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Figure 1. We show how density estimates derived from intermediate activations can accelerate inference for pre-trained Neural Radiance
Fields by effectively reducing the capacity of large MLPs. Here, we show a small toy example for a ray with seven, uniformly placed
samples between tn and tf . We obtain an activation feature vector fℓ for layer ℓ, apply a function to obtain a density estimate d̂, leveraging
the observation that minima in activation feature space indicate samples with high density σ. Finally, we perform inverse transform sampling
with our weight estimate ŵ.

Abstract

Modern Neural Radiance Fields (NeRFs) learn a map-
ping from position to volumetric density leveraging proposal
network samplers. In contrast to the coarse-to-fine sam-
pling approach with two NeRFs, this offers significant po-
tential for acceleration using lower network capacity. Given
that NeRFs utilize most of their network capacity to esti-
mate radiance, they could store valuable density information
in their parameters or their deep features. To investigate
this proposition, we take one step back and analyze large,
trained ReLU-MLPs used in coarse-to-fine sampling. Build-
ing on our novel activation visualization method, we find
that trained NeRFs, Mip-NeRFs and proposal network sam-
plers map samples with high density to local minima along
a ray in activation feature space. We show how these large
MLPs can be accelerated by transforming intermediate ac-
tivations to a weight estimate, without any modifications to
the training protocol or the network architecture. With our
approach, we can reduce the computational requirements of
trained NeRFs by up to 50% with only a slight hit in render-
ing quality. Extensive experimental evaluation on a variety

of datasets and architectures demonstrates the effectiveness
of our approach. Consequently, our methodology provides
valuable insight into the inner workings of NeRFs.

1. Introduction

Neural Fields [43] parameterize implicit functions over con-
tinuous domains using neural networks and have gained
popularity due to their ability to represent various types of
signals. To represent arbitrary high-frequency functions,
positional encoding [20], Fourier features [34], Gaussian
activations [6, 26], among other alternatives [7, 30, 31],
are used to overcome the spectral bias [25]. Compared to
their explicit counterparts, implicit representations are more
memory-efficient and can achieve higher quality, but regret-
tably suffer from slower inference. In addition, as the signal
is encoded in the weights and biases of a neural network,
every change to a parameter has a non-local effect, which
makes implicit representations hard to modify.

For novel view synthesis problems, the 5D plenoptic
function mapping positions and directions to radiance and
density can be learned from posed images leveraging a neural
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field. NeRFs [20] have recently demonstrated impressive
performance for real-world and synthetic datasets. However,
the naı̈ve approach of sampling the scene densely is slow and
inefficient due to the prohibitive number of required samples.
A coarse-to-fine sampling strategy is adopted to overcome
these limitations, estimating the density distribution along a
ray by uniformly sampling a coarse NeRF, which generates a
new set of samples for a subsequent fine NeRF using inverse
transform sampling. Although performance is improved
substantially, the number of required samples still prohibits
real-time rendering. Furthermore, as no ground-truth density
information is available, the coarse NeRF is supervised with
an MSE reconstruction loss.

Reducing the number of required samples for NeRFs is a
fruitful endeavor to lower the computational requirements.
Sampling networks [1, 3, 16, 22], which predict volumet-
ric density along a ray to produce a set of samples for a
subsequent shading network, prove highly effective for this
task. The network capacity for a sampling network is sig-
nificantly reduced, as solely predicting volumetric density
is view-independent and thus easier to learn. For supervis-
ing these sampling networks ground-truth depth data [22],
a pre-trained NeRF [24], multi-view stereo [17] or distilla-
tion from a concurrently trained shading network [1, 3, 16]
may be used. Alternatively, occupancy grids [21] allow for
efficient empty-space skipping by encoding the expected
density within a discretized region.

A clear disadvantage of the coarse-to-fine NeRF pipeline
is the use of the coarse model for density prediction only,
even though it is optimized to reconstruct the ground-truth
image. Sampling networks, on the other hand, map sam-
ple positions to volumetric density using a network with
reduced capacity and can be supervised by the shading net-
work. Given that sampling networks show that density can
be modelled with lower capacity, a subset of a coarse NeRF
should be able to model density accurately as well — particu-
larly since recent work has found that NeRF-MLPs naturally
partition themselves into structural and color layers [38].

To this end, we analyze the intermediate activations of
coarse NeRFs: We derive a representation from these activa-
tions and show how it is tied to the density distribution along
a view ray. Building on this crucial finding, we devise a novel
method to extract density estimates given intermediate acti-
vations of coarse NeRFs. By elegantly combining activation
analysis and our method to extract densities, our approach
can reduce inference times while maintaining high quality
at test-time. We demonstrate that our approach is not only
applicable to NeRF and Mip-NeRF [2], but produces similar
results when applied to proposal network samplers as well,
with extensive evaluation supporting our claim. To the best
of our knowledge, our approach is the first to use intermedi-
ate activations to accelerate inference for coordinate-based
MLPs.

To summarize, our contributions are as follows:
• We present a novel method for visualizing and analyzing

the activations of coordinate-based ReLU-MLPs.
• We present an approach for extracting a density esti-

mate for fine re-sampling from activations in early lay-
ers of coarse NeRFs, significantly reducing the inference
time with little decrease in quality. Consequently, our
method provides valuable insight into the inner workings
of NeRFs.

• We demonstrate the effectiveness of our method for several
architectures with real-world and synthetic data.

2. Related Work
In the following, we review related work, focusing on real-
time rendering and efficient sampling for NeRFs.

NeRFs for Real-time Rendering. Instead of the implicit
representation of radiance fields used in NeRF [20], explicit
representations with grid-like data structures [8, 33] or hy-
brid representation [4, 13, 21, 42, 44] are often used to ac-
celerate inference and training. Most prominently of the
aforementioned, Instant-NGP [21] replaces the fixed posi-
tional encoding used by NeRF with a learnable hash encod-
ing, allowing for the use of much smaller MLPs and thus
rapid convergence. Alternatively, 3D Gaussian Splatting [14]
has recently demonstrated state-of-the-art rendering quality
in addition to fast training and rendering using a fully ex-
plicit representation relying on anisotropic 3D Gaussians.
Other works [27, 28] suggest a divide-and-conquer approach,
utilizing many tiny MLPs responsible for a small region in-
stead of a large MLP for the whole scene. Distillation of a
NeRF into a render-friendly format has been explored exten-
sively [9, 11], but these approaches are memory-intensive
and require an additional distillation step after training. Re-
cent work [15, 37] has also investigated approximate geome-
try equipped with neural features and small, global decoders.
Finally, mesh-based view synthesis [5, 29, 45] has recently
demonstrated real-time rendering on low-power devices, re-
lying on approximate meshes extracted from radiance fields
and the well-known graphics pipeline.

Efficient Sampling. Several works investigate a learnable
proposal sampler, which can predict volumetric density [3] or
sample locations [1]. DONeRF [22] learns a density volume
as a multi-class classification task to guide sample place-
ment with direct depth supervision. Building on DONeRF,
AdaNeRF [16] mitigates the requirement of pre-training and
depth supervision for the sampling network with a 4-phase
training recipe. EfficientNeRF [12] proposes valid sampling,
caching densities of sample positions and exclusively eval-
uating those with positive density — this approach shares
similarities with our method in that it is motivated by the
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density distribution of coarse NeRFs. TermiNeRF [24] dis-
tills a NeRF into a sampling and shading network. For their
sampling network, they perform distribution matching, effec-
tively reparameterizing NeRFs intervals to allow for fewer
samples. Lin et al. [17] learn a proxy geometry with a cost
volume for depth guidance, uniformly sampling a smaller
depth range with a lower sample count. A better sampling
strategy is also attained by unifying implicit surface models
and radiance fields [23]. To enable mesh-based view synthe-
sis, SDFs [45] or Binary Opacity Grids [29] can accurately
locate surfaces. Finally, by restricting volume rendering to a
small band around the surface [41], the number of samples
can be reduced significantly.

3. Preliminaries

In the following section, we briefly summarize the most
important architectures and concepts which build the foun-
dation for our work.

3.1. NeRF

NeRFs [20] learn a function

ΘNeRF : R5 → R4, (p,d) 7→ (c, σ), (1)

where p = (x, y, z) and d = (θ, ϕ) are the sample position
and viewing direction, c ∈ [0, 1]3 denotes the predicted
output color and σ ∈ R is the volumetric density. NeRF uses
a ReLU-MLP with 8 layers and 56 hidden units to predict
a feature vector f ∈ R256 and σ. This feature vector is then
concatenated with d and passed through a small ReLU-MLP
to produce c, which allows view-dependent phenomena to
be modelled. For each pixel, we cast a ray r(t) = o + td
from the origin o in the direction of d. We evaluate ΘNeRF
at different sample positions t ∈ [tn, tf ] between the near
bound tn and the far bound tf . The color Ĉ of a ray r can be
estimated using Ns samples with

Ĉ(r) =
Ns∑
i=1

Ti(1− exp(−σiδi))ci, (2)

where δi and Ti are given as

δi = ti+1 − ti, Ti = exp

−
i−1∑
j=1

σjδj

. (3)

To increase rendering efficiency, two NeRFs are concurrently
optimized. The coarse NeRF Θcoarse places Nc samples
uniformly for each ray r, which produces a set of weights
w ∈ RNc with

wi = Ti(1− exp(−σiδi)), (4)

used to express the estimated coarse radiance as a weighted
sum

Ĉc(r) =
Nc∑
i=1

wici. (5)

The weights w are normalized such that 1Tw = 1 to obtain
a piecewise-constant PDF along r. This distribution is used
to produce a new set of Nf samples with inverse transform
sampling. The final rendered color is produced by Θfine
using all Nc +Nf samples.

NeRF applies positional encoding γ(·) to p and d, al-
lowing the network to model high-frequency details effec-
tively [34]. The network is supervised with the MSE loss for
both Θcoarse and Θfine, i.e.

∑
r ∥Ĉc(r)− C(r)∥22 + ∥Ĉf (r)−

C(r)∥22, with C(r) denoting the ground truth color for r and
Ĉf (r) denoting the estimated fine radiance of r.

3.2. Mip-NeRF

Mip-NeRF [2] builds on NeRF and tackles the problem of
aliasing when scene content is observed at various reso-
lutions. The standard computer graphics solution of super-
sampling is prohibitively expensive when considering NeRFs
volume rendering. Instead, Mip-NeRF introduces a novel In-
tegrated Positional Encoding (IPE), which is the expected po-
sitional encoding of all coordinates within a conical frustum.
Each conical frustum is approximated with a multivariate
Gaussian, and the IPE feature serves as the encoded input for
ΘNeRF. This modification allows the MLP to reason about the
size and shape of the encoded region, efficiently combating
aliasing which occurs for ambiguous point samples.

As the network can now learn a multi-scale scene rep-
resentation, ΘNeRF performs both coarse and fine sampling,
reducing the model size by 50% — however, the network is
still supervised with an MSE loss.

3.3. Mip-NeRF 360

NeRF and Mip-NeRF require that 3D coordinates exist in
a bounded domain for sampling — an assumption which is
violated in unbounded 3D scenes, where objects may exist
at any distance from the camera. Therefore, Mip-NeRF
360 [3] proposes a spatial contraction contract(·), which
maps coordinates from R3 to a ball of radius 2:

contract(x) =

{
x ∥x∥ ≤ 1(
2− 1

∥x∥

)(
x

∥x∥

)
∥x∥ > 1

. (6)

To handle the increased capacity required for unbounded
scenes and increase rendering efficiency, Mip-NeRF 360
concurrently optimizes two MLPs, Θprop and ΘNeRF. Their
proposal network sampler Θprop learns a function

Θprop : R3 → R, p 7→ σ, (7)
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Figure 2. Ground-truth images and their corresponding normalized
coarse and fine activations vℓ using the magma colormap reveal an
interesting relationship between activations and outputs. With our
visualization approach, we can infer some scene content using only
vℓ. For each scene, we visualize activations for different layers ℓ.

and is optimized to bound the weights w produced by ΘNeRF.
Two subsequent rounds of proposal sampling produce two
weights {ŵ1, ŵ2}, which is efficient due to the small size of
Θprop with 4 layers and 256 hidden units.

4. Activation Analysis
In this section, we present our method for visualizing and
analyzing the intermediate activations for ReLU-MLPs. In
addition, we show how we can leverage these intermediate
activations to accelerate inference for pre-trained NeRFs.

4.1. Visualizing and Analyzing Activations

Benefiting from the inherent spatial structure baked into
their building blocks, several works [32, 47] investigate the
visualization of intermediate features for Convolutional Neu-
ral Networks (CNNs). These methods typically operate by
back-projection from feature space to pixel space, allowing
informative insight into the inner workings of these mod-
els. For MLPs, which are mostly used as universal function
approximators, practitioners have not been as interested in
their activations. To this end, we propose a novel method for
visualizing activations of coordinate-based MLPs.

Figure 3. Intermediate activations allow for simple performance
improvements. We can reduce the inference time of NeRFs in
synthetic scenes if we perform the fine pass only if the condition
vℓ < µ(Vℓ) is met.

We analyze the hidden layer activations of NeRF MLPs as
follows: For each pixel (x, y), a ray r is generated, positional
encoding γ(·) is applied and each sample along the ray is
passed through ΘNeRF. In the following, we describe the
intermediate activations in terms of a single ray/pixel. After
each linear layer, the activation A(ℓ) is of size RNs×Nh ,
where Ns and Nh denote the number of samples and the
number of hidden units, respectively. To obtain a feature
representation fℓ ∈ RNs for the activation in layer ℓ, we
compute the mean over the dimension Nh:

fℓ =
1

Nh

Nh∑
i=1

A
(ℓ)
i . (8)

Further, we can produce a scalar vℓ ∈ R for each ray r for
visualization purposes with

vℓ =
1

Ns

Ns∑
i=1

Nh∑
j=1

A
(ℓ)
i,j . (9)

We visualize the activations of different layers ℓ for some
example views using Eqn. (9) in Fig. 2. As we can see, in-
termediate activations exhibit notable structural information.
We note that when recording activations A(ℓ), we have the
option to apply or not apply the activation function. Unless
stated otherwise, we work with activations after the ReLU
has been applied, thus A(ℓ) ∈ RNs×Nh

+ . Although unintu-
itive due to the information loss caused by the ReLU, early
experiments showed that applying the activation function
resulted in more consistent histograms for fℓ.

4.2. Reducing Unnecessary Network Evaluations
using Activations

As a first step towards speeding up the coarse-to-fine NeRF
rendering pipeline, we analyze the densities σ predicted
by Θcoarse. Take, for example, any of the synthetic scenes
from the Blender dataset [20]. Along rays r in empty space,
we do not expect any sample with significant volumetric
density. We can sum the number of densities along each
ray r larger than a small threshold τ to obtain a mapping
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ℓ PSNR ↑ SSIM ↑ LPIPS ↓ t [s] Speedup % fine Rays

1 29.66 0.93 0.04 34.69 40% 59%
2 30.45 0.94 0.03 34.02 43% 58%
3 31.21 0.95 0.02 33.11 47% 55%
4 30.71 0.95 0.03 34.76 43% 59%

NeRF 32.20 0.96 0.02 48.98 - 100%

Table 1. Quantitative results for our activation informed coarse-to-
fine experiment for the lego scene from the Blender dataset [20].
Only performing the fine pass for rays r where the summed acti-
vation is smaller than τ = µ(Vℓ) yields a significant performance
gain with a slight drop in rendering quality.

g : r 7→ {0, . . . , Nc}. If for any of the rays the result is
0, the corresponding pixel likely belongs to the transparent
background. We see in Fig. 3 that when the value of g is
high, the value of vℓ is low, and vice-versa.

For each ray r, we record the predicted coarse radiance Ĉc
and the activations vℓ from Θcoarse. We choose a threshold τ ,
which indicates whether we observe scene content along r.
We choose τ = µ(Vℓ), the mean activation of the activation
image Vℓ. We obtain a set of rays P = {r : vℓ < τ}, which
we treat as a mask. If r ∈ P , we evaluate Θfine. Otherwise,
we treat the coarse radiance Ĉc as our final output. Using
this approach, we can significantly reduce the number of
evaluations for Θfine, which uses Nc +Nf = 192 samples,
which results in a significant performance improvement. As
we cover most of the object in the scene with our derived
mask P , the image quality loss is negligible. We report the
results for the lego scene from the Blender dataset [20] in
Tab. 1 and visualize our approach in Fig. 3. This experiment
demonstrates that early intermediate activations already con-
tain notable density information and reveals an interesting
connection between density and activations.

Figure 4. Visualization of our proposed approach for approximate
density extraction for a real-world example: We visualize activa-
tion features fℓ and densities σ for 128 uniform samples along an
example ray, for a Mip-NeRF trained on the chair scene. Using
Eqn. (10), a plausible density estimate d̂ is extracted from a activa-
tion feature fℓ.

4.3. Approximating Density using Activations

Clearly, the approach from Sec. 4.2 heavily relies on the
transparent background present in synthetic scenes. Real-
world captures, on the other hand, often include highly de-
tailed backgrounds. Therefore, we go beyond this basic
approach by analyzing the activation features fℓ along a ray
r. We accomplish this by examining histograms of the pre-
dicted density σ and the activation features fℓ, as can be
seen in Fig. 4. We notice a trend throughout multiple scenes:
Activation feature space minima indicate samples with sig-
nificant density. If we can find a function to transform fℓ to
a reasonable density estimate d̂, we can effectively replace
the expensive evaluation for Θcoarse with a pass through a
smaller MLP. Ideally, this function should transform fℓ to
a vector of mostly zeros, except for locations where σ is
significant. To this end, we propose 3 different functions
fi to map the intermediate activations directly to estimated
densities d̂, which were handcrafted based on the observed
relationship between activations and density:

f1 (fℓ) = ReLU ((µ(fℓ)− σ(fℓ))− fℓ) , (10)

f2 (fℓ) = ReLU
((

µ(fℓ)−
σ(fℓ)

2

)
− fℓ

)
, (11)

f3 (fℓ) = ReLU
((

µ(fℓ)−
σ(fℓ)

2

)
− fℓ

)2

, (12)

where fℓ denotes the intermediate activation feature for layer
ℓ and µ(·), σ(·) denote the mean and standard deviation
along the last dimension (i.e. along the Ns samples of the
ray r). We visualize our approach for a toy example in Fig. 1.

Using Eqn. (10) results in fewer intervals with density
along the ray, but is prone to failures if the distribution
along a ray exhibits high standard deviation. On the other
hand, Eqns. (11) and (12) extract density estimates more
conservatively but might lead to insufficient detail, as the
interval between fine samples grows larger.

Given a well-behaved distribution, we can estimate den-
sities sufficiently close to σ such that we get good recon-
struction quality when converting d̂ to a weight estimate ŵ.
Further, we can significantly reduce the required inference
time by using only a small subset of the large Θcoarse MLP.
Clearly, the potential speedup is dependent on the number
of samples Ns, which is large for NeRFs.

Our Proposed Method for Weight Estimation. First, we
extract the activation features fℓ and apply a function fi to
transform this to a density estimate d̂ for each ray r. To
obtain our estimated weights ŵ, which should conform to
a piecewise-constant PDF along the ray r, we use ŵi =
d̂i/

∑Ns

j=1 d̂j and subsequently perform inverse transform
sampling, as done in NeRF [20] (c.f. Fig. 1).
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5. Experiments

In the following, we apply our presented method to
NeRF [20] and Mip-NeRF [2]. Additionally, we apply our
method to proposal network samplers, utilizing a nerfacto
model [35] with a Mip-NeRF 360 [3] proposal sampler,
which we dub nerfacto†. We only apply our density ex-
traction method to the first 3 layers: Recent work by Wang et
al. [38] has found that NeRF MLPs naturally store structural
information within the first MLP layers. In addition, when
applying our method to earlier layers, we can accelerate
inference more substantially.

Datasets. For our evaluation, we use four diverse datasets,
which are well-established in the novel view synthesis lit-
erature: The Blender dataset [20] consists of 360◦ cap-
tures of synthetic objects with complex geometry, realistic
non-Lambertian effects and transparent backgrounds in a
bounded domain. LLFF [19] is a dataset of forward-facing,
real-world scenes in high resolution. The Mip-NeRF 360
dataset [3] contains 360◦ captures of real-world, unbounded
scenes and is the most challenging benchmark in our eval-
uation. Finally, we also use 2 large-scale, bounded indoor
scenes from Deep Blending [10] (playroom & drjohnson).
For both LLFF and Mip-NeRF 360, we use the 4× down-
sampled images. We report per-scene results in the supple-
mentary material.

Implementation Details. We use the NeRF and Mip-
NeRF implementations from Nerfstudio [35] and use the hy-
perparameter settings as reported in the respective works [2,
20]. To facilitate sampling in NDC, as NeRF does for
LLFF [19], we implement a custom LLFF dataloader
adapted from the nerf-pytorch codebase [46].

For our experiments with proposal network samplers,
we adapt the nerfacto model from Nerfstudio [35]. This
architecture unifies recent NeRF-related research [3, 18, 21,
36, 40] into a single, universally-applicable method. For
our nerfacto† model, we replace the HashMLPDensityField
with a 4-layer ReLU-MLP with 256 hidden units, following
Mip-NeRF 360 [3], and use positional encoding [20]. Note
that this configuration is slower than nerfacto due to the large
MLP, however, it enables experiments with our proposed
method for proposal network samplers.

5.1. Speeding up NeRF and Mip-NeRF

We evaluate our approach for NeRF and Mip-NeRF using
the Blender dataset [20] and the LLFF dataset [19]. For the
NeRF experiment, we could either record the activations
from Θcoarse or Θfine. However, only Θcoarse is trained for
uniform samples, hence we use the coarse MLP, which also
performed better in our experiments.

NeRF

ℓ f
Blender, 800 × 800 LLFF, 1008 × 756

PSNR SSIM LPIPS Speedup PSNR SSIM LPIPS Speedup

1
f1 27.48 0.92 0.09

24%
25.11 0.75 0.23

28%f2 28.69 0.92 0.08 25.40 0.76 0.22
f3 28.63 0.92 0.08 25.34 0.75 0.23

2
f1 27.99 0.92 0.08

20%
24.72 0.73 0.26

24%f2 29.05 0.93 0.07 25.12 0.74 0.24
f3 29.44 0.93 0.07 25.01 0.74 0.25

3
f1 24.17 0.88 0.12

18%
24.21 0.71 0.28

20%f2 26.23 0.90 0.11 24.99 0.74 0.25
f3 25.07 0.89 0.11 24.87 0.73 0.26

NeRF 29.87 0.94 0.06 - 25.89 0.78 0.18 -

Mip-NeRF

1
f1 27.54 0.92 0.09

58%
25.07 0.74 0.24

50%f2 28.75 0.92 0.08 25.45 0.76 0.22
f3 28.72 0.93 0.08 25.35 0.75 0.22

2
f1 26.67 0.91 0.09

49%
25.02 0.74 0.25

40%f2 29.04 0.93 0.07 25.44 0.75 0.22
f3 29.35 0.93 0.07 25.35 0.75 0.23

3
f1 23.47 0.90 0.10

39%
24.21 0.71 0.28

35%f2 27.47 0.92 0.09 25.49 0.76 0.22
f3 26.45 0.91 0.09 25.42 0.75 0.22

Mip-NeRF 29.69 0.94 0.06 - 25.99 0.78 0.18 -

nerfacto†

1
f1 25.67 0.91 0.10

83%
24.46 0.81 0.15

79%f2 26.20 0.91 0.09 24.69 0.81 0.14
f3 26.17 0.91 0.09 24.13 0.80 0.16

2
f1 26.24 0.91 0.09

29%
24.21 0.80 0.16

29%f2 26.56 0.91 0.09 24.83 0.81 0.14
f3 26.31 0.91 0.09 23.51 0.78 0.18

3
f1 26.16 0.91 0.09

-
23.21 0.78 0.19

-f2 25.58 0.91 0.10 23.78 0.79 0.17
f3 24.79 0.90 0.10 23.04 0.77 0.22

nerfacto† 27.61 0.93 0.07 - 25.35 0.83 0.12 -

Table 2. Quantitative evaluation of our approach for NeRF, Mip-
NeRF and nerfacto†. For each dataset, we report PSNR, SSIM [39]
and LPIPS [48]. We highlight best , second-best and third-best
and point out failures of our method.

We report quantitative results in Tab. 2 and show our
visual results in Fig. 5. For NeRF, the performance gain is not
as significant as for Mip-NeRF due to the different number of
samples Nc, Nf : For Mip-NeRF, Nc = Nf = 128, contrary
to Nc = 64, Nf = 128+64 for NeRF. Hence, our approach
performs favorably for Mip-NeRF due to its more expensive
coarse network evaluation. We find that Eqn. (11) for ℓ = 2
performs best in our experiments. All run-time results for
NeRF and Mip-NeRF were obtained on an NVIDIA Quadro
RTX 8000.

5.2. Speeding up Proposal Networks

First, we evaluate our approach for nerfacto† using the
Blender dataset [20] and the LLFF dataset [19]. For our
experiments, we approximate the first iteration of proposal
sampling: As the proposal sampler iterations use {256, 96}
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Figure 5. Qualitative results for our approach (top row) compared to
baseline methods (bottom row) for synthetic and real-world scenes.
As can be seen in the zoomed-in views, our best renderings are
virtually indistinguishable from the baseline in most configurations.

samples, respectively, approximating the first round yields
more performance improvements1. In addition, our functions
fi are biased towards uniform or piecewise-linear sample
placement, and lead to unfavorable results when interval
sizes vary significantly.

We report quantitative results in Tab. 2 and show our
visual results in Fig. 5. For the nerfacto† model, we observe
a huge performance gain for the first layer, which declines
sharply — this is due to the large number of samples for
the first proposal sampler iteration and the small shading
network. We find that Eqn. (11) applied in layer ℓ = 2
performed best when considering standard image metrics.

1Please note that nerfacto† is significantly slower than nerfacto due to
the use of an MLP.

Mip-NeRF 360 Deep Blending

PSNR SSIM LPIPS Speedup PSNR SSIM LPIPS Speedup

1
f1 22.80 0.687 0.282 28.01 0.858 0.237
f2 22.92 0.691 0.279 76 % 28.01 0.859 0.237 72 %
f3 22.80 0.687 0.283 27.98 0.858 0.239

2
f1 22.71 0.683 0.289 27.97 0.858 0.239
f2 22.66 0.681 0.292 28 % 27.95 0.856 0.243 27 %
f3 22.67 0.680 0.297 27.94 0.856 0.242

3
f1 22.44 0.675 0.305 27.77 0.849 0.256
f2 22.21 0.669 0.309 - 27.48 0.844 0.264 -
f3 22.39 0.669 0.316 27.78 0.847 0.262

nerfacto† 24.20 0.732 0.237 - 29.26 0.880 0.207 -

Table 3. Quantitative evaluation of our approach for nerfacto† for
Mip-NeRF 360 [3] and Deep Blending [10]. For each dataset, we
report PSNR, SSIM [39] and LPIPS [48]. We highlight best ,
second-best and third-best for each image metric.

The reported run-time results for nerfacto† were obtained on
an NVIDIA RTX 2070 Super.

Further, we evaluate our method on unbounded, real-
world scenes, leveraging the Mip-NeRF 360 [3] and Deep
Blending [10] datasets. We adapt nerfacto† in the following
ways: We use 7× 105 training iterations, disable the appear-
ance embedding, camera optimizer, distortion loss and the
collider. We present our results in Tab. 3 and show example
outputs in Fig. 6. Compared to the results presented for the
LLFF dataset [19], our method performs less favorably in
this scenario. We attribute this to the large sampling domain
in these datasets, which requires more precise density esti-
mates. Performance-wise, we observe the same trends as for
the previous experiments. We used an NVIDIA RTX 4090
for these two datasets.

5.3. Ablation studies

To support our quantitative evaluation, we conduct additional
ablation studies to analyze the effect of varying network
capacity and the use of the ReLU function in our proposed
functions fi. More details and ablation studies are provided
in the supplementary material.

Varying Network Capacity. To investigate the effect of
network capacity, we vary the number of layers for the pro-
posal network sampler of nerfacto† using the Mip-NeRF 360
dataset [3]. We report results in Tab. 4 — remarkably, lower
network capacity allows for better visual quality retention
for our best configuration. As the decomposition property
of NeRFs [38] does not apply to proposal network samplers,
lower network capacity forces the proposal network sampler
to learn a more informative latent representation of density.
We report results for all configurations of ℓ and fi in the
supplementary material — the configuration ℓ = 1 and f2
performs best for all tested network capacities.
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Figure 6. Example renderings from our our method compared to
nerfacto† (Baseline) for the Mip-NeRF 360 dataset [3]. In most
configurations, our approach is able to retain high visual fidelity on
this challenging benchmark.

#Layers nerfacto† Ours, ℓ = 1, f2

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

2 24.201 0.726 0.247 23.686 0.704 0.267
3 24.272 0.732 0.237 23.310 0.700 0.268
4 24.201 0.732 0.237 22.925 0.691 0.279
5 24.176 0.729 0.240 22.941 0.692 0.276
6 24.247 0.732 0.234 22.891 0.690 0.278

Table 4. Effect of varying network capacity for nerfacto† using the
Mip-NeRF 360 dataset [3]: When we decrease capacity and use
the previous best configuration of ℓ = 1 and f2, our method retains
more quality and exhibits better image metrics.

ReLU or no ReLU. We also conduct an additional abla-
tion study to test the effectiveness of applying the ReLU in
Eqns. (10), (11) and (12): We remove the ReLU for all fi,
use the nerfacto† model for the Mip-NeRF 360 dataset [3]
and report the results in Tab. 5.

As we can see, not applying the ReLU leads to worse
outputs for every configuration we tested. Empirically, this
is caused by the more inconsistent histograms and larger
standard deviation σ(fℓ). We note that the configuration
ℓ = 1, f2 performs best for both variants of our method.

6. Limitations
Our method is not without its limitations. For certain test set
views, using Eqn. (10) results in rays r with ŵ = 0, which
does not produce a good set of samples for the subsequent
shading pass. We indicate these cases in Tab. 2 and show
examples in Fig. 7. These failures are particularly evident for
Mip-NeRF, as the fine pass does not include the uniformly

with ReLU without ReLU

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

1
f1 22.796 0.687 0.282 22.347 0.666 0.291
f2 22.925 0.691 0.279 22.565 0.671 0.284
f3 22.804 0.687 0.283 22.535 0.670 0.285

2
f1 22.708 0.683 0.289 21.527 0.637 0.327
f2 22.656 0.681 0.292 21.536 0.637 0.327
f3 22.666 0.680 0.297 21.501 0.635 0.329

3
f1 22.443 0.675 0.305 21.598 0.635 0.334
f2 22.214 0.669 0.309 21.618 0.637 0.332
f3 22.390 0.669 0.316 21.570 0.636 0.333

Table 5. Ablation study on the effectiveness of using the ReLU
function. We evaluate our method with fi, either using the ReLU or
not, for the Mip-NeRF 360 dataset [3] and report averaged scores.
With the ReLU, we obtain better performance for all configurations.

distributed samples. Eqns. (11) and (12) mitigate this issue
effectively, but might lead to outputs with less detail due to
their more conservative formulation.

Although our approach performs well for a variety of
architectures and datasets, extending it to hybrid or explicit
representations such as [8, 21, 33, 44] is not trivial, as these
approaches replace the MLP with more efficient alternatives.
Further, our handcrafted functions for density estimation
were created intuitively and are biased towards uniform or
piecewise-linear sample placement.

Chair Drums Hotdog Ficus

Figure 7. Examples of failures of our method. Using Eqn. (10)
may lead to rays r with ŵ = 0, producing wrong samples for the
subsequent fine pass.

7. Conclusion and Outlook

We have presented a generally applicable framework
to analyze and visualize the intermediate activations of
coordinate-based ReLU-MLPs. Building on our findings,
we proposed a novel method to obtain density estimates
using our derived activation features. We demonstrated
that our approach produces faithful renderings with
improved performance and provided valuable insight into
the internals of neural fields. We believe our concepts could
be applied to other tasks involving coordinate-based MLPs.
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Zollhöfer, and Markus Steinberger. AdaNeRF: Adaptive
Sampling for Real-time Rendering of Neural Radiance Fields.
In ECCV, 2022. 2

[17] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,
Hujun Bao, and Xiaowei Zhou. Efficient Neural Radiance
Fields with Learned Depth-Guided Sampling. In SIGGRAPH
Asia, 2022. 2, 3

[18] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-
jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel
Duckworth. NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections. In CVPR, 2021. 6

[19] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local Light Field Fusion: Practical View
Synthesis with Prescriptive Sampling Guidelines. ACM TOG,
38(4), 2019. 6, 7

[20] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View Syn-
thesis. In ECCV, 2020. 1, 2, 3, 4, 5, 6

[21] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant Neural Graphics Primitives with a Mul-
tiresolution Hash Encoding. ACM TOG, 41(4), 2022. 2, 6,
8

[22] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton S. Kaplanyan, and Markus Steinberger. DONeRF: To-
wards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Comput. Graph. Forum,
40(4):45–59, 2021. 2

[23] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying Neural Implicit Surfaces and Radiance
Fields for Multi-View Reconstruction. In ICCV, 2021. 3

[24] Martin Piala and Ronald Clark. TermiNeRF: Ray Termination
Prediction for Efficient Neural Rendering. In 3DV, 2021. 2, 3

[25] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the Spectral Bias of Neural Networks.
In ICLR, 2019. 1

[26] Sameera Ramasinghe and Simon Lucey. Beyond Periodicity:
Towards a Unifying Framework for Activations in Coordinate-
MLPs. In ECCV, 2022. 1

[27] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang M.
Yi, and Andrea Tagliasacchi. DeRF: Decomposed Radiance
Fields. In CVPR, 2021. 2

[28] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up Neural Radiance Fields with
Thousands of Tiny MLPs. In ICCV, 2021. 2

[29] Christian Reiser, Stephan Garbin, Pratul P Srinivasan, Dor
Verbin, Richard Szeliski, Ben Mildenhall, Jonathan T Barron,
Peter Hedman, and Andreas Geiger. Binary Opacity Grids:
Capturing Fine Geometric Detail for Mesh-Based View Syn-
thesis. arXiv CoRR, abs/2402.12377, 2024. 2, 3

[30] Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha
Balakrishnan, Ashok Veeraraghavan, and Richard G Baraniuk.
WIRE: Wavelet Implicit Neural Representations. In CVPR,
2023. 1

[31] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman,
David B. Lindell, and Gordon Wetzstein. Implicit Neural Rep-
resentations with Periodic Activation Functions. In NeurIPS,
2020. 1

2830



[32] Jost T. Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin Riedmiller. Striving for Simplicity: The All Convolu-
tional Net. In ICLR, 2015. 4

[33] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct Voxel
Grid Optimization: Super-fast Convergence for Radiance
Fields Reconstruction. In CVPR, 2022. 2, 8

[34] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier Features
Let Networks Learn High Frequency Functions in Low Di-
mensional Domains. In NeurIPS, 2020. 1, 3

[35] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent
Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and
Angjoo Kanazawa. Nerfstudio: A Modular Framework for
Neural Radiance Field Development. In SIGGRAPH, 2023. 6

[36] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured View-Dependent Appearance for Neural Radiance
Fields. In CVPR, 2022. 6

[37] Ziyu Wan, Christian Richardt, Aljaž Božič, Chao Li, Vijay
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