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Abstract

This paper proposes SAD-GS, a depth-supervised
Gaussian Splatting (GS) method that provides accu-
rate 3D geometry reconstruction by introducing a shape-
aligned depth supervision strategy. Depth information
is widely used in various GS applications, such as dy-
namic scene reconstruction, real-time simultaneous lo-
calization and mapping, and few-shot reconstruction.
However, existing depth-supervised methods for GS all
focus on the center and neglect the shape of Gaussians
during training. This oversight can result in inaccu-
rate surface geometry in the reconstruction and can
harm downstream tasks like novel view synthesis, mesh
reconstruction, and robot path planning. To address
this, this paper proposes a shape-aligned loss, which
aims to produce a smooth and precise reconstruction by
adding extra constraints to the Gaussian shape. The
proposed method is evaluated qualitatively and quantita-
tively on two publicly available datasets. The evaluation
demonstrates that the proposed method provides state-
of-the-art novel view rendering quality and mesh accu-
racy compared to existing depth-supervised GS meth-
ods. A project page is available at https://umauto-
bots.github.io/sad_gs.

1. Introduction
3D Gaussian Splatting (GS) [12] marks a recent
paradigm shift in the field of computer vision and
novel view synthesis. It offers a powerful way to rep-
resent scenes and render novel views without relying
on neural networks such as Neural Radiance Fields
(NeRF) [15], significantly accelerating both rendering
and training. GS has been successfully implemented in
various domains, such as virtual and augmented real-
ity [10], robot manipulation [1, 13], and autonomous
navigation [3].

In several recent works, depth supervision is intro-
duced to GS to improve scene reconstruction accu-
racy when applying GS to different use cases, such

Figure 1. The illustration of the comparison between pro-
posed and prior methods. SAD-GS achieves shape-aligned
reconstruction by adding an extra constraint to the shape
of scene Gaussians. Existing methods fail to align Gaussian
shapes with scene geometry captured from depth informa-
tion, which produces artifacts and blurring in the recon-
struction. The figure shown in the second row is a novel
view rendering. SAD-GS outperforms prior methods by of-
fering crisp and smooth geometry.

as dynamic scenes, real-time systems, or few-shot re-
construction. For instance, LiDARs have been inte-
grated with GS to reconstruct highly dynamic scenes
for autonomous driving [23, 27]. RGBD (color and
depth) sensors are widely used in GS-based simulta-
neous localization and mapping (SLAM) frameworks
to achieve real-time indoor reconstruction and pose es-
timation [8, 11, 14, 22, 25]. Furthermore, due to the ad-
vancement of monocular depth estimation, many few-
shot GS systems leverage monocular depth to reduce
the number of input images required to train a Gaus-
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sian splat [4, 21, 24, 29].
Despite the common use of depth information in

GS, current depth-supervised GS (DSGS) methods do
not utilize depth accurately. As a result, these meth-
ods often use depth information for just initialization
or with relatively low training weight, continuing to
rely on multi-view RGB images to obtain precise 3D
geometry. Specifically, after projecting 3D Gaussians
onto the image plane, current DSGS methods only con-
sider the mean position of the Gaussians and ignore
their shapes (see Figure 1). This is usually acceptable
when synthesizing views from perspectives near train-
ing views. However, it implies the wrong 3D geome-
try that overfits to the training data, which can lead
to inaccurate reconstruction, especially for novel views
rendered farther from the training views. Inaccurate
3D reconstruction can cause problems for downstream
tasks that rely on accurate 3D geometry.

Our paper has three main contributions: First,
we propose a novel shape-aligned depth-supervised
method for Gaussian Splatting. Inspired by the
sample-based loss in NeRF, our method adds addi-
tional constraints to the shape of Gaussians by sam-
pling points close to the measured surface along the
ray. Second, we demonstrate the importance of Gaus-
sian shape alignment for novel view rendering. Third,
through experiments, we demonstrate that our method
reconstructs more accurate 3D geometry on one-shot
RGBD data compared to previous approaches, as
shown in Figure 1. Our method also improves the qual-
ity of novel view synthesis, especially for novel view-
points that are distant from the training view. The
proposed method is evaluated qualitatively and quanti-
tatively on publicly available simulated and real-world
RGBD datasets.

The remainder of this paper is organized as follows:
In Section 2, we review related works about depth-
supervised NeRF and GS. In Section 3, we describe our
proposed method, SAD-GS. In Section 4, we evaluate
SAD-GS on two datasets against prior works, and in
Section 5, we conclude and discuss current limitations.

2. Related works
2.1. Depth-Supervised NeRF

Depth supervision is very common in NeRF training.
Depth-supervised NeRF frameworks can be divided
into two classes. The first type renders depth images
directly from the 3D radiance field, then uses the dif-
ference between rendered and sensed depth as a loss
to learn geometry from 2D depth images [19, 28]. The
rendered depth is the expected termination depth of
camera rays cast through the scene. As a result of

taking an expectation, the rendered depth can some-
times be correct, while the scene geometry is incorrect.
It often fails to remove translucent artifacts before the
actual depth. This method is straightforward but leads
to blurred geometry, as shown in [9].

To improve the depth supervision of NeRF, other
works use depth information directly in 3D space to
avoid the geometry ambiguity caused by the rendered
depth [2, 5, 9, 16]. The main idea is to obtain a distri-
bution along a ray from sampled points and then com-
pute the difference between the rendered distribution
and the desired distribution. Prior works use a normal
distribution as the desired distribution [5]. Rematas
et al. proposed to decrease the variance of the desired
distribution progressively [16]. Isaacson and Kung et
al. further presented a dynamic variance to reduce con-
vergence time and adapt to incremental input [9].

2.2. Depth-Supervised GS

Unlike NeRF, which represents the scene with a neu-
ral network, GS estimates the same radiance function
using Gaussian functions as a basis set [12]. In the
rendering step, instead of sampling points, querying
the neural network, and then rendering pixel-by-pixel
as in NeRF, GS simply sorts all Gaussians with the
depth of their means and projects all 3D Gaussians
to 2D images for full image rendering. This approach
leads to significantly faster rendering and training.

A naive depth-aware GS can be intuitively done by
using the depth point cloud as the initial means of
Gaussians. This method is used in [7, 8, 23] with dense
point clouds provided by LiDAR or an RGBD camera.
However, no geometry constraint from the depth mea-
surement is applied in this method, so the geometry
still relies only on multi-view RGB images. Also, this
approach can easily overfit to color input and, as a re-
sult, may offer inaccurate 3D reconstruction. To solve
this problem, a rendered depth loss similar to that used
in NeRFs is widely used in GS-based SLAM frame-
works with RGBD cameras [11, 22, 25] and in few-shot
GS framewoks that leverage monocular depth estima-
tion [4, 21, 24, 29]. To avoid the geometry ambiguity
problem of rendered depth loss as mentioned in 2.1, [22]
proposes a deleting step to degenerate all Gaussians be-
fore the ray terminates. However, the rendered depth
uses the depth of the Gaussian center as the depth of
the entire Gaussian. Thus, the rendered depth loss
only constrains the Gaussian mean position to fit the
geometry, and the Gaussian shape, including scale and
orientation, is ignored. The shape-misaligned Gaus-
sians lead to rough surface reconstruction and cause
artifacts in the free space. Aside from training with
rendered depth loss, the center loss introduced in [27]
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Figure 2. Illustration of different DSGS methods. The ren-
dered depth loss uses the Gaussian center as the depth of
the entire Gaussian. The center loss uses the difference be-
tween the Gaussian center and its nearest point in a sensed
point cloud for training. However, both existing methods
ignore the Gaussian shape in their loss functions. In con-
trast, the proposed SAD-GS achieves shape-aligned Gaus-
sians by penalizing surface-misaligned Gaussians near sam-
pled points (red cross).

uses the distance between Gaussians to their nearest
point cloud as the loss to force the Gaussian mean to
align with the depth measurements. Yet, the alignment
of the Gaussian shape with the surface is still missing.

In this paper, we propose a simple yet efficient
shape-aligned loss that samples points near the sensed
depth and applies an L1 loss to penalize Gaussians with
a surface-misaligned shape. We demonstrate that the
proposed loss function leads to better 3D reconstruc-
tion than previous DSGS loss functions. Figure 2 illus-
trates the difference between methods.

3. Method
3.1. 3D Gaussian Scene Representation

Gaussian Splatting models the 3D scene as a set of 3D
Gaussians. Each 3D Gaussian is composed of the posi-
tion µ, rotation quaternion q, scaling vector S, opacity
α, and spherical harmonic (SH) coefficients sh:

G = {Gi : (µi, qi, si, αi, shi) |i = 1, ..., N}. (1)

The covariance of each Gaussian is parameterized by
its Eigen decomposition

Σ = RSSTRT (2)

where S ∈ R3 is a 3D scale vector with square roots
of Σ’s eigenvalues, and R ∈ SO(3) is rotation matrix
computed from quaternion q.

GS [12] employs a point-based α-blending process
to render the color C(p) of a pixel p. Each 3D Gaus-
sian is projected onto the 2D image plane by rendering
along the ray direction [30]. Then, the color of one
pixel is rendered by sorting the Gaussians in depth (d)
order and performing front-to-back α-blending render-
ing. Considering the view direction, v, the pixel color
is computed as:

Ĉ(p) =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1− α′
j) (3)

where ci is the color of a Gaussian obtained by shi and
v. The opacity, α′

i, is the multiplication of opacity of
Gaussian αi and Gaussian:

α′
i = αi exp

(
−1

2
(x′ − µ′

i)
TΣ−1

i (x′ − µ′
i)

)
(4)

where x′ and µ′ are the rendered pixel and Gaussian
center in projected 2D image space. In the training
step, the color loss is designed to minimize the differ-
ence between color in the image, Cimg, and rendered
color, Ĉ. We use L1 loss and D-SSIM loss:

Lcolor = (1− λssim)L1 + λSSIMLD−SSIM (5)

where

L1 = ‖Cimg − Ĉ‖1 (6)
and λssim is the weight of D-SSIM loss. We use λssim =
0.2 in all our tests following [12]. To extend the color
rendering to depth rendering, the rendered depth for
each pixel is computed as:

D̂(p) =
∑
i∈N

diα
′
i

i−1∏
j=1

(1− α′
j) (7)
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Figure 3. The distance along a ray is broken down into
three sections. The area nearest to the measured depth is
known as the margin, serving as the Gaussian shape toler-
ance. Beyond this is the sampling region, where points are
sampled to penalize a Gaussian if it extends into this area.
Finally, there is the opacity reset region, where we reduce
the opacity of Gaussians within it.

where di is the depth of the center of the i-th Gaussian.
To incorporate depth supervision, [4, 11, 21, 22, 24, 25,
29] design rendered depth loss as the difference between
the depth image, Dimg, and rendered depth, D̂.

Ld = ‖Dimg − D̂‖1 (8)

However, using the depth of the Gaussian center as
the depth for the entire Gaussian means that rendered
depth loss only works if all Gaussians are parallel to
the image surface or have extremely small scales. This
is because after the projection step, the 3D shape of
the Gaussian is collapsed onto the image plane, and
the 3D shape is lost. Kerbl et. al. noted this problem
by stating that the alpha blending does not consider
a per-pixel depth ordering, making the alpha blend-
ing only approximate [12]. While this had a negligible
effect without depth supervision, we found it to intro-
duce larger problems once depth supervision is intro-
duced. Thus, the rendered depth loss does not provide
accurate geometry, and learning geometry still heavily
depends on multi-view color supervision. Figure 2 illus-
trates why rendered depth loss fails to provide correct
surface reconstruction.

3.2. Shape-aligned Depth Supervison

In this section, we introduce a shape-aligned depth su-
pervision method to reconstruct geometry. Figure 3 il-
lustrates our proposed strategy. We divide the distance
along a ray into three regions. The region nearest to a
measured depth z is defined as the margin, represent-
ing the tolerance of the Gaussian shape. Beyond this is
the sampling region, where we sample points to penal-
ize a Gaussian if it occupies this area, which forces the
shape of the Gaussian to align with the scene surface,
as shown in Figure 1. Finally, the opacity reset region

is situated beyond the sampling region and serves to
degrade all Gaussians within its boundaries.

Sampled Points For Shape Constraint: First,
we define a ray r(t) = o + td, where o is the sensor
origin, d is the ray direction, and t is the distance along
the ray. We divide the distance along the ray into three
regions. First, with depth measurement z along the
ray, we mark the margin region as Tmargin = [z−ε, z+
ε], where ε is the tolerance distance.

To sample points from the sampling region, we de-
fine the far and near bound of the sampling region as
tfar = z + ε + δ and tnear = z − ε − δ, where δ is the
size of the sampling region. We partition [tn, tf ] into
N evenly-spaced bins and then draw one sample uni-
formly at random from within each bin using stratified
sampling following [15]:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
(9)

We further remove sample points located in the mar-
gin region:

Ts = {x ∈ ti | x /∈ Tmargin} (10)

The sampled points are used to penalize Gaussians
for having shapes misaligned with the scene surface and
occupying the sampling region.

Shape-aligned Loss: After we sample points for
shape supervision, we query the Gaussian splat to get
the estimated weight at those positions. To reduce the
computational cost and avoid overhead gradient com-
putation, we voxelize the space with grid size M and
compute each weight for each sampled point only using
the located voxel. The weight of each point contributed
by each Gaussian can be computed by:

Gk(x) = αk exp
(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
(11)

The total weight of a point can be obtained by sum-
ming the weight from individual Gaussians:

wi =
∑
k

Gk(xi) (12)

To force the sampled position to have zero density
for shape alignment, we define the loss function as the
L1 norm of wi.

Lalign = ‖wi‖1 (13)

In our training step, the loss function is the color
loss combined with the shape-aligned loss:

L = λcLcolor + Lalign (14)
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Opacity Reduction Strategy: The densification
step in GS introduces randomness when new Gausians
are added to the scene. This can introduce floating
Gaussians located before or after the sampling region.
Inspired by the deleting strategy introduced in [22], we
also use an opacity degrading strategy to address this
issue. However, since we have the extra shape-aligned
constraint, we only need to apply the reduction outside
the sampling region, which makes it less aggressive. We
reduce the opacity by a factor of γ for the distance that
is outside the margin and sampling region.

By projecting all centers of Gaussians back to the
pixel coordinate, we get the corresponding depth mea-
surement, z, and the depth of each Gaussian, di. The
opacity of Gaussians are reduced as follows:

α′
i =

{
γαi |z − di| > ε+ δ

αi otherwise.
(15)

4. Experiments
This section evaluates the novel view rendering and
meshing quality of our method compared to prior
DSGS methods on single-shot RGBD reconstruction.

4.1. Experimental Setup

Baselines: We evaluate against DSGS methods used
in previous papers. Color Loss only uses a depth
point cloud to initialize Gaussians of the scene, which
is the simplest way to incorporate depth information
into the GS used in [7, 8, 23]. Depth Loss is adding
rendered depth loss used in [4, 11, 21, 22, 24, 25, 29]
based on color loss. Center Loss is adding a term to
minimize the distance between Gaussians to the near-
est points in the depth point cloud as used in [27].
Deleting is implementing only the deleting strategy
introduced in [22]. Next, Depth Loss+D/ is the full
method used in [22]. A summary of the baseline loss
functions is shown in Table 1.

Datasets: To evaluate the performance of the pro-
posed method, SAD-GS, we conduct experiments on
the simulated Replica dataset [17] and the real-world
indoor TUM-RGBD dataset [18]. We select a single
RGBD frame in each sequence that captures most of

Baselines Details
Color Loss Lc

Depth Loss Lc + Ld

Deleting Lc +Deleting
Depth Loss + D/ Lc + Ld +Deleting

Table 1. Baselines details.

the scene as the training image, and the rest of the
frames are used as the testing data to evaluate the novel
view rendering performance. In Replica, we select the
frame index 790 in the office0 sequence as the training
frame. In TUM, we select the frame index 0 in the
sequence freiburg2 as the training frame. In TUM, we
also set the maximum depth to 1.5 meters to remove
noisy depth measurements from the RGBD sensor in
the background region.

Evaluation Metrics: We evaluate the novel view
rendering performance using the peak signal-to-noise
ratio (PSNR), Structural Similarity (SSIM) [20], and
LPIPS [26]. For the simulated Replica dataset, we fur-
ther evaluate the mesh accuracy using the ground truth
mesh to analyze reconstructed geometry. For metrics,
we use accuracy (mean distance from each point in the
estimated mesh to each point in the ground truth point
cloud), completion (mean distance from each point in
the ground truth point cloud to each point in the es-
timated mesh), and Chamfer distance (CD) (sum of
accuracy and completion) to evaluate the similarity be-
tween the estimated and ground truth mesh.

Experimental Details. To initialize GS, we di-
vide the space into voxels with size V (m), then com-
pute the mean and covariance for each voxel. In experi-
ments, we use initialization V = 0.05, M = 1, ε = 0.03,
δ = 0.02, γ = 0.01, N = 3, and λc = 1. For GS config-
urations, we set the opacity reset interval to 1000 and
run 2000 and 2200 iterations on Replica on TUM, re-
spectively. We also follow the coarse meshing method
used in SuGAR [6] to build the mesh.

4.2. Rendering Evaluation

For novel view rendering evaluation, we use all frames
in a sequence and exclude the training view. We ren-
der images from unseen views and then compare the
rendered images with captured images. The Full eval-
uation means the entire images rendered from testing
views are evaluated. This evaluation can reflect the ar-
tifacts generated outside the field-of-view (FOV) of the
training image. On the other hand, the Seen evalua-
tion means only evaluating the seen region. This eval-
uation focuses on the reconstruction within the FOV
of the training image. To generate the seen mask for
each frame, we simply project the depth point cloud
from the training frame to each testing view. Then,
image erosion and dilation steps are applied to filter
noise in the masks. On the TUM dataset, we further
apply an extra erosion step to shrink the seen mask.
Since the depth image captured from the RGBD sen-
sor is noisy, the projected mask can also include unseen
regions. We found applying an extra erosion step can
largely reduce the problem.
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Eval. Region Metrics Methods
Color Loss Depth Loss Deleting Center Loss Depth Loss+D/ Ours

Full
PSNR (↑) 26.31 21.20 26.43 28.32 24.97 30.49
SSIM (↑) 0.90 0.81 0.90 0.92 0.89 0.95
LPIPS (↓) 0.12 0.19 0.12 0.10 0.13 0.07

Seen Region
PSNR (↑) 30.00 27.03 28.64 31.02 29.05 32.76
SSIM (↑) 0.93 0.91 0.92 0.94 0.93 0.96
LPIPS (↓) 0.08 0.09 0.09 0.07 0.09 0.05

Table 2. Rendering Evaluation on Replica

Figure 4. Rendering from bird’s-eye-view on Replica.

Eval. Region Metrics Methods
Color Loss Depth Loss Deleting Center Loss Depth Loss+D/ Ours

Full
PSNR (↑) 14.17 15.90 14.50 15.93 15.96 16.06
SSIM (↑) 0.70 0.74 0.71 0.74 0.74 0.77
LPIPS (↓) 0.24 0.21 0.23 0.19 0.21 0.12

Seen Region
PSNR (↑) 18.29 18.10 18.21 18.05 18.11 18.03
SSIM (↑) 0.82 0.82 0.82 0.83 0.83 0.83
LPIPS (↓) 0.11 0.11 0.11 0.10 0.12 0.09

Table 3. Rendering Evaluation on TUM

Figure 5. Rendering from a zoomed-in view on TUM.
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Eval. Region Metrics Methods
Color Loss Depth Loss Deleting Center Loss Depth Loss+D/ Ours

Full
Acc.(↓) 0.148 0.241 0.118 0.078 0.168 0.034

Comp.(↓) 0.035 0.030 0.030 0.030 0.033 0.016
CD(↓) 0.183 0.271 0.148 0.109 0.202 0.050

Seen Region
Acc.(↓) 0.093 0.074 0.072 0.065 0.077 0.027

Comp.(↓) 0.030 0.031 0.032 0.030 0.035 0.027
CD(↓) 0.123 0.105 0.105 0.095 0.111 0.054

Table 4. Mesh Evaluation on Replica

Replica Table 2 compares rendering performance
to the prior DSGS methods. Our method outperforms
all existing DSGS methods in both Full and Seen mode.
Our method performs better than other methods in the
Full mode. This is because we generate fewer artifacts
outside the FOV. As shown in Figure 4, our method has
a crisp boundary at the edge of the FOV and produces
less noise in occluded regions. In the Seen mode evalu-
ation, our method provides the best rendering quality
by constructing shape-aligned Gaussians, which leads
to less noise and smoother surfaces. Figure 6 shows
that our method is more robust to view changes com-
pared to previous methods.

TUM Table 3 shows the rendering performance on

Figure 6. PSNR of rendered images from novel views with
increasing translation and rotation view change levels from
the training view.

the real-world TUM dataset. The overall performance
on TUM is worse than Replica due to the noisy RGBD
depth measurements. Our method still surpasses all
existing methods in the Full with reduced noise.

Our PSNR value in the Seen evaluation is not the
best compared to others. We assume this is also due
to the noisy RGBD depth measurement. Since our
method better fits the input depth data, our recon-
struction is a bit deformed from ground truth geome-
try. In contrast, other methods construct more fuzzy
geometry. This makes our method look worse when
computing PSNR, which is based on mean squared
error(MSE) and requires pixel alignment. However,
for metrics like SSIM and LPIPS that evaluate overall
quality, our method offers performance that is better
or equivalent to others. We also found that the per-
formance of our method and others is less different on
TUM. We suppose this is because most of the testing
views are close to the training view, while the proposed
method offers more significant improvement at extreme
view change, as shown in Figure 6. Figure 5 demon-
strates rendered results with a large view change.

4.3. Mesh Evaluation

Table 4 shows quantitative evaluation for mesh recon-
struction performance on Replica. Our shape-aligned
method offers the best geometry accuracy and comple-
tion against existing methods. Also, the mesh evalu-
ation shows the same trend as that of the rendering
evaluation. This indicates the importance of geome-
try to novel view rendering. The visualized meshes on
Replica and TUM are shown in Figure 7 and Figure 8.
The figure demonstrates that our method can signifi-
cantly improve the estimated geometry of surfaces by
aligning the shape of Gaussians with the surface.

4.4. Ablation Study

Table 5 provides an ablation study on Replica. Lcolor

is only using color loss. +ORS and +Lalign means
applying the Opacity Reduction Strategy and Lalign

separately. The experiments show that adding ORS
or Lalign individually can worsen performance. This is
because using ORS only is too aggressive without the
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Figure 7. Qualitative comparison on mesh reconstruction on Replica.

Figure 8. Qualitative comparison on mesh reconstruction on TUM.

Eval. Region Metrics Ablation
Lcolor +ORS +Lalign Proposed

Full PSNR (↑) 26.31 23.86 25.10 30.49
SSIM (↑) 0.90 0.88 0.89 0.95
LPIPS (↓) 0.12 0.13 0.14 0.07

Seen Region
PSNR (↑) 30.00 24.21 30.15 32.76
SSIM (↑) 0.93 0.89 0.93 0.96
LPIPS (↓) 0.08 0.12 0.08 0.05

Table 5. Ablation Study on Replica

Lalign constraint that forces Gaussians to stay in the
margin area. On the other hand, using Lalign alone
fails to remove floating Gaussians outside the margin
and sampling region. The proposed method combining
both ORS and Lalign yields the best performance.

5. Conclusion
This paper introduces a shape-aligned, depth-
supervised approach for GS. Previous research only
pays attention to the positioning of Gaussians, which

leads to inaccurate surface geometry. Our proposed
loss constrains Gaussian shapes and yields a surface-
aligned reconstruction. Our method’s effectiveness is
demonstrated qualitatively and quantitatively, through
testing on two public datasets. Our method surpasses
previous DSGS methods in novel view synthesis and
mesh accuracy on a single-shot RGBD reconstruction.
The current method relies on accurate depth measure-
ment and only tests with single-view training. We plan
to take depth uncertainty into account and test with
multi-view input in the future. In addition, our sam-
pled points training is implemented in Pytorch using
auto gradient for back-propagation, which leads to rel-
atively slow training speed. We expect that CUDA
acceleration is needed for large-scale scenes.
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