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Abstract

Existing methods have been developed for light field (LF)
image Super-Resolution (SR) and achieved continuously
improved performance while suffering a significant perfor-
mance drop when handling scenes with large disparity vari-
ations. EPIT [1] was proposed to mitigate the disparity is-
sue through non-local spatial-angular correlation learning.
However, EPIT has limitations due to the limited scale of
existing LF datasets and the presence of imbalanced LF dis-
parity, especially the scarcity of large disparity. To address
this issue, we present a series of strategies to scale EPIT,
called BigEPIT, including compound model scaling, aug-
mented data resampling, and a high-precision test scheme.
Specifically, the compound scaling method simultaneously
scales the depth and width of the model to better improve
the model capability. The augmented resampling method
employs varying sampling intervals during training data
generation, rather than solely relying on the central region
view. This approach mitigates issues related to disparity
imbalance and overfitting. The patch-based test scheme is
popular because of its small GPU memory footprint. The
traditional zero padding method and window partition will
destroy the LF disparity structure and degrade the perfor-
mance. Moreover, we find a positive correlation between
the performance and the patchsize. Therefore, we advocate
a high-precision test scheme i.e., a full-size or larger patch-
size without zero padding for testing wherever the GPU
memory permits, to achieve superior results. Extensive ex-
periments demonstrate the effectiveness of our proposed
method, which ranked 1st place in the NTIRE 2024 Light
Field Image Super-Resolution Challenge.

1. Introduction
Light field (LF) images, captured in a single snapshot, not
only record the spatial information of a scene but also con-
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Figure 1. Visualization of 4× SR results of our method and state-
of-the-art methods [1, 26] under different disparity values of LFs.
Our method achieves superior performance and is robust to dispar-
ity variations.

tain abundant angular information. This has given rise to ex-
tensive practical applications, e.g., depth estimation [2–10],
view synthesis [11, 12], 3D reconstruction [13], and virtual
reality [14]. However, due to the inherent trade-off between
spatial and angular resolution in LF images, it is challenging
to obtain high spatial resolution with rich angular informa-
tion or vice versa, limiting the practical applications of LF
images. Therefore, numerous methods have been dedicated
to enhancing the LF spatial or angular resolution, i.e., LF
spatial or image super-resolution (SR) [15–39].

In the early studies [15–20], researchers followed the tra-
ditional paradigm and proposed various models to formu-
late the problem. However, despite being able to capture the
structure of LF, these models exhibited limited performance
due to the inadequate representation capacity of handcrafted
image priors. In recent years, convolutional neural net-
works (CNNs) have been effectively utilized in the field of
LF image SR and made substantial advancements [21–35].
However, existing methods have achieved promising results
on LF scenes with small baselines. However, their perfor-
mance significantly deteriorates when handling scenes with
large disparity variations. This may be attributed to the lim-
ited local receptive field of CNNs. Therefore, EPIT [1] was
proposed to alleviate the disparity issue in LF images by uti-
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lizing horizontal and vertical epipolar Transformer to learn
non-local spatial-angular correlations. However, EPIT still
has room for improvement due to the limited scale of ex-
isting LF datasets and the imbalanced LF disparity, partic-
ularly the scarcity of large disparities. On the other hand,
due to the large image size when testing, the patch-based
test scheme is popular because of its small GPU memory
footprint. The traditional zero padding method and window
partition destroy the disparity structure of LFs and degrade
the performance.

We aim to scale EPIT reasonably and further enhance
the model’s generalization ability to handle disparity varia-
tions of LF images. This paper presents a series of strategies
to solve the above challenges, including compound model
scaling, augmented data resampling, and a high-precision
test scheme. Specifically, inspired by EfficientNet [40],
we adapt the compound scaling method to simultaneously
scale the depth and width of the model, called BigEPIT,
which can better improve the model capability. The aug-
mented resampling method specifies different sampling in-
tervals when generating the training data rather than just
using the view of the central region to alleviate disparity
imbalance and overfitting problems. The augmented resam-
pling method [41] addresses the issues of disparity imbal-
ance and overfitting by generating training data with dif-
ferent sampling intervals, instead of solely relying on the
central region view. Moreover, we have found that there
is a positive correlation between the performance and the
patchsize when the patch-based test scheme. We propose
the adoption of a high-precision testing scheme, where a
full-size or larger patch size is used without zero padding
whenever the GPU memory allows to achieve superior re-
sults. Finally, our method achieves superior performance
and is robust to disparity variation, as shown in Fig. 1.

In summary, the contributions of this work are as fol-
lows: (1) We propose a series of strategies that success-
fully scale the EPIT model to BigEPIT, which can better
solve the disparity problem in LF image SR, including com-
pound model scaling, augmented data resampling, and a
high-precision test scheme. (2) Compared to existing state-
of-the-art LF image SR methods, our method achieves su-
perior performance i.e., average PSNR of 30.80 dB on real
and synthetic LF images, and won 1st place in the NTIRE
2024 Light Field Image Super-Resolution Challenge.

2. Related Work

2.1. Traditional Methods

Light Field Super-Resolution (LFSR) techniques primar-
ily fall into two camps: those that rely on disparity, and
those that leverage learning-based approaches to understand
scene structures either directly or indirectly. Utilizing esti-
mated structural information as a basis, numerous studies

have concentrated on the challenge of accurately warping
images from multiple viewpoints to access sub-pixel details,
thereby enhancing spatial resolution. Notably, Wanner [42]
utilized the structure tensor to deduce depth from Epipolar
Plane Images (EPIs), employing this data to refine the reso-
lution of view images through interpolation. Similarly, Mi-
tra adopted a Gaussian Mixture Model to enhance LF patch
resolution by leveraging disparity estimates. Other strate-
gies [43] involve direct pixel warping from various views
to restore image quality. Recently, Zhang et al. [44] intro-
duced a method to correlate microlens and view images, us-
ing the texture-rich microlens photos for view image recov-
ery. Rossi [20] proposed a graph-based regularization tech-
nique, formulating a global optimization challenge to simul-
taneously upgrade the resolution across all LF views. This
process involves rough disparity estimation for warping cal-
culations and geometric structuring among views for opti-
mized super-resolution outcomes. However, despite the ad-
vent of numerous disparity estimation techniques [45], the
reconstructed view images remain prone to errors. These in-
accuracies often lead to noticeable artifacts, especially near
occlusion boundaries, highlighting the challenges still faced
in achieving accurate LFSR.

2.2. CNN-based Methods

Recently, advancements have shown that deep Convo-
lutional Neural Networks (CNNs) outperform traditional
techniques in enhancing the spatial resolution of Light
Fields (LF). In the groundbreaking study, LFCNN [21],
Sub-Aperture Images (SAIs) were initially improved in res-
olution using SRCNN [46], followed by a fine-tuning pro-
cess in pairs to boost both spatial and angular sharpness.
Building on this, Yuan refined the LFCNN approach by em-
ploying EDSR [47] for each SAI’s super-resolution, along-
side crafting an EPI-enhancement network to refine prelimi-
nary outcomes. Jin [22] introduced a novel strategy for spa-
tial super-resolution by advocating an all-to-one approach,
incorporating structural consistency regulation to safeguard
parallax integrity. Meanwhile, Zhang et al. [24] devel-
oped a multi-stream residual framework, utilizing stacks of
SAIs from varying angular perspectives as input. Extending
their work, Zhang et al. [23] and associates further ampli-
fied super-resolution efficacy through the execution of 3D
convolutions on these SAI stacks across different angular
orientations. Yeung et al. [29] proposed LFSSR to al-
ternately reshape LF images between the SAI pattern and
MacPI pattern for convolution. Most recently, Wang et al.
[48] have leveraged deformable convolution techniques on
LF imagery, specifically to navigate and rectify the dispar-
ity challenges inherent in LF spatial super-resolution. More
recently, Wang et al. [27] introduced the DistgSSR net-
work, bringing to the fore a novel and efficient mechanism
for disentangling complex image features. This approach
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Figure 2. An overview of our BigEPIT network. A 3×3 LF is used as an example for illustration.

employs distinct Spatial, Angular, and Epipolar Plane Fea-
ture Extractors, each tailored to isolate and process unique
aspects of LF data. This methodology underscores a sig-
nificant advancement in precision and quality of LF image
super-resolution, enabling more detailed and accurate re-
construction of light field imagery.

2.3. Transformer-based Methods

Lately, transformer-based models, celebrated for their ca-
pacity to handle long-range dependencies, have found ex-
tensive application across a variety of visual tasks. Models
like the Vision Transformer (ViT) [49] for image classifi-
cation, DETR [50] for object detection, and SETR [51] for
semantic segmentation have recorded remarkable achieve-
ments in foundational tasks of computer vision. Their suc-
cess underscores the transformative impact of transformer
architecture in enhancing the accuracy and efficiency of
computer vision applications. DPT [52] and LFT [26] stand
out as two notable examples of employing transformer tech-
nology for LF-SSR. DPT utilizes transformers to treat SAIs
along each vertical or horizontal axis as sequences, delv-
ing into the long-range relationships within them. On the
other hand, LFT adopts a dual approach, alternating be-
tween angular transformers, which focus on modeling each
macro-pixel, and spatial transformers, dedicated to each
SAI. This strategy effectively merges angular and spatial in-
sights, showcasing the versatility and depth of transformers
in enhancing LF-SSR. More recently, EPIT [1] has delved
further into addressing the challenges posed by large dis-
parity variations inherent in LF. It specifically models the
long-range dependencies present within EPIs, showcasing
an advanced approach to understanding and managing the
complexities associated with LF imaging. This innovation
marks a significant step forward in enhancing the precision
and effectiveness of LF image analysis.

3. Method

In this section, we first introduce the network architecture
and then present some improvements, including compound
model scaling, augmented data resampling, and a high-
precision test scheme.

3.1. Network Architecture

An overview of our BigEPIT is shown in Fig. 2. Our net-
work takes an LR LLR ∈ RU×V×H×W as its input and
produces an HR LF LHR ∈ RU×V×αH×αW where α
presents the upscaling factor. Our network consists of three
stages including initial feature extraction, non-local cascad-
ing block, and spatial upsampling. Please refer to EPIT [1]
for more details.
Initial Feature Extraction: We follow the EPIT [1] to use
three 3×3 convolutions with LeakyReLU to map each SAI
to a high-dimensional feature. The initially extracted fea-
ture can be represented as F ∈ RU×V×H×W×C , where C
denotes the channel dimension.
Non-Local Cascading Block: Through stacking several of
the Non-Local Cascading blocks, the model can achieve a
global perception of all angular views and follow SwinIR
[53] to adopt spatial convolutions to enhance the local fea-
ture representation. The non-local cascading block consists
of a horizontal EPI transformer, a vertical EPI transformer,
and spatial convolutions sequentially. Note that the weights
of the two basic transformer units in each block are shared,
which can help teach the spatial-angular correlation better.
Spatial Upsampling: Following EPIT [1], we apply the
pixel shuffling operation to increase the spatial resolution of
LF features, and further employ a 3×3 convolution to obtain
the super-resolved LF image work. We also employ L1 loss
function to train our network due to its robustness to out-
liers. We convert input images into the YCbCr color space,
and only super-resolve the Y channel of images, leaving Cb
and Cr channel images being bicubicly upscaled.

3.2. Compound Model Scaling

Drawing inspiration from EfficientNet [40], the fundamen-
tal idea is that deeper networks possess the ability to capture
complex and richer features, leading to improvement in the
SR task. However, training deep networks can be challeng-
ing due to the problem of vanishing gradients. On the other
hand, wider networks can capture finer details and are com-
paratively easier to train. Nevertheless, extremely wide but
shallow networks often struggle to capture higher-level fea-
tures. In summary, we adopt a compound scaling strategy,
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(a) width scaling (b) depth scaling (c) compound scaling

Figure 3. Different variations of model scaling. (a) Width scaling.
(b) Depth scaling. (c) Compound scaling that uniformly scales
width and depth with a fixed ratio. Figure references from [40].

which involves simultaneously scaling the width and depth
of the network with a fixed ratio, e.g., 2. Specifically, we
increase the width from 64 → 128 and the number of the
Non-Local Cascading block from 5 → 10.

3.3. Augmented Data Resampling

We find that in the existing LF datasets, there is an imbal-
ance in disparity and large disparity data are scarce, which
causes the model to be sensitive to large disparity. Assume
that LFs have an angular resolution of 9 × 9. Inspired by
[41], we also use the augmented data sampling strategy to
extract 5 × 5 SAIs for training and testing, as shown in
Fig. 4, including central sampling, even sampling, and un-
even sampling. This strategy explicitly increases the num-
ber of images of large disparity, which can improve the ro-
bustness of the model to disparity variations, while increas-
ing the training time. Therefore, a trade-off needs to be
considered in terms of time and precision.

3.4. High-Precision Test Scheme

While BigEPIT effectively learns disparity features, the tra-
ditional post-processing test scheme that employs center
padding disrupts the disparity structural correlation within
the SAI subspace, as illustrated in Fig. 5 (a). Specifi-
cally, the SAIs captured by LF cameras adhere to strict op-
tical disparity constraints. Each subspace within the LF
image exhibits significant spatial-angular correlation, with
the disparity values gradually decreasing from the outer-
most layer towards the center. However, the introduction of
artifact padding values with an inaccurate disparity struc-
ture through center padding undermines the disparity rela-
tionship within the subspace, leading to poorer predictions
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Figure 4. Illusatrtion of the augmented data sampling strategy,
including central sampling, even sampling, and uneven sampling.

(a) Patch: Zero Padding (b) Patch: Without Padding (c) Full-size

Figure 5. Illustrations of different LF cropped image methods in
the testing phase. Here, the center SAI is used for illustration.

by the networks. To address this issue, DistgEPIT [41]
proposed a Position-Sensitive Windowing (PSW) opera-
tion aimed at preserving the disparity structural consis-
tency within the SAI (Sparse Angular Image) subspace dur-
ing windowing, without requiring additional computations.
Without the need for padding operations, this operation uti-
lizes a sliding window approach to crop the block in an
overlapping manner. For border values, it backtracks to fill
in the entire block, as depicted in Fig. 5 (b).

However, existing patch-based testing schemes often
employ smaller patches, e.g., 32×32. Through experi-
ments, we found that our model’s performance follows the
principle of ”the larger the image patch size, the better.”
In the extreme case of directly inputting the entire image,
it achieves the best performance. We analyze this phe-
nomenon as being attributed to our model’s ability to ob-
tain a sufficiently large receptive field, allowing for better
utilization of spatial and angular correlations. Therefore,
we suggest implementing a high-precision test scheme,
i.e., full-size or larger patch size is employed without zero
padding whenever the available GPU memory permits to
achieve superior results.

4. Experiments
In this section, we first introduce the dataset, implementa-
tion details, and evaluation metrics. Then, we quantitatively
and qualitatively compare our approach with state-of-the-art
methods. Next, we compare the performance of different
LF image SR methods in real LF scenes. Finally, we ver-
ify the effectiveness and robustness of our method through
a series of ablation experiments.
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Table 1. PSNR/SSIM metrics comparison among the other prestigious approaches for 4× upscaling factors with 5×5 angulars resolution.
The best averaged results are achieved by our BigEPIT method highlighted in bold fonts. For a fair comparison, we also use the Position-
Sensitive Windowing (PSW) test scheme setting with DistgEPIT [41]. Aug means trained on an augmented data resampling strategy, and
TTA means the test-time-augmentation technique by using seven different affine transformations.

Methods EPFL HCInew HCIold INRIA STFgantry Average

Bicubic 25.14 / 0.8324 27.61 / 0.8517 32.42 / 0.9344 26.82 / 0.8867 25.93 / 0.8452 27.58 / 0.8701
VDSR[54] 27.25 / 0.8777 29.31 / 0.8823 34.81 / 0.9515 29.19 / 0.9204 28.51 / 0.9009 29.81 / 0.9066
EDSR[47] 27.84 / 0.8854 29.60 / 0.8869 35.18 / 0.9536 29.66 / 0.9257 28.70 / 0.9072 30.20 / 0.9118
RCAN[55] 27.88 / 0.8863 29.63 / 0.8886 35.20 / 0.9548 29.76 / 0.9276 28.90 / 0.9131 30.27 / 0.9141

resLF[24] 28.27 / 0.9035 30.73 / 0.9107 36.71 / 0.9682 30.34 / 0.9412 30.19 / 0.9372 31.25 / 0.9322
LFSSR[29] 28.27 / 0.9118 30.72 / 0.9145 36.70 / 0.9696 30.31 / 0.9467 30.15 / 0.9426 31.23 / 0.9370
LF-ATO[22] 28.52 / 0.9115 30.88 / 0.9135 37.00 / 0.9699 30.71 / 0.9484 30.61 / 0.9430 31.54 / 0.9373

LF-InterNet[28] 28.67 / 0.9162 30.98 / 0.9161 37.11 / 0.9716 30.61 / 0.9491 30.53 / 0.9409 31.58 / 0.9388
LF-DFNet[23] 28.77 / 0.9165 31.23 / 0.9196 37.32 / 0.9718 30.83 / 0.9503 31.15 / 0.9494 31.86 / 0.9415
MEG-Net[56] 28.74 / 0.9160 31.10 / 0.9177 37.27 / 0.9716 30.66 / 0.9490 30.77 / 0.9453 31.71 / 0.9399
LF-IINet[52] 29.11 / 0.9188 31.36 / 0.9208 37.62 / 0.9734 31.08 / 0.9515 31.21 / 0.9502 32.08 / 0.9429

DPT[52] 28.93 / 0.9170 31.19 / 0.9188 37.39 / 0.9721 30.96 / 0.9503 31.14 / 0.9488 31.92 / 0.9414
LFT[26] 29.25 / 0.9210 31.46 / 0.9218 37.63 / 0.9735 31.20 / 0.9524 31.86 / 0.9548 32.28 / 0.9447

DistgSSR[27] 28.99 / 0.9195 31.38 / 0.9217 37.56 / 0.9732 30.99 / 0.9519 31.65 / 0.9535 32.11 / 0.9440
EPIT[1] 29.34 / 0.9197 31.51 / 0.9231 37.68 / 0.9737 31.27 / 0.9526 32.18 / 0.9571 32.40 / 0.9452

DistgEPIT [41] 30.09 / 0.9224 31.61 / 0.9252 37.96 / 0.9742 32.35 / 0.9535 32.45 / 0.9589 32.90 /0.9468
BigEPIT 30.26 / 0.9236 31.80 / 0.9264 38.05 / 0.9754 32.40 / 0.9547 32.70 / 0.9601 33.04 / 0.9480

DistgEPIT+Aug [41] 30.17 / 0.9232 31.71 / 0.9263 38.03 / 0.9744 32.39 / 0.9535 32.74 / 0.9604 33.01 / 0.9476
BigEPIT+Aug 30.36 / 0.9256 31.85 / 0.9270 38.08 / 0.9750 32.51 / 0.9557 33.00 / 0.9619 33.16 / 0.9491

DistgEPIT+Aug+TTA [41] 30.41 / 0.9260 31.91 / 0.9283 38.24 / 0.9753 32.60 / 0.9551 33.06 / 0.9626 33.25 / 0.9495
BigEPIT+Aug+TTA 30.61 / 0.9282 32.05 / 0.9287 38.31 / 0.9761 32.76 / 0.9573 33.27 / 0.9636 33.40 / 0.9507

4.1. Datasets and Implementation Details

In our LF image SR experiments, we utilize five widely
used LF image datasets: EPFL [58], HCINew [59], HCI-
old [42], INRIA [60], and STFgantry [61], following the
approach of previous methods [26, 28, 48, 52, 56]. All LFs
in these datasets have an angular resolution of 9 × 9. For
training, we employ the augmented data sampling strategy,
as depicted in Fig. 4, to extract 5 × 5 SAIs. For testing,
we only extract the central 5× 5 SAIs. During the training
stage, each SAI is cropped into patches of size 128 × 128
with a stride of 32. LF patches of size 32 × 32 are gener-
ated using bicubic downsampling. To augment the training
data, we apply random horizontal flipping, vertical flipping,
and 90-degree rotation. The Adam optimizer [62] is em-
ployed with a batch size of 2 per GPU and a learning rate of
2 × 10−4, which is halved every 15 epochs. Our BigEPIT
model with augmented data sampling is implemented in the
PyTorch framework and trained for 30 epochs using four
Nvidia A100 GPUs. Similarly, our BigEPIT model with
central sampling is trained for 50 epochs using two Nvidia
A100 GPUs. For evaluation, we employ the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) [63] as
the evaluation metrics. Following the procedure of previous
methods [26, 28, 48, 52, 56] when calculating the average
metric for a dataset, we first average the metric scores for all
SAIs within each scene, and then average the metric scores

across all scenes in the dataset.

4.2. Comparison with State-of-the-art methods

We compare our method with 15 state-of-the-art SR meth-
ods, including 3 single image SR methods [47, 54, 55] and
12 LF image SR methods [1, 22–24, 26–29, 41, 48, 52, 56].
Quantitative Results. Table 1 shows a quantitative com-
parison among LF image SR methods. Our BigEPIT of
different versions all achieves state-of-the-art quantitative
metrics, i.e., the final version is PSNR of 33.40 dB and
SSIM of 0.9507, exceeding 0.15 dB compared to DistgEPIT
[41]. Note that for a fair comparison, we use the PSW test
scheme setting with DistgEPI [41]. This demonstrates the
robustness of our BigEPIT, in particular the large disparity
dataset, the STFgantry [61], captured with a Lego Gantry.
Qualitative Results. Figure 6 shows the qualitative re-
sults achieved by different methods for 4× SR. As can
be seen from the zoomed-in areas, the SISR method (i.e.,
VDSR) cannot reliably recover the missing details, such
as the handrail area in the scene Sculpture. While other
LFSR methods have achieved promising results, they often
struggle with reconstructing numerical patterns in the scene
ISO Chart, and the corresponding texture in EPI images is
not sufficiently clear. In contrast, our approach not only
achieves superior visual quality but also exhibits sharper
and clearer lines with fewer artifacts in EPI images. The
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INRIA_Sculpture

Bicubic
27.44/0.8721

VDSR
29.04/0.9026

DPT
30.15/0.9364

resLF
29.63/0.9240

LF-ATO
29.84/0.9342

LF-InterNet
30.12/0.9355

MEG-Net
29.86/0.9346

LFT
30.32/0.9385

DistgSSR
30.13/0.9384

EPIT
30.61/0.9394

Ours
32.33/0.9434

GT
PSNR/SSIM

EPFL_ISO Chart

Bicubic
21.57/0.7943

VDSR
24.48/0.8961

DPT
27.10/0.9374

resLF
25.99/0.9228

LF-ATO
26.15/0.9333

LF-InterNet
26.55/0.9315

MEG-Net
26.72/0.9325

LFT
27.34/0.9410

DistgSSR
27.17/0.9403

EPIT
27.82/0.9441

Ours
30.38/0.9571

GT
PSNR/SSIM

Figure 6. Qualitative comparison of different SR methods for 4×SR. The super-resolved center view images, vertical or horizontal EPIs
are shown. Best viewed zoom-in electronically.

Table 2. Comparisons of PSNR metric among different model scaling schemes in EPIT [1] for 4× SR, with the best results highlighted in
bold. FLOPs are computed with an input LF of size 5×5×32×32. Note that all methods are trained and tested with the same settings.

Scaling Channels Blocks #Params. Flops EPFL HCInew HCIold INRIA STFgantry Average

base 64 5 1.14M 55.30G 29.81 31.45 37.73 32.05 32.07 32.62
width 128 5 4.55M 216.19G 29.97 31.57 37.83 32.21 32.25 32.77
width 180 5 9.02M 426.95G 30.02 31.63 37.86 32.20 32.30 32.80
depth 64 10 2.11M 103.85G 29.95 31.58 37.80 32.19 32.23 32.75
depth 64 20 4.04M 202.94G 29.99 31.58 37.85 32.23 32.27 32.79
depth 64 45 8.86M 450.67G 30.04 31.65 37.88 32.22 32.32 32.82

compound 128 10 8.32M 413.85G 30.25 31.80 38.05 32.40 32.70 33.04

slope of these lines is related to the depth values, which
demonstrates that our method can preserve the LF disparity
structure well.
Angular Consistency. Furthermore, we assess the angu-
lar consistency by employing a depth estimation algorithm
called SPO [57]. As depicted in Fig. 7, the depth estimation
results obtained using the SISR method exhibit significant

noise and higher MSE ×100 error, indicating a lack of con-
sideration for the angular information in LF images. In con-
trast, when utilizing LF images generated by our method,
we observe a substantial improvement in depth estimation
accuracy. The resulting depth map exhibits visually clear
quality and demonstrates the lowest MSE ×100 error com-
pared to alternative methods. This further highlights the su-
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Table 3. Comparisons of PSNR metric among different training data resampling for 4× SR, with the best results highlighted in bold.

Resampling EPFL HCInew HCIold INRIA STFgantry Average

Central 30.25 31.80 38.05 32.40 32.70 33.04
Central+Even 30.34 31.84 38.07 32.49 32.91 33.13

Central+Even+Uneven 30.36 31.85 38.08 32.51 33.00 33.16

2.066

HCIold_Buddha VDSR ATO IINet

HR

1.103 0.932MSE

0.539

DPT

EPITLFT

0.884

DistgSSR

0.881

Ours

0.887 0.848

SPO

0.980

Figure 7. Depth estimation results achieved by SPO [57] using
4× SR LF images produced by different SR methods. We report
the mean square error multiplied by 100 (MSE ×100). Lower is
better.

RCAN resLF LFSSR

INRIA_Hublais LF-ATO DPT

Ours

MEG-Net

LFT LF-IINet DistgSSR EPIT

Figure 8. Visual comparison of different SR methods on real-
world LF scene for 4× SR.

perior angular consistency achieved by our method.
Performance on Real Scenes. We conduct a comparison
of different methods on the real scene Hublais from the
INRIA dataset [60]. As illustrated in Fig. 8, certain SR
methods, such as RCAN [55] and resLF [24], yield blurry
results lacking realism. Similarly, the outcomes obtained
from InterNet [48] and DistgSSR [27] methods exhibit no-
ticeable unrealistic artifacts. In contrast, our method gener-
ates results with clearer edges and enhanced visual percep-
tion compared to the other methods. This observation con-
firms that our approach successfully achieves the intended
goals with superior robustness.

4.3. Ablation Study

In this subsection, we further analyze the effectiveness of
the strategies proposed in our work, including compound
model scaling, augmented data resampling, and a high-
precision test scheme.
Model Scaling. We perform scaling on the EPIT model
based on different strategies, i.e., width scaling, depth scal-
ing, and compound scaling. In Table 2, we first validate the
effectiveness of width scaling. We observe that increasing
the width from 64 to 128 results in a PSNR improvement of
0.15 dB. However, when the width is further increased from
128 to 180, the PSNR only increases by 0.03 dB. This indi-
cates that solely increasing the width leads to a quick satu-
ration of the model’s performance. Similar observations can
be made for depth scaling. Furthermore, we adjust the cor-
responding number of channels and blocks to ensure that the
models following the three scaling strategies have roughly
the same number of parameters and Flops. From Table 2,
it can be observed that our compound scaling achieves the
best results. This demonstrates the importance of consider-
ing both width and depth when scaling the model.
Study of Training Data. We continue our investigation
into the impact of training data resampling strategies on the
model. As shown in Table 3, the utilization of Even sam-
pling significantly enhances the model’s performance on the
large-disparity dataset (STFgantry [61]), resulting in a no-
table increase of 0.21 dB. Corresponding improvements can
also be observed on other datasets. Moreover, when com-
bined with uneven sampling, the performance can be fur-
ther improved. Finally, the augmented data resampling can
achieve an average PSNR improvement of 0.16 dB. It is im-
portant to note that employing the augmented resampling
strategy increases training time and requires a trade-off be-
tween training time and model accuracy.
Study of Test Schemes. Lastly, we investigate the im-
pact of testing schemes on the model performance, taking
pre-trained EPIT as an example. From the table, it can
be observed that PSW without zero padding improves the
PSNR by 0.23 dB, and the performance improvement be-
comes more significant as the tested patch size increases.
The best results are obtained when testing with the full-
size input, which elevates the PSNR of the EPIT model
from 32.42 dB to 32.71 dB. This demonstrates the impor-
tance of selecting an appropriate testing scheme. Therefore,
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Table 4. Quantitative PSNR comparison among different test strategies and settings of pre-trained EPIT [1] model. † means using PSW
strategy due to limited GPU memory.

Scheme Patchsize Stride Padding EPFL HCInew HCIold INRIA STFgantry Average

Origin 32 16 Zero 29.34 31.51 37.68 31.37 32.18 32.42
PSW 32 16 - 29.85 31.46 37.67 32.11 32.16 32.65
PSW 48 24 - 29.87 31.50 37.69 32.12 32.19 32.67
PSW 64 32 - 29.88 31.51 37.70 32.15 32.22 32.69
PSW 96 48 - 29.89 31.52 37.72 32.15 32.24 32.70

Full-size - - - 29.90 31.53 37.72† 32.16 32.24† 32.71

Table 5. Our team achieved first place in the leaderboard (last three rows) on the NTIRE-2024 test dataset. TTA means the test-time-
augmentation technique by using seven different affine transformations.

Methods Params. Lytro Synthetic Average

Bicubic - 25.109 / 0.8404 26.461 / 0.8352 25.785 / 0.8378
VDSR[54] 0.665 M 27.052 /0.8888 27.936 / 0.8703 27.494 / 0.8795
EDSR[47] 38.89 M 27.540 / 0.8981 28.206 / 0.8757 27.873 / 0.8869
RCAN[55] 15.36 M 27.606 / 0.9001 28.308 / 0.8773 27.957 / 0.8887

resLF[24] 8.646 M 28.657 / 0.9260 29.245 / 0.8968 28.951 / 0.9114
LFSSR[29] 1.774 M 29.029 / 0.9337 29.399 / 0.9008 29.214 /0.9173
LF-ATO[22] 1.364 M 29.087 / 0.9354 29.401 / 0.9012 29.244 / 0.9183

LF-InterNet[28] 5.483 M 29.233 / 0.9369 29.446 / 0.9028 29.340 / 0.9198
MEG-Net[56] 1.775 M 29.203 / 0.9369 29.539 / 0.9036 29.371 / 0.9203
LF-IINet[52] 4.886 M 29.487 / 0.9403 29.786 / 0.9071 29.636 / 0.9237

DPT[52] 3.778 M 29.360 / 0.9388 29.771 / 0.9064 29.566 / 0.9226
LFT[26] 1.163 M 29.657 / 0.9420 29.881 /0.9084 29.769 / 0.9252

DistgSSR[27] 3.582 M 29.389 / 0.9403 29.884 /0.9084 29.637 / 0.9244
EPIT[1] 1.470 M 29.718 /0.9420 30.030 /0.9097 29.874 / 0.9259

HLFSR-SSR[35] 13.87 M 29.714 /0.9429 29.945 / 0.9097 29.830 / 0.9263

DistgEPIT[41]-TTA 19.02M 30.746 / 0.9468 30.460 / 0.9146 30.603 / 0.9307
BigEPIT-TTA 8.32M 30.951 / 0.9492 30.578 / 0.9164 30.765 / 0.9328

BNU&TMU-AI-TRY / 31.003 / 0.9496 30.602 / 0.9167 30.803 / 0.9332
BITSMBU / 30.930 / 0.9486 30.525 / 0.9159 30.727 / 0.9322
OpenMeow / 30.961 / 0.9491 30.457 / 0.9154 30.709 / 0.9323

when GPU resources allow, testing with the full-size input
or larger patch sizes without zero padding can be employed
to achieve higher accuracy.

4.4. NTIRE 2024 LFSR Challenge Results

In the NTIRE 2024 LFSR challenge, a new dataset is devel-
oped, consisting of 16 synthetic LFs and 16 real-world LFs
captured by the Lytro camera for the test subset. During
the challenge, participants are strictly prohibited from us-
ing any external models or data, including pre-trained back-
bones and optical flow networks. For reporting the final
results, we employed the average ensemble method to com-
bine the outputs generated by BigEPIT, DistgEPIT [41], and
RR-HLFSR [35] with TTA, since the three models have dif-

ferent structures. Table 5 shows that our team achieved 1st
place with a PSNR of 30.803 dB on the LFSR test dataset.

5. Conclusion

In this paper, we have proposed a series of strategies that
successfully scale the EPIT model to BigEPIT, which can
better solve the disparity problem in LF image SR, includ-
ing compound model scaling, augmented data resampling,
and a high-precision test scheme. Experimental results
show that our model can yield visually pleasant and angular
consistent SR results on synthetic and real-world LF im-
ages, and achieved 1st place in the NTIRE 2024 Light Field
Image Super-Resolution Challenge.

6194



References
[1] Zhengyu Liang, Yingqian Wang, Longguang Wang, Jun-

gang Yang, Shilin Zhou, and Yulan Guo. Learning non-
local spatial-angular correlation for light field image super-
resolution. arXiv preprint arXiv:2302.08058, 2023. 1, 3, 5,
6, 8

[2] Changha Shin, Hae-Gon Jeon, Youngjin Yoon, In So Kweon,
and Seon Joo Kim. Epinet: A fully-convolutional neu-
ral network using epipolar geometry for depth from light
field images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4748–
4757, 2018. 1

[3] Yu-Ju Tsai, Yu-Lun Liu, Ming Ouhyoung, and Yung-Yu
Chuang. Attention-based view selection networks for light-
field disparity estimation. In AAAI Conference on Artificial
Intelligence (AAAI), pages 12095–12103, 2020.

[4] Wentao Chao, Fuqing Duan, Xuechun Wang, Yingqian
Wang, and Guanghui Wang. Occcasnet: occlusion-aware
cascade cost volume for light field depth estimation. arXiv
preprint arXiv:2305.17710, 2023.

[5] Jiaxin Chen, Shuo Zhang, and Youfang Lin. Attention-based
multi-level fusion network for light field depth estimation.
In AAAI Conference on Artificial Intelligence (AAAI), pages
1009–1017, 2021.

[6] Numair Khan, Min H Kim, and James Tompkin. Differ-
entiable diffusion for dense depth estimation from multi-
view images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8912–
8921, 2021.

[7] Yingqian Wang, Longguang Wang, Zhengyu Liang, Jungang
Yang, Wei An, and Yulan Guo. Occlusion-aware cost con-
structor for light field depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19809–19818, 2022.

[8] Titus Leistner, Radek Mackowiak, Lynton Ardizzone, Ull-
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