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Abstract

Recent advances in Neural Radiance Fields (NeRF) have
demonstrated promising results in 3D scene representa-
tions, including 3D human representations. However, these
representations often lack crucial information on the un-
derlying human pose and structure, which is crucial for
AR/VR applications and games. In this paper, we intro-
duce a novel approach, termed GHNeRF, designed to ad-
dress these limitations by learning 2D/3D joint locations of
human subjects with NeRF representation. GHNeRF uses
a pre-trained 2D encoder streamlined to extract essential
human features from 2D images, which are then incorpo-
rated into the NeRF framework in order to encode human
biomechanic features. This allows our network to simulta-
neously learn biomechanic features, such as joint locations,
along with human geometry and texture. To assess the effec-
tiveness of our method, we conduct a comprehensive com-
parison with state-of-the-art human NeRF techniques and
joint estimation algorithms. Our results show that GHN-
eRF can achieve state-of-the-art results in near real-time.
The project website: arnabdey.co/ghnerf.github.io.

1. Introduction

Developing a realistic virtual human model is pivotal for
achieving natural experiences in Augmented Reality (AR)
/ Virtual Reality (VR) applications and interactive games.
Moreover, creating custom photo-realistic virtual character
from a sparse set of 2D images is one of the core chal-
lenges for AR/VR applications. Traditionally, this process
has involved the use of elaborate multiview capture systems,
which incorporate extensive camera arrays and body mark-
ers [15, 34], to create human models with the underlying
skeleton structure. These conventional methods predom-
inantly utilize mesh representations, which are inherently
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Figure 1. In this work we propose GHNeREF, it can simultane-
ously learns both neural radiance fields and human features from
sparse images. (a) shows high quality novel-view renderings. (b)
shows generalizable human features (keypoints, dense pose, etc.)
estimated by GHNeRF. (c¢) present interactive tool to render free-
viewpoint videos of novel-view and human features.

constrained in terms of resolution and quality. The underly-
ing structures in these models are typically represented with
parametric Skinned Multi-Person Linear (SMPL) models
[22] derived from body marker positioning.
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Recent advancements in Neural Radiance Fields (NeRF)
have demonstrated remarkable potential in generating pho-
torealistic virtual human avatars from mere 2D images
[14, 21, 37]. However, existing NeRF-based approaches
fall short in providing critical structural biomechanical at-
tributes, crucial for various applications such as AR/VR,
3D animation, human performance analysis, and the medi-
cal field. To bridge this gap, we introduce a Generalizable
Human feature NeRF (GHNeRF), an end-to-end framework
for learning generalizable human NeRF with biomechanic
features. Human biomechanics refers to the study of hu-
man movement focusing musculoskeletal system, compris-
ing bones, muscles, ligaments, and joints [24]. Within
the scope of this paper, the term "biomechanical features’
specifically refers to the skeleton and joints integral to this
system. Deviating from previous methods such as Pixel-
NeRF [45], which used a 2D encoder to learn generalizable
NeRF for view synthesis, our approach utilizes 2D deep fea-
ture extractors to simultaneously learn human features with
generalizable NeRF models. Here, we demonstrate that it is
possible to learn 3D human features from 2D images using
the NeRF architecture. The GHNeRF predicts human fea-
tures, such as heatmaps, facilitating 2D/3D joint estimation
for novel views, which are applied to various downstream
applications. We highlight that while we focussed on the
Jjoint prediction, the architecture can be used to learn other
biomechanic properties, such as dense pose and body part
segmentation.

Our methodology adopts 2D encoders similar to previ-
ous methods [43, 45] aimed at generating pixel-aligned hu-
man features from images. For this purpose, we compare
two types of encoder inspired by previous state-of-the-art
pose estimation algorithms. GHNeRF determines heatmaps
corresponding to each joint, along with the color and vol-
ume density for each 3D query point. The input for the MLP
are pixel-aligned features from encoder, as well as view di-
rection. The heatmaps are generated using volume render-
ing similar to rendering color in NeRF. We use an efficient
and generalizable NeRF architecture as a backbone similar
to the one presented by Lin ef al. [21] that allows for near
real-time inference.

To evaluate GHNeRF, we present the result of keypoint
estimation tasks using two popular datasets. To our knowl-
edge, our method is the first to provide human biomechanic
features from NeRF. Our contributions are summarized as
follows.

* We introduce GHNeRF, a novel generalizable NeRF ar-
chitecture capable of accurately estimating 2D/3D human
keypoints.

* GHNeRF demonstrates the ability not only to predict hu-
man keypoints but also to estimate complex human fea-
tures, such as dense poses. This capability can also be
achieved through the distillation of SOTA pose estimation

algorithms.

* We provide a generalizable approach for predicting hu-
man feature, photometric, and geometric representations
from 2D sparse images, applicable in interactive, real-
time applications.

* We conduct extensive experimental analyses across vari-
ous types of human images using two distinct datasets to
validate the applicability and versatility of GHNeRF .

2. Releted works

The proposed GHNeRF uses sparse multiview images of
different humans to learn a generalizable NeRF represen-
tation that can also produce a consistent 3D human feature
without any prior supervision during inference time. In the
following, work related to this research will be discussed.

2.1. NeRF for 3D representation

In recent years, the NeRF-based method has gained signif-
icant popularity for the visual quality of 3D scene repre-
sentations. NeRF [26] represents 3D scenes using MLP by
mapping 3D coordinates and 2D view directions to density
and color. The original paper [26] and the following re-
search work [1, 2, 25, 30, 35] showed the effectiveness of
the neural field compared to other classical methods for rep-
resenting 3D and 4D scenes. The works [7, 21, 28, 44] ad-
dress the long training and inference time of the NeRF by
using faster sampling techniques, voxel representation, and
hash encoding. Another limitation of NeRF-based meth-
ods is that they are scene specific, PixelNeRF [45] showed
that NeRF models can be generalized by conditioned NeRF
on input image. More recently, FeatureNeRF [43] learned
deep features using pre-trained vision foundation models
for downstream applications such as semantic segmenta-
tion and key point transfer. Several methods [19, 38, 50]
extended the NeRF’s ability by learning scene properties,
for example, semantic segmentation of the scene. However,
most of the previous work focuses on scene features, such
as segmentation. Our work differs from them by learning
human biomechanic features with NeRF.

2.2. NeRF for human representation

In recent research, Hu et al. [14] generated genralizable
and animatable human NeRF models from a single input
image. Although they achieved great results, their method
relies on the SMPL parameters as input along with image,
which is difficult to obtain in a real-world scenario. Simi-
larly, GM-NeRF [5] used the SMPL model to learn a gen-
eralizable human NeRF model. Several works [16, 41, 46]
generated NeRF models of human in canonical T-pose (ex-
ample SMPL [23] T-pose) then map it to a posed space.
Similarly, [17, 33, 37, 40] uses pre-existing skeleton data or
pose estimator or information from the SMPL model [23]
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to reconstruct novel views or novel poses. As an exam-
ple, A-NeRF [37] employs off-the-shelf pose estimators to
initialize their model, while our generalizable method does
not require any pose initialization. In this paper, we predict
human biomechanic features, such as joint information, di-
rectly from 2D images without any supervision.

2.3. Human pose estimation

Human pose estimation has been a long-standing problem
in computer vision for decades. Most state-of-the-art ap-
proaches for 2D human pose estimation employ 2D CNN
architectures for a single image in a strongly supervised
setting [3, 6, 9, 13, 18, 29, 39]. For 3D pose estimation,
[27, 36] focus on end-to-end reconstruction by directly es-
timating 3D poses from RGB images without intermediate
supervision. [48] applies GCNs for regression tasks, espe-
cially 2D to 3D human pose regression. [31] demonstrates
that 3D poses in video can be effectively estimated with a
fully convolutional model based on dilated TCNs over 2D
keypoint sequences. Among these methods, [27, 29, 36, 39]
have first incorporated a person detector, followed by the es-
timation of the joints and then the computation of the pose
for each person — however the detection speed is propor-
tional to the number of people in the image. Bottom-up
methods such as [3, 6, 18] detect joints via heatmaps and as-
sociate body parts, but struggle with occluded or truncated
body parts. Our approach integrates an encoder with NeRF
to directly estimate heatmaps from 3D NeRF features, en-
hancing accuracy in predicting non-visible regions in 2D.

3. Method

We present GHNeREF, a unified framework for learning gen-
eralizable human features with the efficient NeRF architec-
ture. First, we present an introduction to NeRF and its gen-
eralizable variants. Then in Section 3.2, we outline the fea-
ture extraction process and explain how to learn human fea-
tures with NeRF in Section 3.3. Finally, we provide details
of keypoint extraction in Section 3.4 .

3.1. Preliminaries

Neural Radiance Fields (NeRF) learn 3D scene representa-
tions using a multilayer perceptron (MLP). The input to the
MLP consists of 3D coordinates = (z,y, z) and the view
direction d = (6, ¢). The outputs are color, ¢ = (r, g, b)
and density (o). It can be represented as: F'(z, d) — (c,0)
then volume rendering is used to generate the final pixel
colors from the output. To predict images, first, 3D points
are sampled along the rays r(t) = o + td passing through
each pixel, with o the camera center and d the direction of
the ray. The color and density of the samples are predicted
using an MLP as discussed before. The final color of the

pixel C of a camera ray r(t) = o+ td can be calculated as:

ty
co) = [ TOre@een.ad
tn
where T'(t) = exp(— fttn 7(r(s))ds). The function T'(t) de-
notes the accumulated transmittance along the ray from ¢,
to ¢, t, and ¢y is near and far bound of the ray. In practice,
the color C (r) is estimated by obtaining discrete samples
along the ray, and the integral is approximated using nu-
merical quadrature techniques.

In case of generalizable NeRF, the NeRF models are con-
ditioned on the input image I:

(T(’I, I) = go‘(xv f(I)TF(.L))
c(z,d,1) = g(v,d, f(I)ﬂ'(a:))a

where g, and g, are two MLPs that predict density and
color, f is an image encoder and 7 is a projection function
that projects x into the image plane using the known pose
and intrinsic. The image passes through an encoder to gen-
erate features, then for each query point z, the correspond-
ing pixel-aligned features [45] f(I)(,) are concatenated
with the positional encoding of the point before inputting
into the NeRF model. Similarly, ENeRF [21] extracts mul-
tiscale image features from a CNN- based encoder, and then
the encodings are also used as input and to create a cost vol-
ume. Given the cost volume, a 3D CNN generates a depth
probability volume, which is used to predict the depth prob-
ability of a pixel. ENeRF uses depth probabilities to sample
points close to the surface, resulting in fewer samples and
faster training and inference time.

2)

3.2. Feature extraction

We propose a new architecture to generalize human NeRF
with the underlying biomechanic features. The original
NeRF model predicts the color ¢ and the density o for each
query point z = (x,y,z), while the most generalizable
NeRF models are conditioned on input images. We take in-
spiration from previous generalizable methods [21, 43, 45],
and we use two different encoders: one to generate a human
feature and the other for multiscale image features similar
to [21]. Each query point is projected on the input im-
ages, and then the pixel-aligned image features from each
image are combined using a pooling operator [21] that is
denoted as fig = ¥(f1,..., fn) where fy represents the
feature of the N*" image. Multiscale features are also used
to generate voxel-aligned features similar to [21] denoted
by fuozel- Subsequently, we introduce a second encoder to
encode human features. It has been demonstrated that hu-
man features extracted from Transformer-based encoder [8]
pre-trained on ImageNet are more effective in generalizing
human pose estimation [42, 49] compared to CNN-based
features [10, 36]. In this work, we compare both types of
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Figure 2. Overview of the GHNeRF pipeline: Given an input image I, human features f, and multi-resolution image features f;,,, can
be extracted using a 2D image encoder and a 2D CNN respectively. Subsequently, fimg is used to form a cost volume for depth prediction.
The predicted depth is used for depth-guided sampling to reduce the number of samples along the ray. For each 3D sample point =
along the ray, we combine image and voxel features to input an MLP gn.rF, generating the intermediate NeRF feature V. rr. Finally,
the intermediate NeRF feature Vi.rr and the human feature fi are concatenated and fed into a smaller MLP gj, to produce heatmaps.
Furthermore, VnerFr and the view direction d are combined in another MLP g, to derive color c. The final pixel color and heatmaps are

generated using volume rendering technique.

encoders and select the vision transformer encoder [8] to
extract more effective features for human pose estimation.
Specifically, we use a pre-trained vision transformer to ex-
tract a higher-dimension feature vector h following [4]. For
each query point z, we combine all pixel-aligned human
features fj, = 1 (hy, ..., hy) from input images with a pool-
ing operator.

3.3. Learning human features with NeRF

Gerneralizable NeRF models predict color ¢ and o for any
query points, GHNeRF extends the generalizable NeRF
models to predict additional features, in this case hu-
man joint locations. Although we have extracted fea-
tures from images, we still need to incorporate them with
NeREF, in order to output 3D consistent human features from
NeRF. In this work, we learn intermediate NeRF features
VNerp(x,I) similar to [43]. Then we use a number of
small MLPs to predict other outputs from the intermediate
NeRF feature:

Vnerr(2,1) = gnerr (fimgs fooxel)
o(x,1) = go(VNerr(z, 1))
c(x,d, I) = g.(VNerr(z,I),d)
h(z,I) = gn(VNerr(w, 1), fn)-
The color is predicted using a smaller MLP g, that takes the
intermediate NeRF input feature Vy.rpr and the view di-

rection as input. An additional branch predicts human joint
locations as heatmaps h from NeRF features. We take inter-

3)

mediate NeRF features before outputting color and density
and concatenate with human feature f, and pass it through
a smaller MLP g;, that outputs heatmaps as feature vector
h € R’ where J is the number of joints. We can aggregate
these feature vectors along the rays similar to color using
volume rendering:

N

ﬁ(r) = ZTi(l —exp(—

i=1

7i04))hi, “4)

where h; = g (VNerr(z,I), fr) and Vyegr(z, I) denotes
intermediate NeRF features. The network is optimizing us-
ing a set of human images in a random pose and appear-
ance with known camera parameters. The proposed method
is optimized using photometric and feature loss. The pho-
tometric loss l.; is calculated using the mean squared er-
ror between the predicted and the ground-truth color. We
also add perceptual loss [pe,c to image patches similar to
[21]. Feature loss [j,q¢ is the mean square error between the
predicted feature and the ground-truth feature in this case
heatmaps. The final loss function can be represented as:

l= lcol + Aplperc + )\hlheat

where \,, A, weighting coefficients. During training, when
ground truth features are not present, our method represents
a student network, which can learn heatmaps through dis-
tillation of advanced heatmap-based pose estimation algo-
rithms. The pose estimation algorithm [3] acts as a teacher

2815



Ground Truth

SHREF

Neural Human Performer

ENeRF Ours+ResNet Ours+DINO

Figure 3. Qualitative comparison of generalization results on ZJU_MoCap unseen test sequence.

network with the ability to predict heatmaps, thus guiding
our student network in its heatmap prediction task.

3.4. Keypoints extraction

The 2D keypoint locations are estimated from the predicted
heatmaps generated by NeRF. We calculate the 2D key-
points in a similar way to OpenPose [3]. A Gaussian filter
is applied to the heatmaps, and then each channel is con-
verted to a binary map by applying a threshold. Connected
regions are created from binary maps, and the peak value
within that region is calculated. The pixel with the peak
value is then outputted as the 2D keypoint. To extract the
3D keypoints, we query sample points from a 3D volume
around the subject and extract a volumetric heatmap. The
3D keypoints are calculated from the volumetric heatmap in
a similar way as in the 2D keypoints.

4. Experimental Results

We conducted a thorough evaluation of the ability of our
model to learn human features, particularly to estimate hu-
man joint locations. We carried out extensive experiments
on two distinct datasets and compared our results with those
of other leading human NeRF techniques.

4.1. Experimental Setting

Datasets: We trained our model to be applicable to various
types of human image using two different datasets, namely
ZJU_MoCap [32] and RenderPeople [14]. Both datasets
are focused on humans and contain dynamic sequences
of different individuals performing various activities. The
ZJU_MoCap dataset contains real images, while the Ren-
derPeople dataset contains simulated images. ZJU_MoCap
includes 9 dynamic sequences (images, masks, camera pa-

rameters, and 2D/3D joint locations) of 9 different individ-
uals performing 9 different actions. We randomly divided
6 sequences for training and 2 for testing and removed one
sequence due to missing frame data. For RenderPeople, we
randomly chose 440 sequences for training and 60 for test-
ing.

Baseline: We predominantly compare GHNeRF with other
methods based on dynamic human NeRF. Although such
methods are generalizable, none are capable of generating
human features. We have extended ENeRF[21] to output
heatmaps by adding an additional output branch and re-
ported its performance as a baseline for the joint estimation
task.

Implementation details: We employ ENeRF as the base
generalizable NeRF architecture due to its efficiency and
generalizability, and proceeded to modify it to generate gen-
eralizable human features. We employed two distinct en-
coders, ResNet [12] and DINO [4], in accordance with the
most recent pose estimation techniques. In our experiments,
we set the number of input source views to 2. We im-
plemented our generalizable NeRF model using PyTorch.
We trained the models with an RTX 3090 GPUs, using
the Adam optimizer with an initial learning rate of 5e~%.
We halved the learning rate every 50k iterations, and the
model generally converged after about 200k iterations, tak-
ing about 18 hours. The weights of different losses are
Ap = 0.5 and A\, = 0.01. For more information on the
network architecture and other implementation details, see
the Supplementary Material.

Metrics: We employed five different metrics to evaluate the
predicted RGB image, heatmaps, and joint estimation qual-
ity. Peak Signal-to-Noise Ratio (PSNR in dB): To com-
pare the quality of the RGB reconstruction, the higher is
better; Structural Similarity Index (SSIM): To compare im-
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Figure 4. Qualitative result of keypoint estimation on ZJU_MoCap dataset.

age quality in the reconstructed image, the higher is better;
Learned Perceptual Image Patch Similarity (LPIPS) [47]:
the distance between the patches of the image, the lower
means that the patches are more similar; Mean Squared Er-
ror (MSE): Mean squared distance between ground truth
heatmap and predicted heatmap, lower the better; Percent-
age of correct keypoints (PCK): Measures whether the pre-
dicted keypoints and the true joint are within a certain dis-
tance threshold. We use PCK@0.2: Distance between the
predicted and true joint < 0.2X torso diameter.

4.2. Performance on novel view synthesis and joint
estimation

We compared our method with recent generalizable NeRF-
based methods on dynamic scenes, Table: 1 lists the quan-
titative result on ZJU MoCap dataset, which shows our
method achieves state-of-the-art performance, while addi-
tionally estimating human joints. To establish a baseline,

we incorporated an additional heatmap breach into ENeRF.
The experiments show that our method maintains the same
level of performance in novel-view synthesis compared to
state-of-the-art ENeRF [21] but performs significantly bet-
ter in joint estimation compared to the baseline ENeRF.
It also demonstrates that the human feature encoder offers
essential information about human features to more accu-
rately estimate heatmaps crucial for better joint estimation.
Figure 3 illustrates the qualitative outcomes of various ap-
proaches in ZJU _MoCap dataset. Our technique demon-
strates highly competitive results in novel-view synthesis
and notably outperforms SHREF [14] and the Neural Hu-
man Performer [20] in preserving intricate details..

In Figure 4, we have presented qualitative results of hu-
man joint estimation task using the ZJU_MoCap dataset.
We generated 25 distinct heatmaps representing different
keypoints, with each keypoint being highlighted by red
markers. We evaluated our approach using two different
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Method PSNR1+ SSIM1T LPIPS| MSEJ] PCK?
SHEREF [14] 26.37 0918 0.1023 - -
Neural Human
Performer [20] 25.76 0.906 0.148 - -
ENeRF [21] 31.48 0.965 0.0494 - -
ENeRF+Heatmap 31.48 0.965 0.050 0.0005 0.438
Ours+ResNet 31.20 0.963 0.054 0.0004 0.573
Ours+DINO 31.61 0.966 0.050 0.0003 0.691

Table 1. Quantitative comparison of generalization (unseen test set) on the ZJU_ MoCap dataset, evaluating all methods at 512 x 512
resolution. For these experiments, we adhered to the default configurations of SHERF, Neural Human Performer, and ENeRF.

Dataset PSNRt SSIM? LPIPS|, MSE| PCK?t Alpha Open GHNeRF GHNeRF
ZJUMOCap+Res 31.20 0.963 0.054 0.0004 0.573 Pose [ 1 0] Pose [%] +Res +DINO
ZJU MoCap+DINO | 31.61 0966  0.050  0.0003 0.691 _
RenderPeople+Res | 34.44 0992 00131 00012 0.521 PCKT | 0.647 0.632 0.573 0.691
RenderPeople+DINO | 34.75  0.992  0.0131  0.0005 0.502 MSE | 0.0013 0.0015 0.0004 0.0003

Table 2. Quantitative results of the proposed method in differ-
ent datasets. The results represent generalizable performance on
unseen scenes from the test set. Both datasets are evaluated on im-
ages with resolution 512 x 512.

Ground Truth Ours+ResNet Ours+DINO
2 2 )
3 3 &
@ |
3 ’ $,! f 5,! ‘5!
al al 1 §

Heatmaps

Keypoints
: - rr;":‘)
S

Skeleton

Figure 5. Qualitative result of keypoint estimation on RenderPeo-
ple dataset.

types of dataset and reported quantitative results in Table 2.
In both datasets, the DINO features showed superior per-

Table 3. Quantitative results of keypoint estimation compare to
other pose estimation algorithms. We used same ZJU_MoCap test
set images of resolution 512 x 512 to evaluate all three methods.

formance in predicting human features as heatmaps. We
validate our approach using both real images and simulated
images to demonstrate its robustness. Qualitative results
of novel-view synthesis and joint estimation on RenderPeo-
ple dataset are presented in Figure: 5. To gauge the effec-
tiveness of our proposed method for joint estimation, we
compared it with other state-of-the-art pose estimation al-
gorithms and presented the findings in Table 3. Our ap-
proach with both ResNet and DINO encoder outperform Al-
pha Pose and Open Pose, achieving superior PCK and MSE
scores. More details, experiments, and results are provided
in the Supplementary Material.

Dataset PSNRT SSIM{ LPIPS| MSE |
ZJU MoCap+Res | 37.22 09885 0.0190 0.0039
ZJU_MoCap+DINO | 36.51 0.9877 0.0205 0.0019

Table 4. Quantitative results of the dense pose estimation on
ZJU_MoCap dataset. Here, MSE is the mean squared error be-
tween the predicted and estimated Continuous Surface Embed-
dings for Dense Pose.

4.3. Performance on dense human pose estimation

In order to showcase GHNeRF s ability to learn other gen-
eralizable human features, we conducted additional experi-
ments to predict dense pose. During training, we use Dense-
Pose [11] to generate ground-truth Continuous Surface Em-
beddings of ZJU_MoCap dataset. We used the same archi-
tecture without any modification to learn Continuous Sur-
face Embeddings as human feature from 2D images, which
can be used for dense pose estimation. We provide the quan-
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titative results in Table 4. The results show that our model
can effectively estimate dense pose with different encoders,
e.g., ResNet, and DINO, and we find that the DINO encoder
performs better compared to ResNet for dense pose esti-
mation similar to joint estimation task. The qualitative re-
sults of the estimation of dense pose are presented in Fig. 6.
Both qualitative and quantitative findings demonstrate that
GHNEeRF is capable of learning other generalizable human
features beyond just keypoint estimation. This experiment
validates our assumption that GHNeRF can learn different
human features using the same model architecture.

Ours+DINO

Ground Truth

Ours+ResNet

RGB

Surface embedding

Absolute error

Qualitative result of dense pose estimation on
ZJU_MoCap dataset. The absolute error demonstrates the effec-
tiveness of our model with DINO feature in learning dense pose.

Figure 6.

4.4. Rendering speed

Inference time of various methods in novel view synthesis
and keypoint estimation is illustrated in Table 5. We com-
pared the proposed method with the baseline approach (EN-
eRF with an extra heatmap branch). While the utilization
of the DINO encoder may result in longer inference times,
it surpasses other methods by providing superior joint es-
timation. It may be feasible to attain faster inference time
by employing a custom Visual Transformer-based encoder
and optimization while maintaining the same level of per-
formance. All experiments were performed on a single RTX
3090 GPU using the PyTorch implementation. We are con-
fident that by optimizing and fine-tuning the code, the ren-
dering time can be improved in the future.

Method FPS
ENeRF 31.10
ENeRF+Heatmap | 27.81
Ours+ResNet18 11.22
Ours+ResNet34 10.49

Ours+DINO 4.08

Table 5. Average rendering speed in FPS(Frame per second). EN-
eRF+Heatmap represent the baseline method.

4.5. Ablation study

In Table 6, we present the impact of different encoder ar-
chitectures on the human joint estimation task. We have
chosen two different encoder architectures inspired by pre-
vious state-of-the-art pose estimation algorithms, namely
ResNet [12] and DINO [4]. Both methods produced com-
parable results in terms of visual quality, but DINO outper-
formed significantly in the joint estimation task.

Encoder PSNRT SSIMt LPIPS| MSE| PCK?T
ResNet34 Pre [12] 31.53 0.965 0.049  0.0005 0.454
ResNet34 Fine [12] 31.20 0.963 0.054  0.0004 0.573

DINO Pre [4] 31.28 0.964 0.051 0.0003  0.682
DINO Fine [4] 31.61 0.966 0.050  0.0003 0.691

Table 6. Ablation study for keypoint estimation. We show a com-
parison between different types of encoder for keypoint estimation
task. We evaluated both models on ZJU_MoCap dataset. Pre rep-
resents Pre-trained and Fine denotes Finetune during the training.

5. Conclusion

In this paper, we present GHNeRF an end-to-end frame-
work to learn generalizable NeRF to estimate human
biomechanic features from 2D images. Through extensive
experiments, we have established that our approach can be
successfully applied in a variety of settings. We addressed
the shortcomings of underlying structure in previous NeRF
based methods for humans. The proposed method utilizes
an encoder to predict human features using NeRF. In this
paper, we focus on estimating human keypoints, and we
have also shown how it can be extended to other human fea-
tures by estimating dense pose. Although our method can
estimate human features efficiently, it still has the follow-
ing shortcomings: 1. It only works in scenes with a single
human and it cannot handle multiple humans. 2. The pro-
posed method is limited to humans and does not apply to
other animals and articulated objects, which can be a future
perspective to learn more general underlying structure.
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