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Table 4. Number of parameters required by each model, with
instance- and view-specific parameters separated out. Note that
our architecture (Ours) includes an additional appearance stream
to enable disentangling of shape and appearance, allowing for ma-
terial editing, at the cost of additional parameters. The remaining
architectures have a single stream. Our single-stream entangled ar-
chitecture (Ours-E) has fewer parameters than the StyleGAN base-
line (Ours-E-SG) and the best performing competitor (EG3D).

Method # model params # code params
per instance

# code/camera
params per view

CodeNeRF [22] 714K 512 0/6
EG3D [5] 28.7M 512 0/6

Ours-E-SG [5] 28.7M 512 0/6
Ours-E 25.8M 512 32/6
Ours 37.5M 768 32/6

6. Implementation Details

6.1. Architecture

Our backbone architecture, for the triplane decoders,
consists of 6 upsampling blocks with channel widths
648/648/648/648/324/162 that decode a shared, learnable
4×4×648 tensor into a 256×256×162 feature map. This
feature map is interpreted as three 256 × 256 × 54 feature
planes: a triplane. Note that the channel widths are divisible
by 3, and that group convolutions are used throughout the
decoder in order to process the triplanes independently (i.e.
without introducing spurious correlations). We use SiLU
activations [18] in the residual blocks, and GeGLU activa-
tions [41] in the conditioning blocks.

The density, diffuse, and specular networks are imple-
mented as MLPs with 0/1/1 hidden layers of dimension
64/128/128, with a 5-frequency Integrated Directional En-
coding (IDE) [51] on the view directions. All latent codes
have 256 parameters, except the directional code which has
an additional 32 per-frame parameters.

6.2. Optimization

We optimize the network with AdamW [25, 29] with the ini-
tial learning rate, beta, and weight decay parameters given
in Tab. 5. Note that momentum is not used to optimize the
camera or latent code parameters (beta1=0) since they are
accessed and receive a gradient signal only infrequently.
For the large dataset (4157 instances), our model reaches
convergence after 1M iterations on 4 NVIDIA A40 GPUs,
which takes 322h with an un-optimized PyTorch Lightning
implementation. A recent profiling study suggests that over-

Table 5. AdamW optimization parameters.

Parameter group Learning rate Betas Weight decay

Model 5× 10−5 (0.9, 0.999) 1× 10−2

Camera 5× 10−4 (0, 0.9) 1× 10−2

Latent codes 2.5× 10−3 (0, 0.9) 1× 10−2

heads associated with PyTorch Lightning may make it 3.6×
slower than a pure PyTorch implementation [46]. We use a
learning rate scheduler that decays the learning rate of each
parameter group by a factor of 0.5 every 800 epochs.

We form a batch by sampling 4 instances (objects) per
batch, 8 images per instance, 256 rays (pixels) per image,
and 256 points per ray. We train with hyperparameters
λm = 1 and λd = 0.1. We evaluate the co-reconstruction
performance on a random subset of 1000 instances of the
NuScenes dataset.

7. ScanNet Dataset Results
In this section, we evaluate on another real-world dataset,
the indoor ScanNet dataset [11]. We focus on the chairs
category, which is the most numerous and diverse cate-
gory. ScanNet was not captured for the purpose of recon-
structing chairs; this incidental capture setting is reflected in
the chairs being heavily occluded and seen from very lim-
ited viewpoints (i.e., not circumnavigated). Moreover, the
masks used for the chairs are quite inaccurate, often missing
the legs entirely, and that occlusions are extremely preva-
lent. This severely impedes the reconstruction performance
of all models. Despite this, our model is able to produce
reasonable reconstructions.

The results are shown in Fig. 9. It is notable that train-
ing diverged for the CodeNeRF [22] and EG3D [5] models
on this dataset, likely due to the poor mask estimates. In
contrast, our model was able to learn to co-reconstruct the
chairs, despite the poor quality of the input masks. This
shows that our model is able to handle noisy incidental data
more gracefully than existing methods.

8. ShapeNet Dataset Details and Results
Here, we first provide additional details on our re-rendered
ShapeNet cars dataset [7]. We use Blender to render
medium-resolution (512 × 512) images against a white
background, with cameras randomly distributed on the unit
sphere, looking at the object. This contrasts with the dataset
generated for Scene Representation Networks (SRN) [43],
which contains low-resolution (128 × 128) images with



Figure 9. Co-reconstruction results on chairs from the real-world ScanNet dataset [11]. Repeats as: ground-truth image, training view
render, novel view render. Note that the model is severely under-trained at this point, so fine details are missing. ScanNet was not captured
for the purpose of reconstructing chairs; this incidental capture setting is reflected in the chairs being heavily occluded and seen from very
limited viewpoints (not circumnavigated).

transparency and specularities disabled. Other than this,
we follow the dataset split and rendering protocol of SRN.
While it may be less appropriate quick experimentation, our
higher-resolution dataset brings the data closer to real con-
ditions and challenges. We also provide the ground-truth
depth maps to faciliate geometric evaluation. Since this
synthetic dataset provides exact camera poses, has a plain
white background, has static objects only, and has constant
camera parameters (focal length, exposure, etc.), we do not
enable camera optimization, the mask loss, or view codes.

For the experiment, we train on the 2458 training in-
stances and evaluate on the reserved test frames for the same
instances. The frames are divided into a train–test split such
that the train and test frames are taken from a strictly differ-
ent half-space sx > 0 where the sign s ∈ {−1,+1} is
chosen at random per instance. In our coordinate system,
this corresponds to a left–right split about the car’s symme-
try axis. This experiment therefore assesses the ability of a
model to extrapolate to significantly different viewpoints—
visualizing a side of the car it has not seen.

The results for the ShapeNet cars and chairs datasets
are shown in Tab. 2, with additional qualitative results in
Figs. 10 and 11, where we evaluate on a subset of 1000
instances (∼41%). They indicate that our model can re-
construct the training data with high fidelity, despite shar-
ing almost all parameters between the instances, and can
accurately extrapolate to views unseen in the training data.
In particular, we outperform the baseline CodeNeRF [22]
model with respect to all measures, including the perceptual
similarity (LPIPS), since our renders are less blurry and per-
ceptually closer to the ground truth, and the mean absolute
error of the distance maps (D-MAE)—i.e. the geometric
error—because the reconstructions are more detailed. Note
that EG3D [5] training diverged on the ShapeNet Cars and
Chairs datasets.

9. Additional Qualitative Results
In this section, we present additional high-resolution quali-
tative results on the NuScenes dataset [4], shown in Figs. 12
and 13. We also include high-resolution videos of our
novel view synthesis results alongside this document, for
co-reconstruction experiment. They show a consistent re-

construction with smoothly varying view-dependent effects
and high-frequency specular highlights appearing where ap-
propriate, despite one side of the car being entirely unseen
in most of the training instances.

We also present qualitative results on the Woven Planet
(Lyft) Level 5 dataset [20] in Fig. 14, where we observe
similarly high-quality reconstructions. This is the same set-
ting as for the NuScenes experiments, using incidental data
from driving sequences.

Finally, we trained a representative in-the-wild mesh
reconstruction method “Shelf-Supervised Mesh Predic-
tion” [54] on the NuScenes dataset and provide the qual-
itative results in Fig. 15. This approach performs signifi-
cantly worse than the baselines reported in the main paper,
which we attribute to a lower tolerance for occlusion, blur,
and noisy masks. In particular, we can see that it struggles
to reconstruct from truncated views (where only part of the
car is visible in the input image), which are very typical of
incidental data like that captured in the NuScenes dataset.



Ground-truth Ours CodeNeRF Ground-truth Ours CodeNeRF

Figure 10. Co-reconstruction results on the synthetic ShapeNet Cars dataset. We display the ground-truth image alongside the rendered
images from our model and CodeNeRF [22], for test frames from the unseen side of the car, testing the ability of the models to extrapolate
and learn shape and appearance priors. Our model produces noticeably sharper and more detailed reconstructions than CodeNeRF [22].



Ground-truth Ours CodeNeRF

Figure 11. Co-reconstruction results on the synthetic ShapeNet Chairs dataset. We display the ground-truth image alongside the rendered
images from our model and CodeNeRF [22], for test frames from the unseen side of the car, testing the ability of the models to extrapolate
and learn shape and appearance priors. Our model produces noticeably sharper and more detailed reconstructions than CodeNeRF [22].
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Figure 12. Comparison of co-reconstruction methods on the NuScenes car dataset. Our model produces sharper reconstructions than
EG3D [5] and CodeNeRF [22], which is particularly noticeable at the wheels and handles.



Tr
ai

ni
ng

O
ur

s
E

G
3D

C
od

eN
eR

F
Tr

ai
ni

ng
O

ur
s

E
G

3D
C

od
eN

eR
F

Figure 13. Comparison of co-reconstruction methods on the NuScenes car dataset. Our model produces sharper reconstructions than
EG3D [5] and CodeNeRF [22], which is particularly noticeable at the wheels and handles.



Figure 14. Qualitative results for co-reconstructions on the Woven Planet (Lyft) Level 5 dataset [20].

Ground truth Shelf-Supervised Mesh Prediction

Figure 15. Qualitative results of the reconstructions on the Nuscenes dataset using the mesh-based self-supervised approach [54]. Note it
struggles to reconstruct in this challenging setting.Shelf-Supervised Mesh Prediction in the Wild
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