

GroundTruth: : A woman and two young children are riding a camel through 
the city, while one child cries.
Video-only: : A group of people are riding camels through a city.
Video+Text: A group of people are riding camels in a city.
Video+Audio: A man is playing the bagpipes while another man is playing the 
drums.
Video+Audio+Text: A man and a woman are playing bagpipes on a street.

Audio Description: [Speech: roll it, pat it, mark it
with the b. put it in the oven for baby and me.]
[Laughter]

GroundTruth: A man and a woman are playing the children's game Patty Cake.
Video-only: Two men are playing a game of rock, paper, scissors. 
Video+Text: A man and a woman are playing the game of patty cake.
Video+Audio: A man and a woman are playing a game of patty cake while 
laughing.
Video+Audio+Text: A man and a woman are playing a game of patty cake 
while laughing.

Audio Description: [Speech: Add some... This is the
peppercorn, and the ginger, and garlic, ginger
garlic.] [Sound of frying in the pan] [Music]

GroundTruth: add peppercorn ginger and garlic to the pan.
Video-only: add cumin seeds and garlic to the pan.
Video+Text: add peppercorns and ginger and garlic to the pan.
Video+Audio: add peppercorns and ginger and garlic to the pan.
Video+Audio+Text: add peppercorns and ginger and garlic to the pan.

Figure 2. Some qualitative examples when we input different modalities to generate captions.

2. Audio Relevance Analysis

We design two metrics, i.e. Speech Coverage Rate (SCR)
and Audio Relevance Score (ARS), to measure how relevant
the captions are to speech and audio.

For SCR, we tokenize the annotated captions and speech
transcripts, and compute the percentage of tokens in cap-
tions that are covered by the associated speech transcripts.

For ARS, we collect the captions from audio captioning
and image captioning datasets. We calculate the word fre-
quencies in audio captioning and image captioning datasets,
and assign a higher score to the words that occur more
frequently in audio captions than image captions. We use
the annotated captions from AudioCaps [5] and Clotho [3]
as audio captions and the annotated captions from CoCo-
Captions [2] as image captions. We tokenize and lemmatize



YouCook2 MSRVTT VATEX ActivityNet

SCA 48.67 14.7 5.53 12.63
ARS 1.202 2.903 3.692 3.487

Table 1. The Speech Coverage Rate (SCA, %) and Audio Rele-
vance Score (ARS) on the downstream datasets.

all captions, and remove all punctuation and stop words.
Then we compute the word frequency in audio captions and
image captions. Let fa(w) and f i(w) denote the frequency
of word w in audio captions and image captions respec-
tively, then ARS is computed as:

ARS(w) = max(log
fa(w)

f i(w)
, 0). (1)

Hence, a higher ARS will be assigned to those words whose
frequency is much higher in audio captions than that in im-
age captions. On the contrary, if a word is more frequent in
image captions, then the log of the division is negative, and
the ARS will be set as zero. The ARS of a sentence is the
sum of the ARS of all non-stop words in it, and we compute
the average ARS of all captions on each dataset.

Figure 1 shows the ARS of the top 100 words. We
can see that most of those words are highly relevant to au-
dio modality, including verbs that describe a certain type
of sound, e.g. “snore”, “gurgle”, “bleat”, adjectives or
adverbs that describe the pattern of sound, e.g. “loudly”,
“muffled”, or nouns that are usually associated with a type
of sound, e.g. “vibration”, “gunshot”, etc.

Tab. 1 lists the SCR and ARS on downstream datasets.
We notice that a large portion of the captions on YouCook2
are mentioned in speech. Conversely, though only a small
amount of captions are covered by speech, the captions on
VATEX are most relevant to audio modality.

3. Additional Qualitative Results

Qualitative results. We show some qualitative examples
in Fig. 2 by comparing the ground truth, and predictions of
our model with video-only, video+text, video+audio, and
video+audio+text inputs. In the first example, when only vi-
sual modality is available, the model misclassifies the pep-
percorns as cumin seeds as they are hardly visible in the
video. By adding audio and/or ASR text as input, the model
correctly generates the caption because the ingredients are
clearly introduced in the speech, which shows that we can
infer the ingredient from raw audio without relying on an
off-the-shelf ASR system. In the second example, the cap-
tion is not explicitly described in the audio, but the model is
able to correct its prediction from “rock, paper, scissors” to
“patty cake” by adding audio or text modality as it can infer
the type of game from the speech. In particular, when we

ASR: “Come over here, let's put some bacon in there about that perfect.”
Caption: Add bacon to the hot pan.

Caption: A group of girls performing on a stage.

Mid Frame Global Fusion Local Fusion

ASR: “I know how long you go. You can stop. Okay.”
Caption: The girl is winking her left eye and smiling and laughing.

ASR: “clip the hair from the stomach and drawing areas.”
Caption: After, the woman cuts the hair of the tail and the hair in the 
abdomen. 

Figure 3. Additional visualization on the attention maps from au-
dio modality to the RGB space for global cross fusion and local fu-
sion modules on YouCook2, MSRVTT, VATEX, and ActivityNet,
respectively.

add audio as the input, the model not only predicts the cor-
rect type of game, but also provides more information about
the audio, i.e. recognizing that the people are laughing. The
third example shows that audio is also helpful when there
is no speech in the video. Using video-only or video+text
as the inputs, the model generates incorrect captions, e.g.
“smoking a cigarette” or “smoking a pipe” as the micro-
phone is not quite visible. However, if we add audio as the
input, the model will correctly detect that the man is singing
and music is playing in the background. The last example is
a failure case, where the audio-visual model mistakenly rec-
ognizes the sounds of camel bell ringing and child crying as
the sounds of the bagpipes and the drums. It indicates that
the model gives too much attention to the audio modality
and ignores the visual appearance of people riding a camel.

Attention maps. We show additional visualization on the
attention maps on the four downstream datasets respec-
tively. Similar to what we observed in the main paper, in the
first and the fourth example, where the items in the videos
are mentioned in the speech, i.e., “bacon” and “hair”, the



local attention will focus on the regions of those items. In
the second example, where there is sound of singing in the
video, both local and global modules will give attention to
the performers on the stage, and we notice that the attention
of the global module will be more concentrated. In the third
example, where there is sound of speaking and laughter, the
global module focuses more on the mouth region, where the
sound comes from.
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