
Localised-NeRF: Specular Highlights and Colour Gradient Localising in NeRF

Dharmendra Selvaratnam, Dena Bazazian
University of Plymouth, Faculty of Science and Engineering

School of Engineering, Computing and Mathematics (SECaM)
dharmendra.selvaratnam@postgrad.plymouth.ac.uk; dena.bazazian@plymouth.ac.uk

Abstract

Neural Radiance Field (NeRF) based systems predom-
inantly operate within the RGB (Red, Green, and Blue)
space; however, the distinctive capability of the HSV (Hue,
Saturation, and Value) space to discern between specular
and diffuse regions is seldom utilised in the literature. We
introduce Localised-NeRF, which projects the queried pixel
point onto multiple training images to obtain a multi-view
feature representation on HSV space and gradient space
to obtain important features that can be used to synthe-
sise novel view colour. This integration is pivotal in iden-
tifying specular highlights within scenes, thereby enriching
the model’s understanding of specular changes as the view-
ing angle alters. Our proposed Localised-NeRF model uses
an attention-driven approach that not only maintains local
view direction consistency but also leverages image-based
features namely the HSV colour space and colour gradi-
ents. These features serve as effective indirect priors for
both the training and testing phases to predict the diffuse
and specular colour. Our model exhibits competitive per-
formance with prior NeRF-based models, as demonstrated
on the Shiny Blender and Synthetic datasets. The code of
Localised-NeRF is publicly available 1.

1. Introduction

The journey of image synthesis has evolved significantly
from traditional methods to cutting-edge Neural Radiance
Fields (NeRF). Initially, image synthesis relied heavily on
voxels [6, 30] and meshes [7, 37], which are 3D mod-
els composed of cubes and polygons, respectively. These
methods were instrumental in creating structured, yet of-
ten rigid and computationally intensive representations of
3D scenes. As technology progressed, the desire for more
realistic and dynamically lit environments led to the de-
velopment of NeRF, a technique introduced by Milden-
hall [28]. NeRF [28] represents a paradigm shift in im-

1https://github.com/Dharmendra04/Localised-NeRF

Figure 1. Dark colours and light shiny colours have a higher dis-
tinction in (1- Saturation) value map obtained through HSV space
when compared with the greyscale image obtained from RGB
space. HSV space based on the value and saturation parameters
is capable of distinguishing the glossy regions from other non-
shiny surfaces whereas RGB space does not differentiate it simi-
larly (note the light green dotted circle area in the HSV cone and
red dotted square area in the RGB cube).

age synthesis, using a neural network to model the volu-
metric scene function. This approach allows for generating
highly detailed and photorealistic images from novel view-
points, surpassing the limitations of traditional voxel and
mesh-based methods. NeRF’s ability to interpolate and re-
construct complex scenes with intricate lighting and mate-
rials, marks a significant advancement in the field of com-
puter graphics and virtual reality [8, 20, 50]. In the pursuit
of advancing NeRF for the photorealistic rendering of com-
plex view-dependent phenomena, particularly reflections on
glossy surfaces, various methodologies have been explored.
Prior efforts, such as those by [44], have sought to enhance
the depiction of reflective surfaces through modifications to
the parameters within volumetric rendering equations. Fur-
ther, several approaches have emerged, ranging from the pa-
rameterisation of pixels as a linear amalgamation of basis
functions derived via neural networks [49], to the redefini-
tion of the NeRF function with conditional dependencies on
surface position and orientation in observation space [51],
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and the integration of informed priors for optimised render-
ing [46]. More recently, [21] proposed a novel framework
incorporating a learnable Gaussian directional encoding to
adeptly model view-dependent effects under near-field il-
lumination, offering an alternative to conventional environ-
ment map techniques akin to Ref-NeRf [44].

In this paper, we introduce our Localised-NeRF tech-
nique, which diverges from existing strategies by formu-
lating a mechanism that can synthesise a specular feature
indicating the level of specularity of each point. By do-
ing this, rather than contributing towards the physical equa-
tion of rendering as mentioned by earlier literature, we di-
rect our research towards localising the specular highlight
spots that can be used by the final colour prediction model
to represent accurate specularities. This preliminary step
is inspired by techniques employed in medical imaging, no-
tably for reducing specular reflections in colonoscopy video
frames [1], thereby demonstrating the cross-disciplinary ap-
plicability of such filtering processes. As shown in Fig-
ure 1 by opting for the HSV colour space over the traditional
RGB model, we further enhance the efficacy of this specular
filtering phase, where the HSV space can clearly distinguish
the glossy regions with other non-shiny surfaces.

Our proposed methodology for rendering non-
Lambertian surfaces employs attention-based transformers
to assimilate multiple viewpoints, thereby accurately
delineating colour transitions and specular highlights. This
multifaceted strategy is designed to surmount the inherent
constraints of NeRF in rendering such surfaces. Utilising an
attention mechanism, our model discerns local specularity
and derives colour information from the pixel colours and
gradients of proximate source views. The inclusion of
colour gradients aids the model in identifying regions of
edge significance. A zero gradient across all RGB channels
indicates the absence of an edge or pronounced intensity
variations. Given that our model synthesises target view
features from multi-view inputs, these gradient nuances are
essential for precise colour prediction.

We proposed using two transformers to enhance the ac-
curacy of the multi-view Stereo algorithm. The transform-
ers leverage the HSV and RGB colour spaces to produce
initial specular and RGB colours. We were inspired by [48]
and followed a similar approach to Localised-NeRF, which
aggregates multi-view consistency features, such as satura-
tion and value, in the HSV colour space, RGB and Colour
gradients in RGB space. By employing a transformer
model as opposed to a multilayer perceptron (MLP), we
have efficiently encapsulated the interdependencies among
adjacent features along the ray. This capability to dis-
cern relational nuances presents a significant advantage in-
herent to attention-based mechanisms, as opposed to the
isolated treatment of points characteristic of conventional
NeRF methodologies. Lastly, our approach integrates a 4-

dimensional specular feature vector contingent upon vol-
ume density, which is instrumental in distilling essential
specular attributes, significantly influenced by the spatial
positioning of points, as delineated in [13]. Our contribu-
tions in Localised-NeRF can be summarised as follows:

1. To the best of our knowledge, Localised-NeRF pio-
neers the utilisation of HSV space within the Neural Ra-
diance Field framework, capitalising on its ability to dis-
tinguish high-specularity points more effectively than RGB
space. This technique notably enhances the precision in
identifying specular highlight regions within an image, fa-
cilitating their subsequent accurate colouration.

2. Localised-NeRF exhibits robustness not only to
colour variations within its view space but also demonstrate
locality awareness via gradient space.

The contribution of this paper is not merely in surpass-
ing the benchmarks of current state-of-the-art NeRF-based
techniques. The significant aspects of our work include the
incorporation of HSV and gradient space to tackle the chal-
lenges of accurate specular colour representation. Given
that these features are readily available, our work paves the
way for research into exploiting existing source image char-
acteristics. The results of our proposed method are promis-
ing and represent the initial steps towards developing reli-
able approaches for using the HSV space to identify spec-
ularities. Our work opens new research avenues in NeRF-
based approaches and poses novel research questions, high-
lighting potential areas for further improvement.

2. Related Work
Novel View Synthesis. View synthesis, the creation of
images from novel, unobserved camera viewpoints, has
evolved from simple light field interpolation techniques [10]
for densely captured scenes to sophisticated methods for
sparsely captured images that reconstruct 3D geometry for
novel view rendering [5]. Recent advancements include
NeRF [28], which employs a coordinate-based neural repre-
sentation for photorealistic synthesis by simulating light in-
teraction within a scene. Subsequent models have extended
NeRF’s application to dynamic scenes [33], avatar anima-
tion [34], and phototourism [26], by focusing on improving
view-dependent appearance and geometry’s smoothness.
Additionally, efforts have been made to generalise NeRF
to unseen objects and scenes using local feature projec-
tion [43], improving generalisation through initial weight
adjustments [40], and disentangling shape and texture for
enhanced scene reconstruction [16]. These developments
underline a significant shift towards neural rendering tech-
niques for efficient and high-fidelity novel view synthesis
across various applications. Usually, the above-mentioned
methods are used to colour each 3d point along a ray and use
volume rendering to obtain the final colour of each pixel. In
contrast, [13] used a per-pixel colouring approach to obtain
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a specular colour map, that can added directly to the dif-
fuse colour map to obtain the final colour. Inspired by this
approach and aiming to alleviate the inaccuracies in specu-
lar maps produced therein, we exploited the HSV space to
locate the specularities more efficiently and accurately.

Specular Effects in Neural Radiance Field. The ex-
ploration of specular effects within the domain of Neural
Radiance Fields (NeRF) has led to various advancements
aimed at improving the depiction of glossiness and reflec-
tions. A seminal contribution in this area is Ref-NeRF [44],
which innovatively applies the concept of reflection di-
rection for parameterising the NeRF rendering equation,
deviating from conventional environmental mapping tech-
niques used in computer graphics to simulate reflections
by mapping the environment onto a spherical or cubic sur-
face. This approach is embodied in a view-directional Mul-
tilayer Perceptron (MLP) within Ref-NeRF, further com-
plemented by the integration of Integrated Positional En-
coding (IDE) [3] to meld surface roughness with reflec-
tion direction, utilising spherical harmonic functions for
representation [29]. Given its reliance on precise surface
normals, Ref-NeuS [46] builds upon Ref-NeRF by incor-
porating normal priors, which can be efficiently sourced
from tools like Open3D [54]. In an evolution of encod-
ing methods, [21] adopted Gaussian-based encoding over
IDE, reporting enhanced outcomes. These methodologies
predominantly adopt the Phong reflection model [35] for
BRDF representation, yet historically overlooked the Fres-
nel effect—a gap recently addressed by [41], who differen-
tiated between translucent and reflective surfaces to refine
specular rendering, leveraging an attention mechanism for
this purpose [31]. The realm of dynamic scenes also saw
progress with efforts like [51], which augmented specular
reflections dynamically. Reflecting principles from the field
of computer graphics, the surface colour is often delineated
through a blend of diffuse, specular, and ambient compo-
nents. This concept has led researchers to employ both
specular and diffuse colours in generating the final scene
colour [13, 24]. Furthermore, NeX [49] innovated in ren-
dering shiny surfaces by employing basis functions within
a multi-plane image framework [55], marking a significant
advancement in efficiently capturing specular effects. In our
approach, we stand alone in contrast to other methods, by
pioneering in using the techniques used in medical imaging
to [39] separate high specular highlight from the image and
allow the attention-based model to learn about the variation
of the specularity along the ray. Especially our approach
is also the pioneer in using HSV space with NeRF to ex-
ploit the saturation and the Value which is highly sensitive
to these specularities [1, 2, 9, 25, 32].

Attention-based NeRF. In the evolving landscape of NeRF,
the integration of attention mechanisms has emerged as
a critical avenue for enhancing the fidelity of novel view

synthesis. The concept of applying an attention mech-
anism across the viewing direction is inspired by Pixel
NeRF [52], which pioneered the integration of multi-view
feature consistency into NeRF models utilising single in-
put images [11, 15]. Generalisable NeRF Transformer [47]
leverages transformers for neural scene representation and
rendering by first aggregating multi-view geometry data
along Epipolar line to predict features, and then decoding
the features to render novel views through attention-guided
ray marching [42]. This approach completely proved that
a scene can be reconstructed for novel view synthesis by
using only attention mechanism, and eliminated physical-
based rendering techniques [36]. TransNeRF [45] repre-
sents another leap forward, employing an attention mech-
anism to decode intricate relationships between an arbi-
trary number of source views into a unified scene repre-
sentation, thus addressing the local consistency often over-
looked by MLP-based NeRFs. This method demonstrates
superior performance, especially in scenarios with signifi-
cant viewpoint shifts. ViewFormer [19], by contrast, pro-
poses a 2D-only method focusing on efficiency and rapid
training, using a novel branching attention mechanism for
both neural rendering and camera pose estimation [38], of-
fering competitive results without explicitly reasoning in
3D. The Vision Transformer [22] method takes a distinc-
tive approach by reducing input complexity to a single un-
posed image, merging global and local features to syn-
thesise novel views with rich detail, surpassing existing
methods in rendering quality. Lastly, NeRF-AD [4] intro-
duces an attention-based disentanglement module for talk-
ing face synthesis [14], highlighting the potential of atten-
tion mechanisms in producing highly realistic facial anima-
tions driven by audio cues. Collectively, these advance-
ments underscore the transformative impact of attention-
aware techniques in NeRF [28], paving the way for more ex-
pressive and computationally efficient models in the domain
of novel view synthesis. GeoNeRF [17] introduces a ge-
ometry reasoning stage combined with a Transformer-based
rendering process that adeptly handles occlusions and syn-
thesises photorealistic images from cascaded cost volumes,
showcasing the model’s adaptability to both Synthetic [28]
and Real datasets [27]. Similarly, ABLE-NeRF [41] departs
from traditional volumetric rendering constraints, incorpo-
rating a self-attention [12] framework along rays and lever-
aging learnable embeddings to capture scene-specific view-
dependent effects, significantly diminishing the blurriness
in glossy surfaces and achieving state-of-the-art results in
rendering translucency. As these previously stated mod-
els used attention-based mechanisms to leverage different
properties we proposed a transformer-based model in gra-
dient space and HSV space to capture local information and
specularity property. Our proposed approach contributes to
the literature on using attention models in Neural Radiance
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Fields by introducing a transformer-based model in gradient
and HSV space.

3. Methodology
In pursuit of demonstrating the efficacy of utilising the HSV
space within a NeRF-based model to efficiently highlight
specular reflections, we encountered several challenges in
modelling this network. A primary hurdle was the extrac-
tion of HSV features, given the infeasibility of utilising tar-
get view source pixels during rendering. To address this, we
developed a method to aggregate adjacent source view fea-
tures, encompassing both HSV and gradient information,
as delineated in Section 3.2, drawing on the approach de-
scribed by Wang et al. [48].

Additionally, to accurately predict the final colour, it
was imperative to supplement the residual colour with an
initial colour. This necessitated the integration of multi-
view colour and gradient details from adjacent source view
images, as detailed in Section 3.2. The model’s perfor-
mance was further enhanced by the incorporation of point-
based specular features, as explicated in Section 3.4, which
markedly improved image quality. Ultimately, by amalga-
mating all extracted features, our model successfully gener-
ated pixel-wise residual colour, as presented in Section 3.5.

For those new to the field, we begin with a brief intro-
duction to the basics of NeRF to lay the groundwork for
understanding our contributions.

3.1. NeRF Premilinaries

In the context of neural rendering, accurately modelling
view-dependent effects such as reflections is pivotal for
achieving high-fidelity scene reconstruction. Neural Radi-
ance Fields (NeRF) offer a compelling foundational frame-
work by leveraging a dual MLP architecture that encodes
both the scene’s density and colour. The rendering process
for NeRF synthesises the perceived colour C(o,d) from a
viewpoint o in direction d through the equation:

C(o,d) =
∑
i

wici, (1)

with weights wi derived from the transmittance and den-
sity along the ray path. These weights are formulated as:

wi = exp

−
∑
j<i

σj(tj+1 − tj)

(1− e−σi(ti+1−ti)
)
,

(2)
and the optimisation objective is to minimise the L2

norm of the difference between the predicted and ground
truth pixel colours:

L =
∑
o,d

∥C(o,d)− Cgt(o,d)∥2 . (3)

3.2. Localising Specular Highlights Using Trans-
former

The incorporation of multiple views in our methodology
provides a critical advantage by mitigating ambiguities in-
herent to single-view reconstructions and enriching the
scene understanding. our versatile framework accommo-
dates an arbitrary number of views, thus enhancing recon-
struction fidelity.

During training and inference time, with multiple views
available, we utilize the predefined camera poses. We rep-
resent the ith input image as I(i) and denote its camera’s
transformation matrix, which maps coordinates from the
world space to the camera’s specific view space, as follows:

P (i) =
(
R(i) t(i)

)
(4)

Given a ray from a novel target camera that intersects a
point x in space and has a direction d, we apply the transfor-
mation from world space to the camera space of each input
view [52]. This process yields the transformed position and
direction for the point as observed from the ith camera’s
viewpoint:

x(i) = P (i) · x, d(i) = R(i) · d (5)

We can then transform these camera space coordinates to
pixel coordinates and find the corresponding features for the
queried point for each selected input source camera view.

After extracting the HSV features for the corresponding
source views, view angles between the point of the pro-
jected source camera can be obtained in the world coordi-
nate system using t(i) and x from the following equation:

Viewing Angle = arccos

(
(X,Y, Z) · t(i)

∥(X,Y, Z)∥∥t(i)∥

)
Here, X ,Y , and Z refer to the coordinates of the queried

point x.
More importantly, We formulated obtained HSV colours,

to a single channel using the below equation, which repre-
sents the specularity levels of each pixel [1]. A higher value
means, high specularity in that pixel.

HSV (P)) = (1− S)V (6)

For each point, the extracted HSV features from the cor-
responding source views—as well as the viewing angles,
are transformed into a higher-dimensional space through the
application of a small MLP. This process is uniformly ap-
plied to both the features and the derived viewing angles for
each source view associated with the points. As a result,
this approach generates two distinct sequences: one rep-
resenting the high-dimensional feature space and the other
delineating the space of viewing directions. We employed
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Figure 2. End-to-End training Pipeline: We obtained multi-view HSV and Colour gradients from adjacent source views for a target view
from the training set. First, we used an HSV Feature-based transformer mechanism to attend weights and then concatenated the obtained
HSV features with the specular feature vector obtained from a large MLP. Additionally, we predicted an initial colour by using a self-
attention-based transformer mechanism using source view colour and its gradient. Finally, a small MLP is used to obtain these features,
initial colour, and view direction to output the residual colour. The addition of the initial colour with the residual colour will give the final
colour. The top left side of the figure illustrates we only query the point if it is inside the bounds of the scene.

a method akin to that described by [48] for aggregating
these multi-view features into a higher-dimensional repre-
sentation. Our technique incorporates a masking strategy
for points falling outside the scene’s bounds or obscured
from all source views, thereby enhancing computational ef-
ficiency and reducing storage demands. Furthermore, to
encapsulate global scene characteristics, we augment the
initial HSV features with variance and covariance metrics
computed across the source views. This approach facili-
tates a more nuanced and high-dimensional representation
of the HSV features, enriching the model’s perceptual un-
derstanding of the scene.

For a set of features (will take as B for simplicity) and
camera parameters C, the multi-head attention mechanism
is defined as:

MHA(P,B,C) = Concat(head1, head2, . . . , headn)W
O

(7)
where each head is computed as :

headi = softmax

(
Qi(P)Ki(B,C)T√

dki

)
Vi(B,C) (8)

where Q, K, and V represent the query, key, and value
functions of the attention mechanism, respectively, and dk
is the scaling factor to normalise the dot products.

The attention-weighted feature representations F for
each point are then obtained by:

F(P) = CA(P,B,C) ·W, (9)

where W is a weight matrix learned during training. This
allows the model to allocate weights depends on the specu-
lar highlights level. The obtained weights are then decoded
using a small MLP to produce a 3-dimensional feature vec-
tor representing the HSV space. This method ensures a
more robust detection of specular highlights compared to
the traditional RGB space, where luminance is intertwined
with colour information, potentially leading to less precise
highlight localisation.

3.3. Utilising Colour Gradients Space

In computer vision, the gradient of an image is a fundamen-
tal concept used to identify the directional change in the
intensity or colour of an image. Mathematically, the image
gradient is a two-dimensional vector containing the partial
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Depth Map Residual Colour Specular Feature Ground truth

Figure 3. Obtained Depth map, Residual colour produced from the specular feature + HSV feature, and 4-dimensional specular feature
vector.

derivatives of the image intensity function with respect to
its x and y coordinates. Given an image I , the gradient at
each image point (x, y) is denoted as ∇I and is defined as:

∇I(x, y) =

(
∂I

∂x
,
∂I

∂y

)
(10)

where ∂I
∂x and ∂I

∂y represent the intensity changes in the
horizontal and vertical directions, respectively.

The magnitude and direction of the gradient vector can
be computed as:

|∇I| =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(11)

θ = arctan

(
∂I
∂y

∂I
∂x

)
(12)

These equations to an image I yield gradient compo-
nents Ix and Iy for horizontal and vertical directions, en-
abling the computation of gradient magnitude and direc-
tion [18]. In our model, instead of applying gradients to a
greyscale image, we utilise the gradient on each of the RGB
channels to derive gradients within each RGB space which
outputs a 6 dimension feature vector. This approach offers
significant advantages over using greyscale, as our objec-
tive is not edge detection through this algorithm, but rather
to monitor shifts in colour within the RGB spectrum.

Finally, we output a 3-dimensional initial colour using
the colour gradient and actual colours of adjacent source
views using our gradient transformer. This will enable the
initial colour to capture the directional shifts in colour that
signal the presence of identical objects (Zero Gradient) or
sharp transitions (High Gradient).

3.4. Volume Density and Specular Feature Vector

We used a traditional-based MLP to predict the volume den-
sity, but instead of predicting the RGB, we predicted a spec-
ular feature with a 4-dimensional vector inspired by [13].

The volume density predicted with the feature vector gives a
much better image quality when compared with the separate
attention-based mechanism for volume density and specular
features. Thus this approach is obtained after experimenting
with the model with different approaches. This proves that
though the HSV feature encapsulates the specularity level
of each point, the actual 3D point-related features are req-
uisite in addition to accurately obtaining the final residual
colour.

3.5. Final RGB colour Calculation

After obtaining the initial colour from the gradient-based
transformer and the specular feature from the HSV trans-
former, we concatenate the obtained HSV features, initial
colour, and the 4-dimensional specular feature vector. Fi-
nally, we add the view direction encoding to produce a
view-dependent residual colour using a small MLP net-
work. The right side of Figure 2 and 3rd image on Figure 3
illustrate the mentioned mechanism and obtained residual
colour. Finally by adding the initial colour with this resid-
ual colour final colour is produced.

4. Implementation
Our Implementation is based on using Jax Implementation
of NeRF similar to [13]. Our strategy has a multi-head at-
tention mechanism with Multilayer Perceptrons (MLPs) to
enhance the rendering of specular highlights within HSV
and colour gradient spaces. The end to end network was
trained for 250k iterations, with a learning rate initially set
at 2 × 10−4 and annealed to 2 × 10−6 after a 2500 itera-
tion warm-up. The optimisation utilised Adam with β1 set
to 0.9 and β2 to 0.999. Each scene, comprising 25 training
sample images as candidate views, was trained on GeForce
RTX 4090 GPUs, leveraging a batch size of 64 rays, reflect-
ing the volumetric properties influenced by view direction.

Localised-NeRF incorporates distinct multi-head and
self-attention mechanisms to process HSV and gradient fea-
tures independently. Feature aggregation from adjacent
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source views is executed through a two-layer MLP, encom-
passing 64 and 32 channels, respectively, to encode the ac-
quired features. For HSV attributes, four attention heads
are employed in conjunction with a dual-layer feed-forward
network. Gradient features are analogously subjected to
a self-attention mechanism paired with a two-layer feed-
forward network. After the attention weights computation,
a decoder MLP with two layers of 16 and 3 channels is
utilised. Density prediction and the generation of a four-
dimensional feature vector are facilitated by a substantial
MLP with 512 channels. Conclusively, a smaller MLP com-
prising 16 channels across two layers is deployed to yield
the terminal residual colour output.

Without HSV With HSV Ground-Truth

L
eg

o
D

ru
m

Figure 4. First column - Localised-NeRF without HSV feature
(Ablating HSV transformer), Second column - Localised-NeRF
model with HSV feature, Third column - Ground Truth image.
Lego and Drum scenes from synthetic dataset [28]. The red bound-
ing box in the images without HSV features has been significantly
enhanced by the model which considers HSV features.

To bolster the dependability of our model across both the
training and testing phases, we adopted a strategy to train
the model to obtain different sequences of source views
based on the Euclidean distance and viewing angle differ-
ence. This facilitated the selection of a set of 25 viewing
cameras that were nearest to the queried camera, all the
while ensuring the exclusion of the queried training view
from the source views. For each queried point, we organised
the angles between the source view camera and the queried
camera, following the methodology outlined in [48]. These
sequences delineated the camera direction projecting the
pixel of a queried point towards that point, which was
then leveraged by our attention models. This identical ap-
proach was applied during the testing phase also. Hence,
we avoided the model relying on a particular set of images.

5. Results

We conducted an experiment using two datasets: the NeRF
synthetic dataset [28] and the Shiny Blender dataset of Ref

Table 1. Comparison of PSNR and SSIM Metrics on Synthetic
Dataset [27]. Our results (Localised-NeRF) are compared with
and without HSV features. The top first and second results are
shown in bold and underlined respectively.

Method PSNR ↑ SSIM ↑
PhySG [53] 20.60 0.861
VolSDF [3] 27.96 0.932

Mip-NeRF [3] 33.09 0.961
Ref-NeRF [23] 33.99 0.966

ABLE-NeRF [41] 35.02 0.975
Localised-NeRF (without HSV) 29.94 0.945

Localised-NeRF (with HSV) 33.25 0.969

Table 2. Comparison of PSNR and SSIM Metrics on Shiny-
Blender Dataset [44]. Our results (Localised-NeRF) are compared
with and without HSV features. The top first and second results
are shown in bold and underlined respectively.

Method PSNR ↑ SSIM ↑
PhySG [53] 26.21 0.921

Mip-NeRF [3] 29.21 0.942
Ref-NeRF (without normal) [44] 30.91 0.936

Ref-NeRF [23] 35.96 0.967
ABLE-NeRF [41] 33.88 0.969

Localised-NeRF (without HSV) 30.93 0.949
Localised-NeRF (with HSV) 33.79 0.964

NeRF [44]. The NeRF synthetic [28] dataset consists of
objects that have 100 training views and 200 test views at
a resolution of 800 × 800. The views were sampled either
on the upper hemisphere or the full sphere. On the other
hand, this dataset contains objects with complex geometry
but is limited in terms of material variety, with most scenes
being largely Lambertian. For our experiment, we used the
Shiny Blender [44] dataset, which consists of six different
glossy objects rendered in Blender under conditions simi-
lar to NeRF’s dataset [28]. Each scene in this dataset has
100 training and 200 testing images, which contain more
reflection and glossy effects to showcase our model poten-
tial. We compared our models with other previous models
which used attention mechanisms by using multi-view fea-
tures through SSIM and PSNR metrics. SSIM measures
image quality by comparing structural similarity. PSNR
assesses reconstruction quality by calculating the ratio of
signal power to noise power. From Table 1 and Table 2,
it is evident that our model was outperformed by both the
Ref-NeRF [44] and ABLE-NeRF [41] models across the
datasets. This suggests that Localised-NeRF could enhance
its capabilities by incorporating parameterisation based on
reflection direction to predict RGB colour or by transition-
ing towards a non-physically based rendering approach.
Despite this, it performed comparably to previous mod-
els, demonstrating its proficiency in producing high-fidelity
novel synthetic images.
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Table 3. Ablation study made by changing the number of input
views to 10,15 and 25. Drum and Lego scene from Synthetic
dataset [28] and Ball scene from Shiny Blender dataset [44].

PSNR ↑ SSIM ↑
Scene 10 15 25 (Final) 10 15 25 (Final)
Ball 28.95 30.01 33.21 0.919 0.932 0.965
Lego 27.12 29.98 33.75 0.923 0.942 0.961
Drum 26.16 29.67 32.21 0.919 0.938 0.953

Table 4. Ablation study made by removing: HSV features, Ini-
tial colour obtained from gradient transformer, and 4-dimensional
Specular feature. Final: All features are integrated. Scene: Ball
scene obtained from Shiny Blender dataset [44] and Lego and
Drum obtained from Synthetic dataset [28].

PSNR ↑ SSIM ↑
Ball Lego Drum Ball Lego Drum

HSV feature 27.23 28.17 26.88 0.912 0.909 0.896
Initial Colour 29.89 29.91 28.16 0.931 0.928 0.917

Specular Feature 30.09 30.15 29.90 0.948 0.943 0.938
Final 33.21 33.75 32.21 0.965 0.961 0.953

6. Ablation Studies

Figure 4 presents a comparison of Localised-NeRF with-
out the HSV feature. It is apparent that the incorporation
of localised specularity, obtained via the HSV transformer,
markedly enhances the image quality and reduces blurri-
ness. The observed data clearly demonstrate that, upon the
removal of HSV features, the designated areas within both
the Lego and Drum scenes undergo a substantial loss of ge-
ometric integrity. This underscores the benefits of utilis-
ing HSV features and leveraging the HSV space to accen-
tuate specular reflections in the model. Furthermore, we
have compared Localised-NeRF with and without the gra-
dient transformer and the four-dimensional specular feature
as shown in Table 4. It appears that, in contrast to other fea-
tures such as colour gradients and specular features derived
from the MLP, HSV features significantly aid the model
in synthesising high-quality images. It can be seen all the
HSV, gradient and specular features are essential compo-
nents of Localised-NeRF to make it robust to produce bet-
ter novel view synthesis From Table 3, we have provided
an ablation on how the number of source views impacts the
image quality metrics, and as usual, a high number of im-
ages leads to better image quality, due to the storage and
training time concerns, we fixed the source views with 25,
and if more resource available, it can be further increased to
obtain a better performance.

7. Limitations

Our presented technique represents an initial foray into the
ambitious endeavour of predicting specular effects within
images utilizing the HSV space. Despite its innovative ap-

proach, our method is not without limitations. A signifi-
cant constraint is its dependency on the availability of con-
sistent, high-quality multi-view training data, which may
not always be readily accessible. Furthermore, the com-
plexity of the implemented attention mechanism escalates
computational and storage requirements, which could ad-
versely affect training and inference efficiency, particularly
in environments with limited resources. Rather than fo-
cusing on the extraction of general features blindly and by
specifically identifying useful feature spaces such as HSV
for specular reflections, we have demonstrated the poten-
tial for making models more robust and their application
more feasible. Modelling this approach without reliance
on physically-based rendering and investigating its appli-
cability for real-time rendering presents an intriguing and
promising avenue for future research.

8. Conclusion
NeRF-based models, traditionally reliant on RGB space,
encounter difficulties in identifying specularities within
scenes containing non-Lambertian materials. Although
previous works have explored the parameterisation of the
NeRF equation and employed non-physical-based render-
ing methods, there has been a lack of consideration for
utilising available image features to enhance specular ef-
fects. The current study introduces a novel and pioneer-
ing approach, termed Localised-NeRF, which exploits the
HSV colour space to accurately identify specular locations
without necessitating any complicated re-parameterisation
of the radiance field. Specifically, this method leverages the
transformer architecture to produce enhanced specular fea-
tures that accurately represent the specular levels of each
pixel. These features can subsequently be utilised in the
final colour prediction phase to precisely locate the specu-
larity levels. Furthermore, the incorporation of colour gra-
dients across all RGB channels enables the model to encode
information not only about the colour attributes of a point
but also about the variations in intensity across different
source views. To evaluate the generalization of the proposed
approach, we trained an independent model that sampled
the nearest cameras for a test sample in the testing dataset.
We found that the performance of our approach is compara-
ble to that of previous multi-view feature-dependent mod-
els. Overall, the results of the present study demonstrate
the efficacy of our approach in producing novel views and
its potential to be used for a variety of applications in com-
puter vision such as product visualisation. We posit that
Localised-NeRF stands as a pioneering effort in localising
specular effects within novel view synthesis, thereby stim-
ulating further interest among researchers to explore and
leverage specific image-based features. This exploration
aims to uncover their potential advantages in predicting the
radiance field.
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[7] Hervé Delingette. General object reconstruction based on
simplex meshes. International journal of computer vision,
32:111–146, 1999. 1

[8] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde
Duinkharjav, Praneeth Chakravarthula, Xubo Yang, and Qi
Sun. Fov-nerf: Foveated neural radiance fields for virtual
reality. IEEE Transactions on Visualization and Computer
Graphics, 28(11):3854–3864, 2022. 1

[9] Melanie Ganz, Xiaoyun Yang, and Greg Slabaugh. Auto-
matic segmentation of polyps in colonoscopic narrow-band
imaging data. IEEE Transactions on Biomedical Engineer-
ing, 59(8):2144–2151, 2012. 3

[10] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In Seminal Graphics Pa-
pers: Pushing the Boundaries, Volume 2, pages 453–464.
2023. 2

[11] Jiatao Gu, Alex Trevithick, Kai-En Lin, Joshua M Susskind,
Christian Theobalt, Lingjie Liu, and Ravi Ramamoorthi.
Nerfdiff: Single-image view synthesis with nerf-guided dis-
tillation from 3d-aware diffusion. In International Confer-
ence on Machine Learning, pages 11808–11826. PMLR,
2023. 3

[12] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-
Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang,
Ralph R Martin, Ming-Ming Cheng, and Shi-Min Hu. At-

tention mechanisms in computer vision: A survey. Compu-
tational visual media, 8(3):331–368, 2022. 3

[13] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 2, 3, 6

[14] Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juy-
ong Zhang. Headnerf: A real-time nerf-based parametric
head model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20374–
20384, 2022. 3

[15] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5885–5894, 2021. 3

[16] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 12949–12958, 2021. 2

[17] Mohammad Mahdi Johari, Yann Lepoittevin, and François
Fleuret. Geonerf: Generalizing nerf with geometry priors.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18365–18375, 2022.
3

[18] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L
Baker. Design of an image edge detection filter using the
sobel operator. IEEE Journal of solid-state circuits, 23(2):
358–367, 1988. 6
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