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Abstract

We ask whether 3D objects can be reconstructed from
real world data collected for some other purpose, such as
autonomous driving or augmented reality, thus inferring
objects only incidentally. 3D reconstruction from inciden-
tal data is a major challenge because, in addition to signif-
icant noise, only a few views of each object are observed,
which are insufficient for reconstruction. We approach this
problem as a co-reconstruction task, where multiple objects
are reconstructed together, learning shape and appearance
priors for regularization. In order to do so, we introduce
a neural radiance field that is conditioned via an attention
mechanism on the identity of the individual objects. We fur-
ther disentangle shape from appearance and diffuse color
from specular color via an asymmetric two-stream network,
which factors shared information from instance-specific de-
tails. We demonstrate the ability of this method to recon-
struct full 3D objects from partial, incidental observations
in autonomous driving and other datasets.

1. Introduction

The development of technologies such as autonomous driv-
ing and augmented reality means that there is an enormous
quantity of videos that capture the real world [4, 11, 17].
While this data is collected for a specific purpose, such as
controlling a car or augmenting an environment, it also in-
cidentally contains a lot of information about the world and
the 3D objects therein. In this paper, we ask if it is possible
to learn models of 3D objects from data collected for some
other purpose, inferring them only incidentally.

In practice, this task is quite challenging. Even mod-
ern 3D reconstruction algorithms [30, 41] generally assume
that the input images focus on the object of interest, and
usually ‘circumnavigate’ it, providing 360◦ coverage. Inci-
dental recordings only catch glimpses of the objects from
a small range of viewpoints, usually a single side, and are
also affected by occlusion and noise (Fig. 1).

*Both authors contributed equally to this research.

(a) Intentional data capture (CO3D dataset [36]).

(b) Incidental data capture (NuScenes dataset [4]).

(c) Single-instance crops extracted from incidental data above.

(d) Challenges: lens droplets, dynamic occlusions, motion blur.

Figure 1. Comparing intentional and incidental data. (a) Data
captured intentionally for 3D reconstruction, like the CO3D
dataset [36], circumnavigates and focuses on the object, is care-
fully collected in good conditions, and has accurate poses and
masks, but is scarce. (b–c) Data captured incidentally, like the
NuScenes dataset [4] where vehicle-mounted cameras catch glanc-
ing views of objects, is plentiful, but comes with many challenges.
(d) These include incomplete capture (viewing a single side), low
resolutions, motion blur, static/dynamic occlusions, and adverse
conditions. Our model produces complete reconstructions from
incidental and incomplete data, by co-reconstructing many objects
simultaneously and learning helpful shape and appearance priors.

Consider as a representative of this task inferring 3D
objects from data obtained for autonomous driving, like
the NuScenes dataset [4], with video collected by vehicle-
mounted cameras. This data contains abundant information
about 3D objects such as vehicles. However, extracting
a model of such objects faces several challenges, includ-
ing highly reflective and low-textured surfaces (e.g., mir-
rors, windows, and metallic paint), static and dynamic oc-
clusions, other dynamic effects (e.g., motion blur, rotating
wheels, and moving reflections), adverse weather condi-
tions, sensor perturbations (e.g., water droplets and grime),
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and incorrectly estimated camera poses and instance masks.
Any system that seeks to take advantage of such data must
also be robust to these nuisance factors.

The partiality of the observations means that the images
available for any given object are insufficent for reconstruct-
ing it. To solve this reconstruction-at-a-glance problem, we
propose a co-reconstruction setting which learns category-
specific shape and appearance priors, such as symmetries,
material properties, and part colors. However, learning
these intrinsic priors is non-trivial, since the space of pos-
sible combinations of shape and texture is combinatorial
and there are many confounding extrinsic factors, including
lighting, shadows, reflections, and dynamic effects.

Our model overcomes these problems by disentangling
shape from appearance and diffuse color from specu-
lar color, allowing the common properties to be shared
across instances. This enables our model to accurately
co-reconstruct a set of instances despite only having seen
glimpses of each, as shown in Fig. 1, overcoming a ma-
jor shortcoming of neural reconstruction approaches like
NeRF [30] that can only reconstruct surfaces seen in the
training images. We also propose a new parameterization
of the space of co-reconstructed NeRFs that leverages at-
tention conditioning to outperform off-the-shelf solutions.

Hence, our contributions are: (1) a novel problem set-
ting, co-reconstructing 3D objects captured incidentally in
the real world; (2) a disentangled neural fields decoder
model with an asymmetric two-stream design; and (3) a
hierarchical, efficiently-conditioned, and decorrelated de-
coder backbone. We demonstrate complete and high-
fidelity reconstructions, allowing for convincing novel view
synthesis of unseen sides of objects, and achieve state-of-
the-art co-reconstruction results.

2. Related Work

We review the neural rendering work closest to ours; a gen-
eral overview can be obtained from surveys [44, 46].

Neural rendering and reconstruction. The Neural Radi-
ance Fields (NeRF) method of [30] and related work [1, 27,
29, 41, 49, 52, 53] represent the color and opacity of each
point in space using a neural network for each scene, and
render images using the emission-absorption model. Our
model also uses neural rendering, but we extend the setup
to category-level co-reconstruction in order to learn shape
and appearance priors in common to many objects.

To address the difficulties associated with modeling
complex and reflective surfaces, a number of works explore
more sophisticated lighting models [2, 3, 9, 43, 48, 55]. For
example, Ref-NeRF [48] optimizes a NeRF-like model with
a reflected radiance parameterization that better captures
light transport. Our model also disentangles the diffuse and
specular components of appearance via an additive color

model. However, our motivation is to allow the network
to share information about material properties between in-
stances, for which specular effects are nuisance variables.

Another line of work investigates optimization-efficient
representations for learning neural fields. The memory–
compute trade-off can be altered by replacing an MLP-
parameterized neural field with voxels [13], hash ta-
bles [33], triplanes [5, 42], or tensor decompositions [8].
For example, TensoRF [8] decomposes the neural field grid
into vector–matrix pairs, which can be optimized rapidly.
We use the similar triplane representation [5], which con-
sists of three axis-aligned orthogonal feature planes. Unlike
TensoRF, we use a triplane decoder, rather than optimizing
the triplane parameters directly, allowing us to learn priors.

Mesh reconstruction. Category-level reconstruction has
been previously explored for meshes [15, 22, 26, 50, 51].
For example, Ye et al. [51] infer shape, texture, and pose
from a single image via an auto-encoding network with pho-
tometric and adversarial losses. However, the approach can-
not take advantage of additional test views and has lower
tolerance for the occlusion, blur, and noisy masks present
in incidental data, preferring synthetic and curated collec-
tions. These approaches tend to excel in the sparse data
regime where a strong shape prior is helpful, but are less
detailed and photorealistic than neural field approaches.

Conditional neural fields. Multiple instances of the same
category can be handled by conditioning the reconstruc-
tion network on per-instance latent codes. Several ap-
proaches [6, 34, 39] learn generative adversarial net-
works [16] with a neural field generator conditioned on
instance-specific codes via concatenation [34, 39, 45] or
normalization [6]. For example, π-GAN [6] uses Adap-
tive Instance Normalization (AdaIN) [12, 20] to condition
SIREN-based [40] implicit radiance fields. EG3D [5], Epi-
GRAF [42], and GET3D [14] instead generate a triplane
using a StyleGAN2 [23] synthesis network, conditioned via
AdaIN. Like these works, we use a triplane generator, but
propose cross-attention for efficient triplane conditioning.

Non-adversarial approaches include those that condition
on local image features [36, 52], and those that condition on
an instance via decoding or auto-encoding [21, 31, 32]. Co-
deNeRF [21] conditions intermediate features of a NeRF-
like MLP decoder on mapped latent codes through residual
connections. In contrast, AutoRF [32] and UNICORN [31]
use auto-encoders to learn a low-dimensional intermediate
latent feature from a single image, which can be decoded
into a 3D reconstruction and rendered from any viewpoint.
Our conditional decoding approach is most similar to Co-
deNeRF, but substantially improves the quality of the re-
constructions due to its disentangled triplane decoder de-
sign and efficient cross-attention conditioning.
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3. Neural Fields for Co-Reconstruction
We cast our problem as image-based reconstruction and ap-
proach it using a neural rendering formulation: given a cer-
tain number of views of a target 3D object, we fit a density
and radiance field represented using a neural network, thus
reconstructing the object. Where we depart from standard
neural rendering solutions (Sec. 3.1) is how we address the
lack of a sufficient number of views of the object: we do
so by co-reconstructing many different objects together, so
that the reconstructions are better than what would be ob-
tainable from each instance individually.

In order to maximize parameter sharing between dif-
ferent objects, we propose a new neural field architecture
(Sec. 3.2) and a disentangled representation of appearance,
material and illumination to factor out instance-specific ef-
fects (Sec. 3.3). We also develop a robust learning objective
to address other types of noise in the data (Sec. 3.4). A
flowchart of our model is shown in Fig. 3.

At training time, we optimize the model parameters
(shared across instances), the extrinsic camera parameters,
and the shape, appearance, and directional codes (shared
within instances) to best reconstruct the data. Furthermore,
a small “view code” is also allowed to vary between frames,
to account for minor appearance changes across time (e.g.,
auto-exposure, wheel rotation, and motion blur).

Once learned, we can utilize our model in two ways.
First, we can generate novel views of the objects in the
training set. To do so, we optimize the extrinsic camera
parameters and the low-dimensional view code with respect
to a held-out set of test images and evaluate the quality of
the rendered images. Second, we can reconstruct a new in-
stance of a previously-trained category. To do so we opti-
mize the camera parameters and codes with respect to the
set of training images, keeping the model parameters fixed,
and evaluate performance as above.

Formally, given a set {xi}Mi=1 of object instances of a
given category, where each instance xi consists of a set
{(Iij ,Mij ,Tij ,Kij)}Ni

j=1 of Ni multi-view images I , ap-
proximate binary object masks M , approximate camera
extrinsic (pose) matrices T relative to the object, and in-
trinsic matrices K, the task is to co-reconstruct the shape
and view-dependent appearance of every object. Estimated
camera-to-object pose parameters can be obtained by de-
tecting and tracking 3D bounding boxes of the (potentially
moving) object of interest, aided by any available odometry.

3.1. Background: Neural rendering

In neural rendering [30], a function ϕ : R3×S3 → R+×R3,
parameterized by the weights of a neural network, maps a
3D point x ∈ R3 and view direction d to a volume density
σ and color c ∈ [0, 1]3. To learn this function from posed
images, colors are accumulated along a pixel ray emanating
from a camera centre o in the direction d. For K point
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(a) Hierarchical triplane decoder.
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(b) Decoder block structure.

Figure 2. Attention-conditioned triplane decoder. The network
structure is hierarchical, with coarse-to-fine decoding and condi-
tioning so that coarse shape and appearance is learned before the
details. It uses cross-attention conditioning to make most efficient
use of the latent parameters, and uses group convolutions to avoid
introducing spurious correlations between triplane elements.

samples {xi = o + tid | i = 1, . . . ,K; ti < ti+1}, with
gaps between adjacent samples δi = ti+1 − ti, the rendered
color is given by

ĉ(o,d) =

K∑
i=1

exp

(
−

i−1∑
j=1

σjδj

)(
1− exp(−σiδi)

)
ci. (1)

The parameters of the network ϕ are then learned by mini-
mizing the distance between the training input images and
the images generated from Eq. (1).

3.2. Attention-conditioned neural fields

Our first contribution is a new neural radiance field archi-
tecture (Figs. 2a and 2b) that can efficiently model multi-
ple objects by modulating shared parameters to account for
instance- and view-specific differences between objects.

We learn a mapping from a latent vector z, coding for
a specific 3D object, into a triplane representation [5] of
the neural radiance field. We choose a triplane for its effi-
ciency and because it can be processed using 2D convolu-
tions. The backbone of the mapping, illustrated in Fig. 2a,
is a coarse-to-fine U-Net [38] augmented with conditioning
layers, reminiscent of Stable Diffusion [37]. A key design
decision was to use cross-attention for conditioning [47],
as shown in Fig. 2b, since we empirically found it better
at fitting large and complex datasets [35]. Specifically, we
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Figure 3. The Disentangled Neural Field Decoder (DNFD) model.
First, shape and appearance triplanes (F s and F a) are generated
from two decoders, one conditioned on a per-instance latent shape
code zs and the other on a per-instance appearance code za. The
appearance decoder is conditioned on the shape decoder via uni-
directional residual connections. The triplanes are sampled at a
3D point xi to obtain shape and appearance features (fs

i and fa
i ).

Small MLPs compute the density σi from fs
i and the diffuse color

cdiff
i from fa

i . Next, the appearance feature fa
i , encoded direction

d̄i, and directional latent code zd are passed to a small MLP to
predict the specular color cspec

i . The view direction d is encoded
with Integrated Directional Encoding (IDE) [48], which also takes
the predicted scalar roughness ρi as input. The directional code
helps factor out nuisance variables like reflections, autoexposure
changes, and dynamic effects that are not shareable between in-
stances or frames. Finally, the diffuse and specular colors are
summed and integrated along the ray to render the pixel color ĉ.

project the code z to a sequence of tokens wi via a mapping
network, and use them as cross-attention keys and values.

In order to process the triplanes with a single applica-
tion of a 2D convnet, we stack them along the channel di-
mension. However, since they do not align spatially be-
cause they code different coordinate planes, we process
them using group convolutions [25], which reduces the risk
of learning spurious correlations between them [5, 14, 42].
This removes a harmful inductive bias and greatly improves
parameter efficiency.

3.3. Separating instance and view-specific factors

In order to maximize information sharing between differ-
ent object instances and different views of the same object,
the model must be able to factor information that can and
cannot be shared. Disentangling shape and appearance al-
lows the network to reason about shape independently from
appearance, facilitating the sharing of information between
instances. For example, the parameters used to model the
shape of a Mini Cooper should not depend on its paint job
or the lighting conditions. However, the appearance at any
3D coordinate does depend on the shape. For example, the
color depends on where the coordinate lies on the object’s
surface, on the normal directions, and on shadows cast by
non-convex geometries.

Two-stream decoder. To achieve this disentanglement,
we propose a novel asymmetric two-stream decoder design.
As shown in Fig. 3, our model has a shape decoder that
upsamples a constant feature map, conditioned on a per-
instance shape code zs, to produce a triplane of three or-
thogonal shape feature maps [5]. For each sample point in
3D, a shape feature is obtained from this triplane using bi-
linear interpolation and is decoded to the volume density σi

using a small fully-connected network. A second decoder
for appearance is conditioned on a per-instance appearance
code za, generating an appearance triplane. Crucially, the
appearance decoder receives information from the shape de-
coder via uni-directional residual connections, so that the
shape informs appearance, but not vice versa.

View-dependent reflected colors. View-dependent ef-
fects, such as reflections and specular highlights, as well
as frame-dependent effects, such as exposure and dynamic
color changes, are not shareable between instances and can
be considered nuisance variables for this task. To address
this, we factorize the color into diffuse (view-independent)
and specular (view-dependent) components. The diffuse
component cdiff

i is defined as the average color of a 3D point
across all observed viewing directions, under the lighting
conditions for that instance. The specular component cspec

i

captures view- and frame-dependent effects by condition-
ing on a directional latent code zd with a small number of
parameters that vary per-frame.

Specifically, we bilinearly interpolate the appearance tri-
plane F a at the 3D position xi to obtain an appearance fea-
ture fa

i , encoding the local texture, normal, lighting, and
reflectivity (Fig. 3, bottom left). A small three-layer MLP
decodes this into the diffuse color cdiff

i and the roughness ρi.
The latter is used to encode the direction vector d via the
spherical harmonics-based Integrated Directional Encoding
(IDE) [48]. Finally, another three-layer MLP, conditioned
on the directional latent code zd, decodes the appearance
feature fa

i and the encoded direction vector d̄i into the spec-
ular color cspec

i . Our additive color formation model is

ci = cdiff
i (fa

i (xi)) + cspec
i (fa

i (xi), d̄i), (2)

where ci is the estimated color of the 3D point xi, cdiff
i is

the direction-invariant diffuse color of the material, depend-
ing on the position and shape only, and cspec

i is the specular
color of the reflected light, given an encoded view direction
d̄i. To encourage disentanglement, we apply a loss to match
the diffuse color cdiff

i , rendered along the ray, to the ground-
truth color. This encourages the network to predict cdiff

i as
the color averaged over all observed viewing directions.

3.4. A robust loss for noisy incidental data

To compensate for low-quality images and poorly-estimated
camera-to-object poses and masks, as are common in inci-
dental data, robust loss functions are critical. We use the
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masked L1 error between the rendered and ground-truth
pixels and the L1 error between the predicted and (ap-
proximate) ground-truth instance mask. No 3D supervision
is used, beyond the approximate poses used for initializa-
tion. We optimize the network parameters, the per-frame
extrinsic camera parameters (rotation and translation), and
the per-instance latent codes. The per-pixel color loss is
Lcolor = 1

3m∥ĉ − c∥1, where ĉ is the predicted color,
c is the ground-truth color, and m ∈ {0, 1} is the bi-
nary instance mask variable that equals 1 for any pixel of
the object instance. The associated mask loss is given by
Lmask = ∥m̂ − m∥1, where m̂ = 1 − TK is the predicted
mask, and TK is the accumulated transmittance along the
ray at the final (K th) sample. We also apply a masked dif-
fuse color loss Ldiffuse with the same form as above. For
this loss, the pixel color is rendered without the specular
component, encouraging the network to explain as much
of the training data as possible without view-dependent ef-
fects. Finally, we apply L2 regularization to the latent codes
to discourage overfitting. This is implemented via weight
decay with the AdamW optimizer [28]. The total per-pixel
loss, with hyperparameters λ, is then

L = Lcolor + λmLmask + λdLdiffuse. (3)

4. Results
4.1. Experimental setup

Datasets. We evaluate our method on the NuScenes
dataset [4], released under the CC BY-NC-SA 4.0 License,
and the ShapeNet dataset [7], as well as the Woven Planet
(Lyft) Level 5 dataset [19] and the ScanNet dataset [11]
in the appendix. NuScenes is a large-scale in-the-wild
outdoor dataset of 1.4M vehicle-mounted camera images
from 1000 driving scenes in Boston and Singapore, with
ground-truth camera poses, intrinsics, and 3D bounding
box annotations for keyframes. We augment the dataset
with approximate instance segmentation masks predicted
by Mask2Former [10]. After filtering, we obtain 4157 in-
stances, each with two random test frames withheld.

This real-world dataset was not collected with the in-
tention that it be used for reconstruction, making it par-
ticularly challenging for this task. However, we see the
size of datasets like this as an opportunity to scale up ex-
isting reconstruction models, if the concomitant challenges
can be overcome. These include incomplete observations
(viewed from one side), significant motion and vibration
blur, dynamic and static occlusions, adverse weather, night-
time captures, auto-exposure, widely-varying resolutions,
lens droplets and grime, and inconsistent privacy blurring.
We apply our method to the vehicle category, which is the
best-represented object category in this dataset, and has its
own unique challenges: highly reflective and low-textured
surfaces (e.g., mirrors, windows, and metallic paint), dy-

namic parts (e.g., rotating wheels, windscreen wipers, flash-
ing lights), and motion blur.

For the synthetic ShapeNet cars dataset [7], we follow
the dataset split (2458 training instances) and rendering pro-
tocol of Scene Representation Networks (SRN) [41] but re-
render at 4× the resolution with transparency and specular-
ities enabled, bringing the data closer to real conditions and
challenges. We also provide the ground-truth depth maps
to faciliate geometric evaluation. For the chairs dataset,
with its less complex textures, we use the standard SRN
dataset [41]. The train and test frames are divided such that
they are taken from a strictly different half-space. These
experiments therefore assess the ability of a model to ex-
trapolate to significantly different viewpoints—visualizing
a side of the object it has not seen.

Metrics. We report four metrics to measure the visual
and geometric quality of the reconstructions: the percep-
tual LPIPS distance [54] and the peak signal-to-noise ra-
tio (PSNR) between the masked predicted and ground-truth
novel-view images; the intersection-over-union (IoU) be-
tween the predicted and ground-truth object masks; and the
Fréchet Inception Distance (FID) [18]. PSNR has signifi-
cant shortcomings as a metric in this setting, because blur-
ring causes a small PSNR change but a large perceptual
change. We consider LPIPS to be the more useful mea-
sure, alongside the FID for gauging realism, and recom-
mend viewing the video results.

Baselines. We compare our model with two state-of-the-
art baselines for category-level novel-view synthesis and 3D
reconstruction: CodeNeRF [21] and EG3D [5]. We adapted
the latter to the reconstruction task from its original GAN
setting for fair comparison. Note that code and data for Au-
toRF [32], an otherwise relevant baseline, has not been re-
leased. Another two baselines, “Ours-E” and “Ours-E-SG”,
are evaluated. The suffix ‘E’ denotes an entangled model,
that is, a single-stream triplane decoder with density and
color heads. The suffix ‘SG’ denotes the use of a Style-
GAN backbone. We focus on four strong baselines to avoid
prohibitively expensive training.

Implementation details. Our triplane decoders have 6
upsampling blocks with a maximum width of 648. The
density, diffuse, and specular networks are implemented as
MLPs with 0/1/1 hidden layers of dimension 64/128/128,
with a 5-frequency IDE encoding [48] on the view direc-
tions. All latent codes have 256 parameters, except the di-
rectional code which has an additional 32 per-frame param-
eters. We sample 256 points per ray, 256 rays per image,
8 images per instance, and 4 instances per batch. We opti-
mize the network with AdamW [24, 28] with initial learning
rates of 5×10−5, 5×10−4, and 2.5×10−3 for the model, cam-
era, and latent code parameters respectively, training for 1M
iterations on 4 GPUs, with hyperparameters λm = 1 and
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Table 1. Co-reconstruction results on test frames of the NuScenes
car dataset [4]. We report the LPIPS distance and the peak signal-
to-noise ratio (PSNR) between the estimated and ground-truth
masked images, the intersection-over-union (IoU) of the estimated
and ground-truth masks, and the Fréchet Inception Distance (FID).

Method LPIPS ↓ PSNR ↑ IoU ↑ FID ↓

CodeNeRF [21] 0.334 20.3 0.978 117.7
EG3D [5] 0.328 20.5 0.981 106.3
Ours-E-SG 0.307 21.6 0.981 60.8
Ours-E 0.300 21.5 0.981 54.7
Ours 0.287 21.7 0.981 40.8

Table 2. Co-reconstruction results on test frames of the ShapeNet
dataset [7], for view extrapolation (train and test frames from dif-
ferent half-spaces). Where the ground-truth distance maps are pro-
vided, we report the mean absolute distance error (D-MAE). Star
(⋆) denotes that training diverged.

Method LPIPS ↓ PSNR ↑ IoU ↑ FID ↓ D-MAE ↓

C
ar

s CodeNeRF [21] 0.140 22.2 0.967 142 0.0316
EG3D [5] ⋆ ⋆ ⋆ ⋆ ⋆
Ours-E-SG 0.120 24.0 0.979 100 0.0245
Ours-E 0.117 24.1 0.980 75.9 0.0220
Ours 0.117 23.7 0.980 79.4 0.0210

C
ha

ir
s

CodeNeRF [21] 0.0519 25.4 0.909 12.3 –
EG3D [5] ⋆ ⋆ ⋆ ⋆ ⋆
Ours-E-SG 0.0393 27.8 0.919 7.1 –
Ours-E 0.0292 29.7 0.910 4.2 –
Ours 0.0319 28.9 0.911 4.9 –

λd = 0.1. Complete implementation details are reported in
the appendix, and the code will be publicly released.

4.2. Experiments

Co-reconstructing NuScenes cars. For this experiment,
we train on the 4157 training instances and evaluate on the
reserved test frames. This assesses the ability to interpo-
late between nearby views, the standard mode for evaluat-
ing novel view synthesis algorithms. Note that only a small
range of views are seen for the vast majority of instances in
this dataset, making the single-instance reconstruction task
quite ill-posed. However, a more complete reconstruction is
possible if we reconstruct multiple instances together.

The quantitative results are shown in Tab. 1. They
indicate that our model can reconstruct the training data
with high fidelity, despite sharing almost all parameters be-
tween the instances, and can accurately interpolate between
nearby views. In particular, we outperform the baseline
models with respect to perceptual similarity (LPIPS), since
our renders are less blurry and perceptually closer to the
ground truth. However, these co-reconstruction models are
better evaluated in the extrapolation setting, for viewpoints
beyond the cone of training views. This is not possible to
evaluate quantitatively on the NuScenes dataset, because

Table 3. Ablation study on the test frames of the NuScenes dataset.
Different forms of conditioning and disentangling (S–A: Shape–
Appearance; D–S: Diffuse–Specular) are compared.

Conditioning Disentangling LPIPS PSNR IoU FID
Concat. AdaIN Attn S–A D–S ↓ ↑ ↑ ↓

✓ 0.334 20.3 0.978 117.7
✓ 0.307 21.6 0.981 60.8

✓ 0.300 21.5 0.981 54.7
✓ ✓ 0.302 21.2 0.980 53.9
✓ ✓ ✓ 0.287 21.7 0.981 40.8

the cars are only seen from one side, but can be demon-
strated qualitatively by rendering the unseen side of the cars,
as shown in Figs. 4 and 5. It is clear that the model is able to
learn useful shape and appearance priors, especially a prior
on the symmetry of cars, in order to reconstruct effectively
across the category. Note the artifacts in the single instance
reconstruction examples (floating regions of non-zero den-
sity), where the visual evidence was inadequate for correct-
ing the density field, unlike in the co-reconstruction model.

Co-reconstructing ShapeNet categories. Here we assess
view extrapolation performance, where the test frames are
sampled from a different half-space than the train frames,
on synthetic (non-incidental) data. Since this dataset has
exact camera poses, white backgrounds, static objects, and
constant camera intrinsics, we disable camera optimization,
mask loss, and view codes. The results are shown in Tab. 2
and Fig. 6, where we evaluate on a subset of 1000 instances
(∼41%). In contrast to CodeNeRF, the extrapolated views
are more plausible, less blurry, and the geometric error is
significantly lower. The improvement is even more sig-
nificant for the chairs dataset, although disentanglement is
slightly detrimental here since the textures are very simple.

Novel instance reconstruction. Here we use the pre-
trained model from the previous section, and test its ability
to assist in the reconstruction of novel instances. As out-
lined in Sec. 3, we optimize the cameras and latent codes
on a set of 5 training images from each test instance. The
qualitative results in Fig. 7 indicate that our model is able to
fit to new instances and generate plausible reconstructions.

Ablation study. To investigate the effect of our design
choices, we ablate our model in Tab. 3. Cross-attention
conditioning and full disentanglement outperform the other
approaches, with a marked improvement in realism (FID)
attributable to both of these factors.

Visualizing the latent space. A side advantage of having
a disentangled model is that we are able to manipulate the
reconstruction results in predictable ways. In Fig. 8, we
swap in different appearance codes, while keeping the shape
code constant, and vice versa. This provides evidence that
a disentangled latent space has been learned correctly.
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Figure 4. Comparison of co-reconstruction methods, displaying the seen and unseen sides of the cars. Our model produces sharper
reconstructions than EG3D [5] and CodeNeRF [21], which is particularly noticeable at the wheels and handles.

Single-instance reconstruction Multi-instance co-reconstruction
Seen side Unseen side Front Seen side Unseen side Front

Figure 5. Comparison of single-instance reconstruction (left) with multi-instance co-reconstruction (right) for our model, displaying the
seen and unseen sides of the cars (interpolation vs extrapolation). While NeRF-like reconstruction can render the seen side plausibly, the
co-reconstruction model can extrapolate by learning shape and appearance priors, such as symmetry, smoothness, and part colors.
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Ground-truth Ours CodeNeRF Ground-truth Ours CodeNeRF

Figure 6. Co-reconstruction results on the ShapeNet dataset. We display the ground-truth image alongside the rendered images from our
model and CodeNeRF [21], for test frames from the unseen side of the car or chair, testing the ability of the models to extrapolate and learn
shape and appearance priors. Our model produces noticeably sharper and more detailed reconstructions than CodeNeRF [21].

Figure 7. Qualitative results for novel instance reconstruction from 5 input images. The overall shape and texture is recovered, despite the
model never having seen the instances during training.

Figure 8. Swapping in different appearance codes for a constant shape code (top) and vice versa (bottom). The original instance is on the
left. The learned latent space disentangles shape and appearance effectively, allowing us to manipulate them in isolation.

5. Discussion and Conclusion

Limitations. One limitation of our model is that it is
likely to be most beneficial for objects with significant
structure, especially those with symmetries. In contrast, the
model may learn weaker priors for less structured objects
like trees, since their geometries are less predictable. An-
other limitation is that the model requires approximate in-
stance segmentations for the category, so a pre-trained seg-
mentation network is needed. While many high-quality seg-
menters are available for vehicles, they may be less accessi-
ble or lower quality for other categories. Finally, the latent
code memory requirements scale linearly with the number
of instances, as does the training time. While this is not
excessive, an autoencoding approach may be more appro-
priate as the dataset size is scaled up further.

Conclusion. We have proposed a method for 3D recon-
struction and novel-view synthesis that learns shape and ap-
pearance priors from glimpses of the real world. We use a
co-reconstruction setting to learn these priors for a single
category and demonstrate that the model learns helpful ge-
ometric and visual cues, such as symmetries, smoothness,
and part colors, which cannot be derived from a single in-
stance in isolation. We believe that this setting is best suited
for scaling up the learning of reconstruction priors, because,
despite their limited range of views, casual recordings of the
real world are a plentiful source of multi-view observations.
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