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Abstract

Cross-scene generalizable NeRF models, which could
directly synthesize novel views using several source views
of unseen scenes, are gaining prominence in the NeRF field.
Discovering the potential signal of emerging capabilities
in existing methods, we draw a parallel between BERT’s
“drop-and-predict” Masked Language Model (MLM) pre-
training and novel view synthesis (NVS) in generalizable
NeRF. In this work, we pioneer the scaling up of NVS as
an effective pretraining strategy in a multi-view context.
To bolster generalizability in pretraining, we incorporate
a large-scale, minimally annotated dataset and proportion-
ally increase the model size, revealing a neural scaling law
akin to that observed in BERT. We also introduce innova-
tive hardness-aware training techniques to enhance robust
feature learning. Our model, named “NPS”, demonstrates
remarkable generalizability in both zero-shot and few-shot
novel view synthesis. It further shows emergent capabilities
in downstream tasks like few-shot multi-view semantic seg-
mentation and depth estimation. Significantly, NPS reduces
the necessity of training separate models for each task, un-
derlining its versatility and efficiency. This approach sets
a new precedent in the NeRF field, and highlights the vast
possibilities opened up by scaling up generalizable novel
view synthesis.

1. Introduction

Neural Radiance Field [23] (NeRF) has achieved remark-
able success on synthesizing novel views given multi-
view source images. Recently, generalizable NeRF mod-
els [4, 31, 38, 39, 45, 49] mark a shift from per-scene
fitting to efficient transformer-based ’feedforward’ gener-
ation. Among them, [4, 38] demonstrated two interesting
properties: improved few-shot learning ability, indicating
enhanced generalization capabilities in data-limited scenar-
ios, and the emergence of depth awareness through self-
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Figure 1. If we treat each view as a “word token”, the train-
ing of the generalizable NeRF model is similar to Masked Lan-
guage Model (MLM) pretraining of BERT. However using such
MLM training in multi-view scenarios is challenging in deciding
1) whether data scaling helps, 2) where to sample masked view
and source views, and 3) what downstream tasks can address.

attention without explicit depth training.
Exploring these properties as emergent capabilities,

which is typical of Large Language Models (LLMs) de-
veloped through extensive training, reveals significant par-
allels between the training methodologies of generalizable
NeRF and LLMs like BERT [6]. As in Figure 1, in novel
view synthesis, if we treat each view as a “word token”,
predicting omitted target view using source views aligns
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with the “drop-and-predict” mechanism of the “Masked
Language Model” (MLM) adopted in BERT’s pretraining.
Such a simple meta-training strategy in language tokens has
successfully endowed BERT with robust few-shot learning
and emergent behavior on multiple language downstream
tasks. Therefore, the parallel prompts a compelling ques-
tion: Could the training approach of novel view synthesis
used in generalizable NeRF model, serve as a mirror of
MLM concept in vision domain? It means that after suffi-
cient large-scale training, the model can easily adapt to mul-
tiple downstream vision tasks, in a manner akin to BERT’s
widespread use in natural language understanding.

The concept of MLM is not new to vision domain.
A similar “drop-and-predict” pretraining strategy has been
developed to reconstruct the masked image patches in
Masked Autoencoder (MAE) [13] in 2D vision, or to re-
cover masked point cloud based on partial observations in
3D vision [17, 24]. However, these extensions primarily
focus on extracting image-level features or 3D small-scale
local neighboring information. In contrast, novel view syn-
thesis, a distinct instantiation of MLM on a novel multi-
view level, leverages a broader range of views, rather than
just a small, localized area, to predict new views. Despite
its potential to significantly enhance understanding of geo-
metric structures and global scene context, as has also been
noted in [4, 38], this multi-view level MLM model remains
largely under-explored.

Despite the promise, challenges persist to develop novel
view synthesis as an effective multi-view level MLM pre-
training: ➊ Whether data scaling helps: The emergent few-
shot learning ability of BERT relies heavily on large-scale
training, a scale not yet fully explored in current generaliz-
able NeRF models. The curse of dimensionality is a major
issue with multi-view data. It remains unclear whether sim-
ply scaling up the volume of data will enable the emergence
of advanced capabilities, as seen in 1D LLMs and 2D vi-
sion models. Meanwhile, the amount of data required for
effective generalizable pretraining also remains unknown.
➋ Where to sample masked view and source views: In lan-
guage models, each word token has a well-defined position
within a sequence. Similarly in 2D vision, an analogical
structure exists in the form of a 2D grid. However, in multi-
view scenarios, defining the position of the masked “view
token” is more complex due to the additional dimensions
involved. Meanwhile, deciding which source views to use
for predicting adds complexity to the task. ➌ What down-
stream tasks can address: In the context of multi-view pre-
training, apart from depth estimation, which has shown po-
tential in preliminary studies [28], it’s uncertain what other
downstream tasks could be effectively addressed. For in-
stance, the feasibility of performing semantic segmentation
without prior exposure to semantic information is yet to be
determined.

In this paper, we tackle the outlined challenges through
three main explorations. First, Model and Data Scaling.
We employ the state-of-the-art generalizable NeRF model,
GNT [38], as the foundation framework for investigating
scalability. The training data is augmented through the inte-
gration of the latest OmniObject3D dataset [41]. We dis-
cover that continuous data scaling necessitates a propor-
tional increase in model size, revealing a neural scaling law
in generalizable NeRF similar to that observed in BERT.

Second, Hardness-Aware Sampling Strategies. To
enhance the model’s generalizability, we adopt hardness-
aware sampling strategies during pretraining. This involves
progressively decreasing the number of source views, in-
creasing the distance between target and source views, and
using non-regular sampling patterns. Such strategies grad-
ually add complexity to the training process, fostering the
model’s capacity to learn robust features across diverse data
scenarios.

Third, Exploring NeRF-Pretrained Features. Besides
directly evaluating the performance of the generalizable
NeRF pretraining through novel view synthesis, our pri-
mary interest lies in uncovering the emergent capabilities
of these pretrained features. This is achieved by applying
them to various downstream tasks. A notable discovery
is that our model excels in few-shot multi-view semantic
segmentation, even without specific pretraining for seman-
tic information. This surprising performance surpasses that
of models explicitly designed for this task, suggesting that
NeRF pretrained models possess an innate ability to com-
prehend and bridge the semantic gaps through the analysis
of multi-view 3D world observations.

Our main contributions could be summarized as follows:

• We introduce NeRF as Pretraining at Scale (NPS) and for
the first time, demonstrate that paralleling the MLM pre-
training in BERT, generalizable novel view synthesis can
be effectively scaled up as a pretraining task in multi-view
scenario, pioneering the application of multi-view MLM
techniques and setting a precedent for future research.

• To scale up generalizable NeRF, we incorporate a larger
dataset with minimal annotations and scale up the model
size accordingly in the pretraining stage, revealing a neu-
ral scaling law in generalizable NeRF akin to that ob-
served in BERT. We also introduce hardness-aware train-
ing techniques to guarantee robust feature learning.

• Going beyond assessing generalizable NeRF pretraining
through both zero-shot and few-shot novel view synthe-
sis, we crucially evaluate the emergent capabilities of
NeRF pretrained features in downstream tasks, including
multi-view semantic segmentation and depth estimation
in a few-shot setting. NPS could outperform specialized
models, underscoring the potential of NeRF pretrained
models to bridge the semantic gap through multi-view ob-
servations alone.
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2. Related Works
Generalizable NeRF NeRF needs to be trained from
scratch for each target scene, with no prior knowledge ex-
tracted and shared among scenes, which severely reduces
the efficiency of scene reconstruction and novel-view syn-
thesis. We can differentiate between two key approaches for
generalizing across scenes. One line of work [14, 34, 48] is
often implemented via local conditioning, where the coordi-
nate input to the scene representation MLP is concatenated
with a locally varying feature vector, stored in a discrete
scene representation, such as a voxel grid [26]. PixelNeRF
[48] leverages the volume rendering framework, where en-
coded image features are aggregated over multiple views,
and an MLP produces color and density fields that are ren-
dered as in NeRF. GRF [34] uses a similar framework, with
an additional attention module that reasons about the vis-
ibility of 3D points in the different sampled input images.
Recent advances [4, 30, 32, 38, 39] adopt transformer-based
networks with epipolar constraints for novel view synthesis
in “feedforward” fashion. IBRNet [39] introduces trans-
former networks across the ray samples that reason about
visibility. Light Field Networks [30] optimize an MLP to
directly encode the mapping from an input ray to an out-
put color (the scene’s light field), enabling single-evaluation
rendering. GNT and its variant [4, 38] use a pure, unified
transformer-based architecture to reconstruct NeRFs, where
the view transformer aggregates information from epipolar
lines on the neighboring views, and ray transformer aggre-
gates the feature along the ray to obtain the final rendering.

MLM Pretraining in Language and Vision Masked
Language Model (MLM) pretraining has emerged as a piv-
otal technique, synergizing the domains of natural lan-
guage processing [6, 20, 29, 35, 43] and computer vision
[9, 13, 17, 24, 33, 40]. This approach, exemplified by mod-
els like BERT [6] in language and its visual counterparts,
leverages the concept of masking key elements in data (text
or visual features) and learning to predict them. In com-
puter vision, this technique has been adapted to enhance
understanding in both 2D and 3D spaces. In 2D vision
[9, 13], MLM pretraining aids in extracting intricate fea-
tures from images, facilitating tasks like object detection
and image segmentation. In the 3D domain [17, 24], this ap-
proach is instrumental in understanding spatial relationships
and depth perception, crucial for applications in robotics
and augmented reality. Compared to those models, our ap-
proach is the first model to develop novel view synthesis
as a new instantiation of MLM at the multi-view level, and
explores its emergent capacities for geometric and semantic
awareness after large-scale training.

Multi-view Feature Learning with NeRF The success
of the NeRF in novel view synthesis has inspired re-

searchers to develop it on multi-view feature learning and
image understanding tasks [8, 12, 18, 28, 37, 47, 50]. Vol-
Recon [28] proposes a new pipeline for generalizable im-
plicit reconstruction that produce detailed surfaces. NeRF-
SOS [8] conducts exploration of self-supervised learning
for object segmentation using NeRF for complex real-world
scenes. [12, 18, 37, 50] learn high-level semantic under-
standing with the NeRF structure. [47] proposes a unified
framework for learning generalizable NeRFs from distilling
pretrained 2D vision foundation models. Different from ex-
isting methods, our NPS explores the potential of scaling
simple generalizable novel view synthesis as a pretraining
task and demonstrates its representation learning capability
on downstream tasks.

Large-Scale Datasets The acquisition of large-scale, re-
alistic 3D datasets is costly and challenging. Commonly
used datasets like ShapeNet [1] and ModelNet40 [42] pri-
marily consist of synthetic CAD models. Recent contri-
butions such as 3D-FUTURE [11] and ABO [3] introduce
high-quality CAD models, yet the difference between syn-
thetic and real-world objects remains a challenge. Photo-
realistic datasets like DTU [15] and BlendedMVS [46] are
limited in scale and category diversity. ScanObjectNN [36]
offers real-world point clouds but with incomplete and
noisy data. Google Scanned Objects [7] and AKB-48 [19],
while detailed, have a narrow semantic range. CO3D [27]
offers multi-view images of 15k objects, yet it suffers from
varied quality and limited object categories. The latest Om-
niObject3D dataset excels with 6k professionally scanned
3D objects accompanied by high-quality multi-view pho-
tographs across 190 categories, making it versatile for
NeRF models.

3. Method

Overview. As shown in Figure 2, our whole framework is
composed of two stages: pretraining on multi-view images
and fine-tuning on downstream tasks. During pretraining
stage, the model is trained with novel view synthesis task.
During fine-tuning stage, we add task-specific head to the
pretrained NPS model, and fine-tune the whole model with
both novel view synthesis and downstream task. A distinc-
tive advantage of NPS model lies in its unified architecture,
which is seamlessly adaptable across diverse tasks. It re-
quires minimal customization between the pretrained and
final downstream architectures.

3.1. Preliminary

The Generalizable NeRF Transformer (GNT) [38] is a state-
of-the-art, transformer-based architecture for generalizable
NeRF. It comprises two stages: the “view transformer” and
the “ray transformer”. The view transformer first aggregates
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Figure 2. Overall pretraining and fine-tuning procedures for NPS. Apart from output layers, the same architectures are used in both
pretraining and fine-tuning. The same pretrained model parameters are used to initialize models for different downstream tasks. During
fine-tuning, all parameters are fine-tuned.

information across epipolar lines from neighboring views to
predict aligned features for each 3D point. Given N source
images {Ii ∈ RH×W×3}Ni=1, for each point x ∈ R3 on a
ray emitted from the target view, it operates as follows:

F(x,θ) = V-Trans(F(Π1(x)), ...,F(ΠN (x))), (1)

where Πi(x) projects point x onto the i-th image plane Ii,
and F, a small U-Net-based CNN, interpolates features at
the projected image point. These multi-view aggregated
features are then processed by the ray transformer. Then
an MLP is employed to map them to RGB colors:

C(r) = MLP ◦ R-Trans(F(x1,θ), ...,F(xM ,θ)). (2)

Here, {x1, ...,xM} are points along ray r. We choose
GNT as our backbone due to its impressive performance
and its inherently scalable nature, though our pretraining
techniques can be generalized to other transformer-based
NeRFs [4, 16, 25, 32].

3.2. Pretraining NPS

Scaling Pretraining Data The emergent learning capa-
bilities of BERT rely extensively on large-scale training, a
magnitude not fully explored in current generalizable NeRF
models. Previous approaches have predominantly oper-
ated within the confines of small-scale experimental setups.
Standard datasets such as the LLFF [22], Google Scanned
Objects [7], Spaces dataset [10], RealEstate10K [51], and
DTU [15] have been the cornerstones of training data for
these models.

The recent emergence of large 3D datasets has signifi-
cantly expanded the scale and variety of available training
data. Among them, the Omniobject3D dataset is a prime

example, featuring 6,000 professionally scanned 3D objects
accompanied by high-quality multi-view images across 190
categories. In an effort to mirror the large-scale training
approach of BERT and investigate potential emergent capa-
bilities, we integrate the Omniobject3D dataset into our pre-
training regime. This represents a notable departure from
the traditionally constrained scope of generalizable NeRF
models.

Scaling Model Size NPS builds upon the current SOTA
of generalizable NeRF, GNT [38], a pure transformer-based
network able to synthesize novel views from a set of source
views. The natural scalability of GNT’s transformer net-
work facilitates experiments with varying model sizes, and
as we expand the training data, we observe a parallel need
to scale up the model size.

Through systematic experiments, we find that the perfor-
mance of GNT improves significantly with the concurrent
scaling of data and model size, suggesting that there may
be a deeper, underlying principle at play. This trend, de-
picted in Figure 3, resembles neural scaling laws observed
in language models like BERT, which not only reinforce the
importance of large-scale data in training but also highlight
the necessity of larger model capacities to fully exploit this
data. The existence of a neural scaling law for generalizable
NeRF pretraining opens up exciting avenues for future re-
search. It encourages us to consider how we might further
optimize the balance between data scale and model size to
push the boundaries of what is achievable in 3D vision and
rendering.

Hardness-aware Training Strategies We observe that
large-scale multi-view datasets exhibit a clustering nature
due to different views of the same scene, and even differ-
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Figure 3. Neural scaling law founded in the pretraining of general-
izable NeRF with scaling pretraining data and scaling model size.

ent scenes, will bear natural scene similarity. These char-
acteristics can significantly complicate the training process,
as the models must learn to generalize across a wide range
of data distributions. To tackle this issue, we propose a set
of hardness-aware training techniques that incrementally in-
troduce complexity during the training process, to enhance
the model’s ability to learn robust features across diverse
data scenarios. As shown in Figure 4, this is achieved
through the following strategies:

1) Gradually Decreasing Source Views: In the initial
stages of training, the model is provided with a larger num-
ber of source views (typically 10, as in the standard GNT
setup). Over time, we reduce this number to as few as 2
source views, forcing the model to make more accurate pre-
dictions with less information, which is a harder task that
promotes better generalization, thus helping the network
generalize to sparse scenes and few-shot settings.

2) Gradually Increasing View Distance:Given the camera
pose of the target view and source view, the view distance is
computed based on the camera locations. We start by train-
ing the model with source views that are close to the target
view, which provides a simpler learning task. As training
progresses, we increase the distance between the source and
target views, thereby introducing more complexity and en-
couraging the model to learn more generalizable features.

3) Non-Regular Sampling of Source Views: Instead of
selecting the nearest source views, which may lead to over-
fitting on specific view arrangements, we employ a uniform
sampling strategy. This method ensures that the model is
exposed to a more varied set of perspectives, further en-
hancing its ability to generalize.

The implementation of these hardness-aware training
techniques is carefully calibrated to maintain a balance be-
tween the model’s capacity and the complexity of the data.
By incrementally adjusting the training difficulty, we ensure
that the model is not overwhelmed by the complexity at the
outset, which could hinder learning.

By employing these strategies, we aim to harden the
training process in a controlled manner. The expected out-
come is a model that not only performs well on the training
data but also exhibits improved generalization to new, un-

seen data.

Figure 4. Different from the sampling strategy of GNT (top left
corner), our hardness-aware sampling strategies could harden the
training process and force the model to adapt and learn more ef-
fectively.

3.3. Fine-tuning NPS

The ray transformer in GNT plays a crucial role in creating
a flexible framework suitable for downstream tasks in multi-
view settings. Its ability to aggregate features along a ray,
utilizing the self-attention mechanism, provides NPS with
the versatility to handle outputs from diverse domains. This
functionality enables the use of distinct ray transformers for
different downstream tasks, eliminating the necessity for
extensive task-specific architectural changes and making it
possible to render novel views along with their correspond-
ing labels across various domains, such as depth maps and
semantic maps. By leveraging multi-view source images,
NPS circumvents the necessity for ground truth input from
the target view. This approach not only simplifies the train-
ing process but also enhances the robustness of the model
to the intricacies inherent in 3D vision tasks.

For each unique downstream task, NPS’s architecture is
designed to be augmented with a task-specific ray trans-
former block, which is more lightweight compared to the
rendering ray transformer. This design choice ensures that,
despite its adaptability, the computational load does not
significantly increase, maintaining efficiency in the frame-
work’s operation. The block could be seamlessly integrated
into the existing framework, allowing for a unified approach
to fine-tuning. The process involves end-to-end training,
where all parameters of NPS are adjusted simultaneously
to optimize performance for novel view synthesis and the
downstream task at hand.
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4. Experiments

4.1. Pretraining Cross-Scene Generalizaiton

4.1.1 Implementation Details

Training Details As in the right subfigure in Figure 3, we
observe a convergence of performance after scaling up the
model size. To balance between the model size and com-
putational resources and facilitate the training process, we
opted for a scaled-up version of the GNT model with 1.9M
parameters. This model configuration includes 8 blocks for
both view transformer and ray transformer, and a latent di-
mension of 768 for the MLP layer. Please refer to our sup-
plementary material for more details.

Setting Following [4, 38], we compare our NPS with
state-of-the-art generalizable NeRF under both zero-shot
and few-shot novel view synthesis. For zero-shot setting,
the pretrained model is directly evaluated on an unseen
scene for novel view synthesis. For few-shot setting, the
pretrained model is first fine-tuned with a few observed
views (as few as 3) from the target unseen scene, and then
applied to the target scene.

Baselines To evaluate the novel view synthesis perfor-
mance, we compare our method with existing generalizable
NeRF models, including PixelNeRF [49], MVSNeRF [2],
IBRNet [39], GNT [38], GPNR [31], and GNT-MOVE [4].

Datasets (1) During the pretraining stage, besides the five
training datasets of GNT, including Google Scanned Ob-
ject [7], RealEstate10K [51], Spaces dataset [10], and real
scenes from handheld cellphone captures [22, 39], used
in [4, 38, 39], we also incorporate the multi-view im-
ages from large-scale dataset Omniobject3D [41], which
comprises 6,000 3D objects scanned by professional de-
vices in 190 categories. (2) Testing Datasets are the com-
mon NeRF benchmarks including Local Light Field Fusion
(LLFF) [22] and NeRF Synthetic dataset [23].

4.1.2 Zero-Shot Generalization

Note that we incorporate the hardness-aware training strate-
gies in the training, which pose more training challenges for
generative novel view synthesis. For example, in the later
training stage, the model is enforced to reconstruct a novel
view from only two far-away source views, which may ini-
tially impede performance. However, as evidenced in Table
1, our NPS model still excels in zero-shot generalization,
particularly on the NeRF Synthetic dataset. This perfor-
mance underscores the benefit of scaling up pretraining for
enhanced generalization. This trend is also evident in the
qualitative results displayed in Figure 5.

Models Local Light Field Fusion (LLFF) NeRF Synthetic

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF 18.66 0.588 0.463 22.65 0.808 0.202
MVSNeRF 21.18 0.691 0.301 25.15 0.853 0.159
IBRNet 25.17 0.813 0.200 26.73 0.908 0.101
GPNR 25.72 0.880 0.175 26.48 0.944 0.091
GNT 25.86 0.867 0.116 27.29 0.937 0.056
GNT-MOVE 26.02 0.869 0.043 27.47 0.940 0.056

Ours 26.17 0.873 0.104 28.41 0.951 0.052

Table 1. Zero-shot generalization performance on NeRF Synthetic
dataset and LLFF dataset.

4.1.3 Few-Shot Generalization

We fine-tune our pretrained models on two datasets: the
LLFF dataset, using subsets of 3, 6, and 10 forward-facing
images, and the NeRF Synthetic dataset, using 6 or 12 360◦

images. During the inference phase, we utilize the same
views from the finetuning stage as source views, which not
only ensures fairness in our evaluation but also presents a
significant challenge, testing the model’s capability to gen-
eralize from limited data. The results are reported in Table
2. Our NPS outperforms all the baselines in all the few-
shot settings. It is noteworthy that NPS is especially help-
ful in sparse scenes: 3-shot, 6-shot on LLFF and 6-shot on
Blender, which benefits from the hardness training strate-
gies in the pretraining stage.

4.2. Few-Shot Downstream Task Generalization

Our experimental approach evaluates pretrained NeRF fea-
tures in downstream tasks, particularly under few-shot con-
ditions, using labels from only a few scenes. This choice
is motivated by the practical difficulties in acquiring exten-
sive annotations. Such a setup more accurately reflects real-
world conditions and facilitates a thorough assessment of
the pretrained NeRF models’ emergent capabilities in data-
scarce environments.

Datasets To evaluate downstream tasks, we use a large
labeled RGB-D dataset, ScanNet [5], which contains 2.5M
views in 1513 scenes annotated with 3D camera poses,
surface reconstructions, and semantic segmentation. We
choose 60 different scenes as training datasets and 10 un-
seen novel scenes as test datasets to evaluate generalizabil-
ity in real data.

4.2.1 Multi-View Semantic Segmentation

Baselines The most related baseline is Semantic-
Ray [18], a generalizable semantic field in real-world
scenes. To construct more baselines to compare the
downstream performance, following [18], we add the
semantic head same as the one in Semantic-NeRF on
generalizable NeRF models, including MVSNeRF [2]
and NeuRay [21]. In addition, we also compare with
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Figure 5. Qualitative results for the unseen cross-scene rendering.

Models
Local Light Field Fusion (LLFF) NeRF Synthetic

3-shot 6-shot 10-shot 6-shot 12-shot

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF 17.54 0.543 0.502 19.00 0.721 0.496 20.01 0.755 0.333 19.13 0.783 0.250 21.90 0.849 0.173
MVSNeRF 17.05 0.486 0.480 20.50 0.594 0.384 22.54 0.673 0.309 16.74 0.781 0.263 22.06 0.844 0.185
IBRNet 16.89 0.539 0.458 20.61 0.686 0.316 23.52 0.789 0.226 18.17 0.812 0.234 24.69 0.895 0.120
GNT 19.58 0.653 0.279 22.36 0.766 0.189 24.14 0.834 0.133 22.39 0.856 0.139 25.25 0.901 0.088
GNT-MOVE 19.71 0.666 0.270 22.53 0.774 0.184 24.61 0.837 0.132 22.53 0.871 0.116 25.85 0.915 0.074

Ours 20.02 0.673 0.263 22.78 0.789 0.174 24.79 0.866 0.111 22.78 0.880 0.111 25.97 0.926 0.068

Table 2. Comparison of NPS with existing generalizable NeRF methods in a few-shot setting.

Semantic-NeRF [50], which is not generalizable and needs
per-scene optimization.

Metrics We use mean Intersection-over-Union (mIoU),
average accuracy, and total accuracy for evaluating segmen-
tation quality, and PSNR, SSIM, and LPIPS metrics for as-
sessing rendering quality.

As illustrated in Table 3, our model significantly sur-
passes all baseline models in both novel view synthesis
and semantic segmentation tasks. Notably, when compared
to Semantic-Ray, which utilizes a pretrained NeuRay [21]
model for initialization, our approach, which incorporates
scaled pretraining and a hardness-aware strategy, demon-
strates markedly superior generalization capabilities. In
Figure 6, comparing with the strongest baseline Semantic-
Ray, our NPS has better rendering quality and clearer se-
mantic segmentation.

4.2.2 Multi-View Depth Estimation

Baselines Our model is benchmarked against two gener-
alizable NeRF models: VolRecon [28], which is trained for
rendering and depth, and MVSNeRF [2], which is enhanced
with an additional depth head akin to the semantic head. We

Method PSNR↑ SSIM↑ LIPIPS↓ mIoU↑ Total Acc↑ Avg Acc↑
Semantic-NeRF 25.07 0.797 0.196 91.24 97.54 93.89

MVSNeRF+Semantic Head ft 23.84 0.733 0.267 55.26 76.25 69.70
NeuRay+Semantic Head ft 27.22 0.840 0.138 77.48 91.56 81.04
Semantic-Ray ft 29.27 0.865 0.127 91.08 98.20 93.97
Ours ft 29.53 0.873 0.119 93.12 98.46 95.26

Table 3. Quantitative comparison on scene rendering and multi-
view semantic segmentation on ScanNet.

Method PSNR↑ SSIM↑ LIPIPS↓ AbsRel↓ RMSE↓
MVS2D – – – 0.112 0.257

MVSNeRF+Depth ft 22.01 0.701 0.352 0.196 0.448
VolRecon ft 15.31 0.572 0.593 0.145 0.319
Ours 23.26 0.754 0.312 0.119 0.249

Table 4. Quantitative comparison on scene rendering and multi-
view depth estimation on ScanNet.

also compare our model with the multi-view stereo model
MVS2D [44]. Given that MVS2D relies on ground-truth
target views for depth map generation and does not gener-
ate novel views, we use renderings from our NPS model as
the target view input for a fair comparison.

Predicting both the novel view and its corresponding
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Figure 6. Qualitative results for the multi-view semantic segmentation. The region without ground truth semantic labels is colored in white.

MVSNeRF+Depth ft VolRecon ft MVS2D Ours+Depth ft GTOurs+Depth ft

Figure 7. Qualitative results for the multi-view depth estimation. Each row corresponds to one test example. The region without ground
truth depth labels is colored in white.

depth map from existing source views poses a significant
challenge, as it requires inferring both rendering and ge-
ometric aspects. As demonstrated in Table 4, our NPS
model significantly outperforms other generalizable meth-
ods in both rendering and depth estimation, highlighting the
success of our pretraining strategies. It also achieves com-
parable results to MVS2D in depth estimation. Figure 7
further illustrates the effectiveness of our model, showcas-
ing depth estimations that closely match the ground truth
and visually appealing renderings of the novel views.

4.3. Ablation Studies

We report ablation analysis on our hardness-aware training
strategies. Due to the space limit, we defer them to the sup-
plementary. Overall, our studies suggest that though may
impede the novel view synthesis performance to some ex-

tent, they could contribute to the generalization of our NPS.

5. Conclusion
In this work, we draw inspiration from Masked Language
Model (MLM) pretraining in BERT, and propose to scale
up the generalizable novel view synthesis (NVS) training
objective of generalizable NeRF as a pretraining strategy in
multi-view scenario. Our approach, NeRF as Pretraining
at Scale (NPS), utilizing a large-scale, minimally annotated
dataset and a scaled-up model, not only enhances general-
izability in both zero-shot and few-shot novel view synthe-
sis, but also reveals emergence capabilities on downstream
tasks like depth estimation and semantic segmentation. This
breakthrough underscores NPS’s versatility and efficiency,
reducing the need for task-specific models and setting a new
benchmark in the NeRF field.
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