
Supplementary Material: GHNeRF: Learning
Generalizable Human Features with Efficient

Neural Radiance Fields

1. Implementation Details

In the following section, we present details regarding imple-
mentation to ensure reproducibility. It is important to note
that we did not extensively optimize the architecture or the
training procedure due to the significant computational time
and resource needed. Thus, there is the possibility that dif-
ferent variations of the hyperparameter can result in a better
model.

1.1. Human Feature Encoder

This section presents a comprehensive explanation of our
human feature encoder, as introduced in the main paper.
Our approach integrates two encoder architectures: DINO
and ResNet with a focus on the ResNet34 and ResNet18
variants. For an image with dimensions H ⇥ W , the fea-
ture map obtained from the ResNet encoder has dimen-
sions 512 ⇥ H ⇥ W . Following the approach of Pixel-
NeRF [45], we utilized a pre-trained ResNet model on Im-
ageNet. We extracted a feature pyramid similar to Pixel-
NeRF and concatenated them to generate a feature volume
of size 512 ⇥ H/2 ⇥ W/2. Finally, the feature volume
was upsampled to generate a human feature with dimen-
sions 512⇥H ⇥W .

Additionally, our framework incorporates a pre-trained
DINO [4] ViT-Small model with a patch size of 8, which
was obtained from the official GitHub repository. To gen-
erate the final feature, we extracted features from the 9th
and 11th layers of the DINO model and concatenated them.
The resulting feature has a shape of 384 ⇥ H/8 ⇥ W/8.
Subsequently, we up-sampled the features using bilinear in-
terpolation to obtain a feature shape of 384⇥H ⇥W .

1.2. NeRF Architecture

We utilized an MLP named gNeRF to produce intermediate
NeRF features from images. Subsequently, smaller MLPs
were used to generate the outputs. In our experiments, we
used 2 fully connected layers for gNeRF , which takes fimg

and fvoxel as inputs, following a similar approach as de-
scribed in ENeRF [21]. To generate the density � from the
intermediate NeRF feature, we used an MLP g� , which con-
sists of a single linear layer followed by a softmax layer. To
estimate the pixel color, we used an MLP gc with 2 lin-
ear layers and 2 ReLU activation functions. The heatmap
generation was performed using the gh MLP, which takes
VNeRF and fh as input. gh utilizes 2 linear layers with
ReLU and Sigmoid activation functions.

1.3. Experimental Setup
We assessed the performance of our method using two
datasets: ZJU MoCap and RenderPeople. For the
ZJU MoCap dataset, we utilized 6 dynamic sequences,
namely CoreView 315, CoreView 377, CoreView 387,
CoreView 390, CoreView 394, and CoreView 393 for train-
ing, and CoreView 313 and CoreView 386 for testing. We
did not include the CoreView 392 sequence in our evalu-
ation, as it is missing frame data. We used the 2D joint
locations provided by ZJU MoCap to generate heatmaps
during training. For training and testing, we limited the
frames to an initial 600 frames and divided the total number
of cameras equally for training and testing purposes. Dur-
ing training and testing, we generate a 3D bounding box
around the dynamic entity using the SMPL model provided
in ZJU MoCap dataset, we project it to obtain a bound-
ing mask and make the colors of pixels outside the mask
as zero. For RenderPeople, we used the foreground mask
of the dataset. Rays are sampled only inside the mask re-
gions. We calculate PSNR, SSIM, and LPIPS within the
masked region. For the RenderPeople dataset, we randomly
chose 440 sequences for the training set and 60 sequences
for the test set. As RenderPeople does not provide any key-
point information, we used OpenPose as a teacher network
to learn the heatmap feature. We utilized 8 samples and 32
volume planes for the course network in all of our experi-
ments, while for the fine network, we used 4 samples and
8 volume planes. We implemented our method and base-
line with PyTorch. We report the evaluation metrics and the
rendering speed using a single RTX 3090 GPU. We plan to
incorporate more datasets for the purpose of benchmarking
in future.

2. Additional Experiments and Results
In this section, we present additional results and experi-
ments.

2.1. Coordinate Loss Function
To enhance the spatial perception of our NeRF representa-
tion, we introduce a coordinate loss, lcoord, aimed at min-
imizing the Mean Squared Error (MSE) between the input
3D coordinates and the 3D points regressed by the network.
This is achieved by incorporating an additional branch in
the output to approximate the input query point x. The MLP
gco, responsible for this task, processes intermediate NeRF
features through a linear layer followed by a ReLU activa-
tion function. The composite loss function is formulated as
follows:

l = lcol + �plperc + �hlheat + �clcoord (S1)

where the weighting coefficients �p, �h, and �c are set to
0.01, 0.5, and 0.01/0.05, respectively. Table 1 shows the



quantitative results of our experiments with coordinate loss.

2.2. Additional results
In this section, we further explore the qualitative and
quantitative results obtained from the ZJU MoCap and
RenderPeople datasets.

2.2.1 ZJU MoCap dataset:

Additional qualitative insights for the novel view synthesis
on ZJU MoCap are illustrated in Figures S1 and S2. Our
proposed method, GHNeRF , uses heatmaps for keypoint
estimation. The estimated heatmaps generated by our
method are shown and compared in Figures S3 and S4. We
have observed missing data in the ground-truth heatmaps.
To ensure accurate evaluation metrics, we have excluded
the keypoints associated with these missing data. We have
compared our 2D keypoint estimate with the baseline in
Figures S5 and S6.

2.2.2 RenderPeople dataset:

In order to demonstrate the effectiveness of our approach
on various human images, we evaluated its performance us-
ing the RenderPeople dataset, which is a simulated dataset.
The RenderPeople dataset does not include any ground-
truth keypoints, therefore, we train our model for the key-
point estimation task by distilling a state-of-the-art pose es-
timation algorithm. We provided qualitative results of the
novel view synthesis on the RenderPeople dataset in Figure
S7. In Figure S8, we present the performance of our model
in heatmap estimation and keypoint prediction. We used an
image resolution of 512⇥512 for all experiments conducted
on the RenderPeople dataset.

2.2.3 Dense Pose estimation:

We conducted additional experiments to demonstrate that
GHNeRF can be utilized to estimate various human fea-
tures beyond just keypoints. Our model was trained on
ZJU MoCap dataset to predict dense human pose as Con-
tinuous Surface Embedding. We trained our model by dis-
tilling the SoTA DensePose[11] algorithm. We have pre-
sented the qualitative results of dense pose estimation with
the ResNet and DINO encoder in Figure S9 and Figure S10,
respectively.



Encoder PSNR SSIM LPIPS MSE PCK
ResNet34 31.20 0.963 0.054 0.0004 0.573

DINO 31.61 0.966 0.050 0.0003 0.687
ResNet34+co+0.01 31.57 0.964 0.057 0.0010 0.292
ResNet34+co+0.05 31.33 0.958 0.072 0.0008 0.427

Table 1. Quantitative results of coordinate loss experiments compare to other methods.

Figure S1. Qualitative results on CoreView 313 sequence of ZJU MoCap dataset.

Figure S2. Qualitative results on CoreView 386 sequence of ZJU MoCap dataset.



Figure S3. Qualitative results of heatmap prediction on CoreView 313 sequence of ZJU MoCap dataset. We estimated 25 keypoints and
visualized each channel separately in 5⇥ 5 grids.



Figure S4. Qualitative results of heatmap prediction on CoreView 386 sequence of ZJU MoCap dataset. We estimated 25 keypoints and
visualized each channel separately in the 5⇥ 5 grids.



Figure S5. Qualitative results of keypoint estimation on CoreView 313 sequence of ZJU MoCap dataset.

Figure S6. Qualitative results of keypoint estimation on CoreView 386 sequence of ZJU MoCap dataset.



Figure S7. Qualitative results of novel view synthesis on RenderPeople dataset.



Figure S8. Qualitative results on RenderPeople dataset. The illustration shows predicted heatmaps along with estimated keypoints from
heatmaps.



Figure S9. Qualitative results of dense pose estimation with ResNet encoder. We have compared ground truth and predicted Continuous
Surface Embeddings.

Figure S10. Qualitative results of dense pose estimation with DINO encoder. We have compared ground truth and predicted Continuous
Surface Embeddings.


