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1. Additional implementation details
1.1. Derivation of the KL regularizer

In order to model the ray termination distribution we start by
representing the density ¢ as a narrow bell shaped function
using the sech? function. We use the sech? over a Gaussian
for its simplicity when computing integrals. We define the
estimated density as follow:

5(r) = S x sech? (M) (1)
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With d’ and o4 the mean and variance and S a scale
factor. The final ray termination distribution is then com-
puted using the following equation: w(r) = T(r)a(r), with
T(r) = exp(— fo ). We intent to have an analytical
formulat10n of w(r) NY) 1t is easier and faster to compute
the resulting KL regularizer In order to do this we need to
compute the integral in T'(r fo s)ds. We start with the

following,
/ a(s)ds = / S x sech? ((s—d)> ds
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We can plug the result of Eq 2 into our custom ray termi-
nation distribution and express w analytically as follow

_ &(r)eisad [tanh(%) tanh(;—j)]

= S.sech? <M> e S04 [m"h(%)_m"h<%)]
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We can now use that estimation of a ray termination
distribution in a KL regularizer.

N
L1 = —% ZZlog(w r

n=1 k
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With N the number of rays per batch, A, the ray march-
ing step size and w the predicted ray termination distribution.
Note here that although a we could have represented the &
function with a Gaussian, we wouldn’t have been able to
compute an analytical formulation of the integral on Eq. 2,
and estimating such integral would have been computation-
ally costly.

1.2. Expectation of the custom ray termination dis-
tribution

It is important that the expectation of the ray termination
distribution be centered on the depth measurement d in order
to ensure a good quality of reconstruction. The custom ray
termination distriubtion involves a mean d’ and variance
oq parameters. Naively setting d’ = d would lead to a
bias estimator. We can compute the expected value of the
distribution w in order to set the parameter d’.

E.(w) = /OO r.ao(r)dr 5)

When reusing the results in Eq. 3 and by setting y =
(r 4) and C = tanh ( ) we have,

E.(w) = / oa(yoq + d').S.sech?(y)eSoaltanh(v)=Cl g,
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= S(fz/ y.sech2(y)efsad[tanh(y)fc]dy
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+ Sadd’/ sech?(y)eS7altanh(v)=Clg,,

= So3 x A+ Soud x B
(6)
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With A and B the two integrals. In addition, we can notice
that d’ > o4 therefore we can simplify C' = tanh (;—f) ~

—1. We can now rewrite the two integrals A and B as two
functions that do not depend on d'.

A= /OO y-SechQ(y)e—Sod[tu’rLiL(y)+1]dy
oo ™
B = / SechZ(y)efsad[tanh(y)+1]dy

In practice computing these integrals is difficult. However,
we only need to evaluate them once. Therefore, we estimate
these integrals using a sampling based approach at the be-
ginning of each run. We can then infer the parameter d’ by
setting the expectation value to the depth measurement d, i.e.
E,. (@) = d. We then find,
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¢ = Soq x B ®

1.3. Hyperparameters

We detail here the hyperparameters and network structure
used in SLAIM. We build our code upon the existing Instant-
NGP framework [3]. Our NeRF model uses hash-grid fea-
tures with 16 levels and 2 features per levels. The base
resolution of the feature grid is set to R,,;, = 16, and we
set the max resolution R,,,, to the next power of 2 value
such that it corresponds to a resolution of 1 cm for Replica
[5], 2cm for TUM [6] and 4cm for ScanNet [1]. We do not
use the ray direction as input to our network. Both MLP
decoders have one hidden layer with 32 neurons. We use the
Adam optimizer [2] with a learning rate of 1.e~2 without
any scheduler. In TUM and ScanNet experiments we use a
subset of M = 5 keyframes for local bundle adjustment. We
do not perform local bundle adjustment in Replica.

TUM settings. We use an .S = 10000 and o4 = 0.02 in
the custom ray termination distribution. The camera pose
parameters’ learning rate is set to 1.e 2 during tracking and
5.e~* during mapping. We perform 15 tracking iterations
with a GPL of 2: 5 iterations at each levels 2, 1 and 0. During
the mapping phase we perform 15 iterations of local bundle-
adjustment first and 15 additional global bundle adjustment
iterations using a GPL of 2 (ie. 5 iterations at each levels 2
to 0). We sample N; = N,,, = 2048 rays for both mapping
and tracking, we use Ay = 1 and A\g;, = 10..

ScanNet settings. We use an S = 5000 and o4 = 0.04
in the custom ray termination distribution. The camera pose
parameters’ learning rate is set to 1.e =3 during tracking and
5.e~* during mapping. We perform 15 tracking iterations
with a GPL of 2: 5 iterations at each levels 2, 1 and 0. During
the mapping phase we perform 15 iterations of local bundle-
adjustment first and 15 additional global bundle adjustment
iterations using a GPL of 2 (ie. 5 iterations at each levels

2 to 0). We sample N; = 2048 and N,,, = 4096 rays for
tracking and mapping respectively, and we use Ay = 1 and
A = 1.

Replica settings. We use an S = 10000 and o4 = 0.01
in the custom ray termination distribution. The camera pose
parameters’ learning rate is set to 1.e 2 during tracking and
5.e~* during mapping. We perform 10 tracking iterations
with a GPL of 1: 5 iterations at each levels 1 and 0. During
the mapping phase we perform 20 iterations of global bundle-
adjustment only using a GPL of 1 (ie. 10 iterations at each
levels 1 and 0). We sample N; = N,, = 4096 rays for
tracking and mapping, and we use Ay = 1 and A = 1..

1.4. Camera tracking evaluation protocol

To evaluate the camera tracking performances we first per-
form a global alignment between the generated camera poses
and the ground-truth ones to alleviate any downgrading ef-
fects due to global shifts. This is a common practice in
evaluation of SLAM systems [4, 7-9]. We further compute
the absolute translation error (ATE) as the RMSE between
the ground-truth poses and the aligned generated ones.

1.5. 3D reconstruction elvaluation protocole

In the realm of neural implicit reconstruction and SLAM, it
is necessary to perform an additional mesh culling step to
limit the extrapolation capabilities of NeRf when rendering
a mesh outside of the camera view frustrum. We adopt the
same strategy as in Co-SLAM [8]. We compute the global
camera viewing frustrum given the set of camera poses plus
additional poses generated to handle occlusions. We then
remove any vertices outside of that viewing frustrum. This
is a simple yet effective technique to limit reconstruction
artifacts outside of the targeted region.

2. Additional details on the Ours,;; experi-
ments.

In our experiments, we compared our SLAIM model to an-
other baseline, that we refer to as SLAIM ;¢ (MG stands
for max-grid). This baseline also does coarse-to-fine track-
ing by rendering blurry images in the early tracking iter-
ations. To construct blurry images SLAIM);¢ renders
images using different grid-resolution features. We use a
max-grid-level parameter mgl < L that we use to set a max
resolution the network is allowed to use to construct the
position embedding y. Grid features for higher levels are
set to 0, and the final positional encoding can be written as
y = [hé (), .y h?gl(x), 0|. This implementation is inter-
esting because it requires no extra training steps or additional
FLOPs operations during tracking or mapping. However,
from our results on the TUM dataset [6], we observe that
this baseline performs worse than previous baselines. We
hypothesis that the reason is because the generated blurry



images contain reconstruction artifacts. We show some of
these reconstructions defaults in Fig. 1. For instance in the
lowest resolution we observe a blue area near the top left
part of the image which is inconsistent with the original
image. We believe that this phenomena is due to the MLP
decoder trying to overcompensate the lack of high-frequency
features.
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Figure 1. Visualization of 2D NeRF reconstructions of the SLAIM ;¢ model with different mgl levels. Each sub-figures has ground-truth
views on the top and reconstructions at the bottom. We show different reconstructions with mgl levels 2, 4, 8, and 16. We observe that the
low resolution reconstruction contain artifacts such as the blue area under the monitor in the mgl = 2 figure. In addition the table edge
appears more blurry in mgl = 4 compared to mgl = 2 which is counter intuitive.
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