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Abstract

Although stereo image super-resolution has been exten-
sively studied, many existing works only rely on attention in
a single epipolar direction to reconstruct stereo images. In
the case of asymmetric parallax images, these methods of-
ten struggle to capture reliable stereo correspondence, re-
sulting in reconstructed images suffering from blurring and
artifacts. In this paper, we propose a novel method called
Cross-View Aggregation Network for Stereo Image Super-
Resolution (CANSSR) and explore the relationship be-
tween multi-directional epipolar lines to construct reliable
stereo correspondence. Specifically, we propose a multi-
directional cross-view aggregation module (MCAM) that ef-
fectively captures multi-directional stereo correspondence
and obtains cross-view complementary information. Fur-
thermore, we design a channel-spatial aggregation module
(CSAM) that aggregates multi-order global-local informa-
tion in intra-view to reconstruct clearer texture features. In
addition, we equip a large kernel convolution in the Feed-
forward Network to acquire richer detailed texture infor-
mation. The extensive experiments conclusively demon-
strate that CANSSR outperforms the state-of-the-art method
both qualitatively and quantitatively in terms of stereo im-
age super-resolution on the Flickr 1024 and Middlebury
datasets.

1. Introduction

Recently, there has been a noticeable surge in the utilization
of stereo imaging devices, particularly within the domains
of dual-lens smartphones, unmanned systems, augmented
reality, virtual reality, autonomous driving, and robotics,
etc. Stereoscopic vision has received substantial attention
from both academia and industry. However, due to the phys-
ical imaging limitations [14] of binocular cameras, low-
resolution (LR) stereo images pose significant challenges
for practical applications [31]. Therefore, reconstructing
high-resolution (HR) images is extremely urgent for the
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Figure 1. Visual comparison (×4) on Flickr1024 [30] dataset.
iPASSR [31], SSRDE-FNet [7], and NAFSSR [6] suffer from blur-
ring artifacts, Please zoom in for details.

stereo vision task. Compared with single image super-
resolution (SISR), stereo image super-resolution (SR) needs
to utilize complementary information in cross-views, and
lost or occluded details are restored by leveraging comple-
mentary information from the another view image. In prac-
tice, due to the binocular camera imaging settings, stereo
images often exhibit a horizontal or vertical pixel-level off-
set, known as horizontal parallax and vertical parallax. Sev-
eral studies [7][31] have demonstrated that the parallax ef-
fect between LR images induces sub-pixel displacement,
which contains huge spatial dependence information in the
stereo vision system. However, these methods only utilize
horizontal parallax prior and fail to consider vertical paral-
lax prior in order to improve network performance. There-
fore, it is crucial to effectively utilize the multi-directional
parallax prior for stereo image SR.

Recently, deep learning methods have made great
progress in stereo image SR. Existing approaches fre-
quently employ attention mechanisms to capture stereo cor-
respondence and spatial dependencies to enhance model
performance. To capture stereo correspondence, several
studies [7, 31] proposed utilizing parallax attention along
the horizontal epipolar line. To obtain spatial dependen-
cies, [4, 6] integrate cross-view information to effectively
capture similarity features between stereo images while re-
ducing loss for intra-view and cross-view high-frequency
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detail information, and won the NTIRE [27, 28] champion
with state-of-the-art performance. Lin et al. [19] proposed
a lightweight transformer architecture to capture long-range
dependencies between stereo images.

Although existing methods have achieved commendable
performance, these methods excessively prioritize capturing
stereo correspondence along the horizontal epipolar line,
and do not effectively capture spatial dependencies. In prac-
tice, asymmetric parallax is often observed, which can af-
fect the generalization ability of existing methods [7, 31]
that assume parallax only exists in the horizontal direc-
tion. As shown in Figure 1, some methods [6, 7, 31] based
on horizontal parallax prior suffer from blurring and arti-
facts, often stemming from their incapacity to accurately
capture stereo correspondence. Therefore, an intriguing re-
search problem is how to efficiently capture spatial depen-
dencies while incorporating multi-directional parallax pri-
ors for stereo correspondence.

To address this issue, we propose a novel method named
Cross-View Aggregation Network for Stereo Image Super-
Resolution (CANSSR) that exploits multi-directional paral-
lax attention to capture both horizontal and vertical stereo
correspondences while enhancing long-range dependence.
Specifically, we propose a multi-direction cross-view ag-
gregation module to aggregate the horizontal and vertical
stereo correspondences to obtain more reliable complemen-
tary information from cross-view. Furthermore, to effec-
tively aggregate the high-frequency detailed information
within intra-view, we propose a channel-spatial aggrega-
tion module to enhance the ability to capture multi-order
global-local information. Finally, we introduce a large-
kernel gated feed-forward network to aggregate richer tex-
ture information, and a non-linear free activation function
[6] is introduced to enhance the non-linear representation
ability.

In this study, we conducted comprehensive experiments
to demonstrate the superior performance of our proposed
CANSSR method across multiple datasets, including Flickr
1024 [30], KITTI 2012 [11], KITTI 2015 [22], and Middle-
bury [24]. Our contributions can be summarized as follows:

• We propose a novel cross-view aggregation network
for stereo image super-resolution, which is capable of ac-
quiring cross-view correspondence features and exhibits a
robust capability to capture spatial dependencies.

• To exploit horizontal and vertical parallax prior, we
propose MCAM, which learns stereo correspondence in
both directions along the epipolar lines. Meanwhile, in or-
der to capture global-local features, we design CSAM to
learn multi-order interactions in intra-view.

• We conducted extensive experiments to demonstrate
that CANSSR outperforms state-of-the-art methods while
maintaining lower model size.

2. Related work

2.1. Single Image Super-Resolution

The SISR task aims to recover a HR image from a LR
image by restoring lost high-frequency details. SRCNN
[10] was an early deep learning method proposed for SISR,
significantly improving reconstruction performance. Since
then, numerous deep learning-based image SR techniques
have been introduced, progressively employed more com-
plex convolutional neural networks for high-quality SR im-
age reconstruction. Skip-connections, employed in various
methods [15, 18, 25, 33], play a crucial role in accelerating
convergence and enhancing the efficiency and quality of re-
construction. Subsequently, various attention mechanisms
proposed to enhance the expressive power of neural net-
works, such as spatial attention [23], second-order channel
attention [8], and non-local attention [21, 35]. Recently, the
Transformer emerged as a crucial component in low-level
vision tasks. IPT [1] introduced a vision transformer that
significantly enhances image restoration capacity. Mean-
while, SwinIR [17] introduced the Swin Transformer as
a solution to address excessive computational redundancy
in IPT [1]. The HAT [3] method achieved state-of-the-art
performance by integrating multi-head self-attention from
transformers with channel attention, extracting both global
and local features. However, these methods are not directly
applicable to stereo image SR, since they are unable to uti-
lize cross-view supplementary information.

2.2. Stereo Image Super-Resolution

Stereo image SR reconstructs HR images from degraded
pairs of left and right view LR images by leveraging com-
plementary information. Jeon et al proposed the StereoSR
[14] that leveraged parallax priors to reconstruct stereo im-
ages and introduced the illumination and chrominance sub-
networks to acquire high-frequency detail information. To
address parallax variation, some works [7, 26, 31, 32] pro-
posed based on the parallax attention module (PAM), which
effectively interacts with cross-view information along the
horizontal epipolar line. To capture effective spatial de-
pendencies, Dan et al. proposed DFAM [9], a modified
atrous spatial pyramid pooling module designed for estimat-
ing disparities and warping stereo features. Lin et al. pro-
posed Steformer [19], an efficient stereo image SR method
based on Transformer, effectively capturing long-range de-
pendence. Some methods [4, 6] have achieved state-of-the-
art performance by exploiting their strong ability to cap-
ture spatial dependencies and have won the NTIRE [27, 28]
championship. Zou et al. proposed CVHSSR[36], which
explores the interdependencies between various hierarchies
from intra-view and achieved excellent results in the NTIRE
2023 [28] competition. Furthermore, current methods that
utilize parallax priors are limited to exploiting horizontal
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Figure 2. The architecture of our CANSSR for stereo image super-resolution.

parallax and lack a vertically oriented receptive field. In
this paper, we design attention with multiple epipolar direc-
tions to aggregate more cross-view spatial information and
achieve a larger receptive field.

3. Method

In this section, we begin by introducing the architecture of
cross-view aggregation network (CANSSR) in section 3.1.
Next, we detail the core composition of CANSSR in Section
3.2, Section 3.3, and Section 3.4, respectively.

3.1. Overview

To reconstruct high-quality stereo images, this paper pro-
poses a novel cross-view aggregation network for stereo
image super-resolution. As shown in Figure 2, we pro-
pose the CANSSR, a symmetric structure comprising three
parts: (1) Multi-directional Cross-view Aggregation Mod-
ule (MCAM), (2) Channel-Spatial Aggregation Module
(CSAM), and (3) Large Kernel Gated Feed-forward Net-
work (LGFN). Both CSAM and LGFN are weight-sharing
networks, utilizing identical parameters to extract high-
frequency information from the left and right views. In ad-
dition, MCAM is utilized to fuse cross-view features along
horizontal and vertical epipolar lines.

Given a pair of images IL,R = (IL, IR), IL, IR ∈
RH×W×3 represent the degraded left and right view LR
images. Firstly, we employ a 3 × 3 convolutional layer
Hshallow (·) to extract shallow feature from a LR stereo im-
age pair IL,R. It is described as:

FL,R
shallow = Hshallow(I

L,R), (1)

Figure 3. (a) Channel-Spatial Aggregation Module (b) Large Ker-
nel Gated Feedforward Network (c) Channel-Spatial Aggregation
Attention

where FL,R
shallow represents the left and right view shallow

features. After stacking N CSAM, LGFN, and MCAM
blocks, we obtain deep high-frequency features. It is de-
scribed as:

FL
i , FR

i = HMCAM (HLGFN (HCSAM (FL
i−1, F

R
i−1))),

(2)
where FL

i , FR
i denote the left and right view features of

the i-th layer, respectively.HMCAM , HLGFN , and HCSAM

denote MCAM, LGFN, and CSAM block, respectively.
Finally, the left and right view images are upsampled by

the Pixel Shuffle module respectively to obtain the SR im-
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Figure 4. Multi-directional cross-view aggregation module

ages. The following formula can describe this:

FL
SR, F

R
SR = Hupsample(F

L
i , FR

i ), (3)

where FL
SR, F

R
SR represent the upsampled left and right

view SR images, respectively.

3.2. Multi-directional Cross-view Aggregation
Module

In practice, the binocular system sometimes cannot main-
tain the horizontal direction and experiences frequent occlu-
sions within real scenes, leading to the occurrence of asym-
metric parallax. The assumption of horizontal priors often
fails to capture accurate stereo correspondence, resulting in
reconstructed images suffering from artifacts and blurring
effects. To address this issue, we propose MCAM, atten-
tion along the horizontal and vertical epipolar directions to
capture more realistic stereo correspondence. We improve
upon CVIM [36] by designing multi-directional parallax at-
tention in MCAM.

Specifically, this input feature FL
i−1, F

R
i−1 utilizes layer

normalization as the initial processing step. Subsequently,
the query, key, and value matrices Q, K, and V are gener-
ated using a combination of a 1×1 point-wise convolutional
layer and a 3×3 depth-wise convolutional layer. Simulta-
neously, we employ the same convolutional layer denoted
as Q,K ∈ RH×W×C , where C represents the number of
channels. The computation is expressed as:

QL,R = WdwWpw(LN(FL,R
i )), (4)

KL,R = WdwWpw(LN(FL,R
i )), (5)

V L,R = WdwWpw(F
L,R
i ), (6)

where Wdw,Wpw, LN represent the 3× 3 depth-wise con-
volution,the 1 × 1 convolutional layer,and the layer nor-
malization, respectively. After obtaining features for q
and k, we rotate them to derive the attention feature map
A ∈ RH×W×(H+W ) via the Aggregation operation.

At each location p in the intra-view spatial dimensional
feature map Q, we can obtain a vector Qp ∈ RC/t. Simulta-
neously, we can extract a cross-view set Θi,p ∈ RC/t as the
i-th element of Θp by acquiring another view feature vector
from K with rows and columns at the same position as p.
The equation can define this aggregation operation:

si,p = QpΘ
T
i,p, (7)

where si,p ∈ S represent the score of correlation degree
between feature Qp and Θi,p , i = [1, ..., |Θp|], S ∈
RH×W×(H+W ). Subsequently, we apply the softmax func-
tion to compute the attention feature map A across the entire
channel dimension of S.

For another feature V ∈ RH×W×C generated by con-
volution, at each position p in the spatial dimensional fea-
ture map of V , we can obtain a vector Vp ∈ RC and a set
Ψ ∈ R(H+W )×C . This set Ψ is a collection of feature vec-
tors in V aligned with the same row or column as p. The
feature aggregation operation embeds cross-view informa-
tion:

Attention =
∑

i∈|Ψp|

Ai,pΨi,p, (8)

where Attention represents the mapping between cross-
views (e.g., left view to right view embedding), Ai,p is a
score at channel i and position p in A, and Fn

L denotes the
feature vector of the n-th layer in the left view. Finally, the
cross-view mapping can be expressed as:

F i
L→R = Attention(Qi−1

R ,Ki−1
L , V i−1

L ) + F i−1
R , (9)

F i
R→L = Attention(Qi−1

L ,Ki−1
R , V i−1

R ) + F i−1
L , (10)

where F i
L→R, F

i
R→L represent the cross-view mapping. i

represents the i-th feature map. F i−1
L , F i−1

R represent the
feature map of the left and right views, respectively.

3.3. Channel-Spatial Aggregation Module

Although many existing stereo image SR methods prioritize
the global reconstruction of cross-view information, they
often overlook the significance of intra-view details for im-
age reconstruction. The intra-view contains abundant tex-
ture detail information, and is crucial for reconstructing lo-
cal texture details.

To address this problem, we propose a CSAM that ef-
ficiently exploits global-local modeling by channel-spatial
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aggregation attention. As shown in Figure 3(c), the channel-
spatial aggregation attention consists of multi-order spa-
tial attention and simple channel attention [6]. We employ
multi-order spatial attention to efficiently aggregate spatial
dependencies and capture different scale local information.
Simultaneously, we introduce simple channel attention [6]
to capture global information.

Specifically, given an intra-view feature Fi ∈
RH×W×C , it is formulated:

FCSAM = W 1
pwG(SG(W 0

dwW
0
pw(LN(Fi)))) + Fi, (11)

where FCSAM represents the features extracted by the
Channel-Spatial Aggregation Module. W 0

pw, W 0
dw and

W 1
pw represent a 1× 1 point-wise convolution, 3× 3 depth-

wise convolution, and 1 × 1 point-wise convolution layer,
respectively. SG(·) and G(·) present the SimpleGate [2]
function and channel-spatial aggregation attention, respec-
tively.

To aggregate global-local information, we design a
CSAA that explores the global-local modeling to enhance
texture representation. As shown in Figure 3(c), it is de-
scribed:

G(X) = CA(X) +MA(X) +X, (12)

MA(X) = X ⊙W 0
dwC((αW 4

dw, βW
3
dw, γ)(W

2
dwX)),

(13)
where X represents the input feature map. CA(·),MA(·)
represent the simplified channel attention [2] and the multi-
order spatial aggregation attention, respectively. α, β, and γ
denote the hyper-parameter to describe multi-order feature
weight, and α + β + γ = 1. W 2

dw, W 3
dw, and W 4

dw denote
5×5, 7×7, and 5×5 depth-wise convolution, respectively.

3.4. Large Kernel Gated Feedforward Network

We introduce the details of LGFN shown in Figure 3(b),
utilizing the gate mechanism and GeLU function to acti-
vate the two parallel linear layers. Meanwhile, we equip a
large kernel convolution for LGFN in one path to construct
a multi-order receptive field to enhance parallel path feature
representation.

Specifically, we employ depth-wise convolution with
varying kernel sizes to weight the feature maps for more
effectively capturing intra-view spatial information. Given
an input intra-view feature X ∈ RC×H×W, the key process
of LGFN can be represented as:

X̂ = φ(W 2
dwW

1
dwW

0
pw(LN(X)))⊙W 1

dwW
0
pw(LN(X)),

(14)
where X̂ is the feature maps extracted by the LGFN mod-
ule. φ is denoted as the GeLU non-linear function. ⊙ de-
notes element-wise multiplication.

4. Experiments

Model Channels Blocks Params QC KC VC

CANSSR-T 48 16 0.55M 24 24 48
CANSSR-S 64 32 0.92M 32 32 64
CANSSR-B 96 64 7.47M 48 48 96

Table 1. Parameter setting for different scale models, QC , KC ,and
VC represent the MCAM query, key and value channel dimension

4.1. Dateset

To evaluate the efficiency and effectiveness of our propose
model, we adopt the training set by merging 60 images from
Middlebury [24] and 800 images from Flickr1024 [30] fol-
lowing the experimental setting of iPASSR [31]. In addi-
tion, we select 5 images from Middlebury [24], 20 images
from KITTI2012 [11], 20 images from KITTI2015 [22],
and all test images from Flickr1024 [30] to build the test
set, following [6, 14, 26, 31]. To NTIRE 2024 [29] Stereo
Image Super-Resolution Challenge, we only employ 800
images from Flickr1024 train set. The LR images are gen-
erated by bicubic downsampling. We augment the training
set and employ random horizontal, rotation, flips, and RGB
channel shuffle, following [6].

4.2. Implementation details

To balance efficiency and effectiveness, we propose dif-
ferent model configurations with varying network depths
and channel numbers. The specific architecture details of
our model setup are provided in Table 1. To cater to vari-
ous application scenarios, we propose three configurations:
CANSSR-T (tiny), CANSSR-S (small) and CANSSR-B
(base) models, respectively. The CANSSR-S model has
been submitted to the NTIRE 2024 [29] Stereo Image
Super-Resolution Challenge.

Training Settings. All the models were optimized using
AdamW [20] with specific parameters β1 = 0.9 and β2 =
0.999 with a decay of 0. The learning rate starts at 1×10−3

and decays to 1× 10−7 using the cosine annealing strategy,
with a batch size of 32. We trained this model for 200,000
iterations and trained it with two NVIDIA RTX 4090 GPU.
To solve the overfitting problem, we employ stochastic
depth [13] with probabilities of 0.2 and CANSSR-B, re-
spectively. Our network is only trained with the MSE loss
function.

To evaluate, we adopt commonly-used peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) as
quantitative metrics for evaluation, which are calculated in
the RGB color space between a pair of stereo images (i.e.
(Left + Right)/2). Meanwhile, the same as the previous
method [6], TLSC [5] is used in the inference process.

6473



Method Scale #Para

Left (Left + Right)/2

KITTI2012 KITTI2015 Middlebury KITTI2012 KITTI2015 Middlebury Flickr1024
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 - 28.44/0.8808 27.81/0.8814 30.46/0.8979 28.51/0.8842 28.61/0.8973 30.60/0.8990 24.94/0.8186
VDSR [15] ×2 0.66M 30.17/0.9062 28.99/0.9038 32.66/0.9101 30.30/0.9089 29.78/0.915 32.77/0.9102 25.60/0.8534
EDSR [18] ×2 38.6M 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087
RDN [34] ×2 22.0M 30.81/0.9197 29.91/0.9224 34.85/0.9488 30.94/0.9227 30.7/0.933 34.94/0.9491 28.64/0.9084
RCAN [33] ×2 15.3M 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082
SwinIR [17] ×2 11.75M 31.18/0.9233 30.24/0.9262 35.27/0.9509 31.31/0.9262 31.05/0.9363 35.36/0.9513 29.25/0.9157
StereoSR [14] ×2 1.08M 29.42/0.9040 28.53/0.9038 33.15/0.9343 29.51/0.9073 29.33/0.9168 33.23/0.9348 25.96/0.8599
PASSRnet [26] ×2 1.37M 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.919 30.6/0.93 34.23/0.9422 28.38/0.9038
IMSSRnet [16] ×2 6.84M 30.90/- 29.97/- 34.66/- 30.92/- 30.66/- 34.67/- -/-
iPASSR [31] ×2 1.37M 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.924 30.81/0.934 34.51/0.9454 28.6/0.9097
SSRDE-FNet [7] ×2 2.10M 31.08/0.9224 30.10/0.9245 35.02/0.9508 31.23/0.9254 30.9/0.9352 35.09/0.9511 28.85/0.9132
NAFSSR-T [6] ×2 0.45M 31.12/0.9224 30.19/0.9253 34.93/0.9495 31.26/0.9254 30.99/0.9355 35.01/0.9495 28.94/0.9128
NAFSSR-S [6] ×2 1.54M 31.23/0.9236 30.28/0.9266 35.23/0.9515 31.38/0.9266 31.08/0.9367 35.30/0.9514 29.19/0.9160
Steformer [19] ×2 1.29M 31.16/0.9236 30.27/0.9271 35.15/0.9512 31.29/0.9263 31.07/0.9371 35.23/0.9511 28.97/0.9141
CVHSSR-T [36] ×2 0.66M 31.31/0.9250 30.33/0.9277 35.41/0.9533 31.46/0.9280 31.13/0.9377 35.47/0.9532 29.26/0.9180

CANSSR-T (Ours) ×2 0.52M 31.19/0.9230 30.17/0.9241 35.12/0.9505 31.30/0.9260 30.99/0.9345 35.20/0.9506 29.11/0.9148
CANSSR-S (Ours) ×2 0.90M 31.33/0.9262 30.34/0.9280 35.42/0.9540 31.46/0.9284 31.14/0.9379 35.49/0.9533 29.36/0.9181
CANSSR-B (Ours) ×4 7.40M 31.46/0.9262 30.47/0.9287 35.86/0.9558 31.61/0.9292 31.26/0.9385 35.91/0.9558 29.72/0.9225

Bicubic ×4 - 24.52/0.7310 23.79/0.7072 26.27/0.7553 24.58/0.7372 24.38/0.7340 26.40/0.7572 21.82/0.6293
VDSR [15] ×4 0.66M 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR [18] ×4 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN [34] ×4 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295
RCAN [33] ×4 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
SRRes+SAM [32] ×4 1.73M 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
SwinIR [17] ×4 11.9M 26.61/0.8039 25.76/0.7912 29.51/0.8460 26.71/0.8101 26.50/0.8143 29.63/0.8476 23.81/0.7441
StereoSR [14] ×4 1.42M 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7556 24.21/0.7511 27.64/0.8022 21.70/0.6460
PASSRnet [26] ×4 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
IMSSRnet [16] ×4 6.89M 26.44/- 25.59/- 29.02/- 26.43/- 26.2/- 29.02/- -/-
iPASSR [31] ×4 1.37M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287
SSRDE-FNet [7] ×4 2.24M 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352
NAFSSR-T [6] ×4 0.45M 26.69/0.8045 25.90/0.7930 29.22/0.8403 26.79/0.8105 26.62/0.8159 29.32/0.8409 23.69/0.7384
NAFSSR-S [6] ×4 1.54M 26.84/0.8086 26.03/0.7978 29.62/0.8482 26.93/0.8145 26.76/0.8203 29.72/0.8490 23.88/0.7468
Steformer [19] ×4 1.34M 26.61/0.8037 25.74/0.7906 29.29/0.8424 26.70/0.8098 26.45/0.8134 29.38/0.8425 23.58/0.7376
CVHSSR-T [36] ×4 0.68M 26.88/0.8105 26.03/0.7991 29.62/0.8496 26.98/0.8165 26.78/0.8218 29.74/0.8505 23.89/0.7484

CANSSR-T (Ours) ×4 0.55M 26.80/0.8069 25.95/0.7951 29.42/0.8439 26.89/0.8130 26.68/0.8179 29.53/0.8491 23.81/0.7437
CANSSR-S (Ours) ×4 0.92M 26.91/0.8106 26.06/0.7993 29.71/0.8500 27.01/0.8166 26.85/0.8220 29.80/0.8506 23.99/0.7519
CANSSR-B (Ours) ×4 7.47M 27.01/0.8142 26.16/0.8036 30.03/0.8590 27.10/0.8201 26.91/0.8260 30.14/0.8598 24.17/0.7598

Table 2. Quantitative Comparison with PSNR/SSIM Metric on Flickr1024, KITTI2012, KITTI2015 and Middlebury. Higher
PSNR/SSIM Values Means Better Performance. The best and second best results are red and blue.

4.3. Result

In this section, we compare the proposed CANSSR(with
three different variations) with the existing SR methods. We
adopt SISR methods such as VDSR [15], EDSR [18], RDN
[34], RCAN [33], SwinIR [17] and stereo image SR meth-
ods, for example, StereoSR [14], PASSRNet [26], IMSS-
RNet [16], iPASSR [31], SSRDE-FNet [7] NAFSSR [6],
Steformer [19], and CVHSSR-T [36] are compared with
our proposed method. All methods are trained on the same
dataset, and evaluates their PSNR and SSIM scores [6].

Quantitative Result. As quantitative results are repre-
sented in Table 2, CANSSR outperforms the state-of-the-
art methods in terms of PSNR and SSIM scores in the test
set for ×2 and ×4 stereo image SR tasks. Specifically,
our propose CANSSR-B model only uses 31% of the pa-

rameters of NAFSSR-L [6], which exceeds the state-of-
the-art method in four standard evaluation datasets in the
×2 stereo image SR task. We propose the CANSSR-B
with higher performance than the state-of-the-art method
CVHSSR, exceeding 0.02 dB, 0.07 dB, 0.06 dB, and
0.1 dB on KITTI2012 [11], KITTI2015 [22], Middlebury
[24], and Flickr1024 [30], respectively. Compared with
some lightweight stereo image SR methods, the perfor-
mance of our propose CANSSR-S method is far better than
similar methods, such as NAFSSR-T and Steformer. In
the Flickr1024 test set of ×4 tasks, our method exceeds
0.30 dB, 0.41 dB and 0.10 dB, for NAFSSR-T [6], Ste-
former [19] and CVHSSR-T [36], respectively. This clearly
demonstrates the effectiveness and efficiency of our pro-
posed CANSSR network architecture.

Qualitative Results. As shown in Figure 5, 6, which
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Figure 5. Visual comparisons for ×4 SR by different methods on the Flickr1024 [30] and Middlebury [24] datasets. The red rectangle
marks zoom-in region.

Method EPE ↓ >1px(%) ↓ >2px(%) ↓ >3px(%) ↓ PSNR ↑
RDN 0.8793 15.55 6.23 3.70 26.74
RCAN 0.8737 15.26 6.14 3.64 26.85
SwinIR 0.8646 15.20 6.13 3.60 27.09
iPASSR 0.8546 14.97 6.09 3.57 26.92
SSRDE-FNet 0.8289 14.30 5.84 3.29 27.06
CANSSR 0.7860 14.03 5.56 3.19 27.47
HR 0.6663 11.67 4.61 2.65 ∞

Table 3. Quantitative comparison results achieved by GwcNet [12]
on ×4 stereo images SR. All these metrics were averaged on the
validation Set of the KITTI2012 [11] Dataset.

shows the visual result for ×4 stereo image SR on
KITTI2015, Flickr1024, and Middlebury datasets. These
images show that our CANSSR method alleviates the blur
and artifact problems for the reconstructed images, and the
reconstructed images are rich in more texture details and
sharper edges. In contrast, other methods may suffer from
blurring and artifacts. This further demonstrates the effec-
tiveness of our proposed CANSSR method.

Benefits to disparity estimation. We utilize stereo SR
images generated by neural networks to verify the effec-
tiveness of our CANSSR for disparity estimation. Firstly,
we employ ×4 downsampling in KITTI2012 [11] valida-
tion images, which are partitioned by GwcNet [12]. Then,
we tested the KITTI2012 [11] validation set using the state-
of-the-art SISR and stereo image SR methods, respectively.
End-point error (EPE) and t-pixel error rate (> tpx) were
used as quantitative metrics to evaluate the estimated dis-

parity. As shown in Table 3, compared with SSRDE-FNet
and iPASSR, our proposed CANSSR increases by 0.0429
and 0.0686, respectively. It proves the effectiveness of our
proposed method for improving the disparity estimation re-
sults.

4.4. Ablation experiments

To evaluate the effectiveness of our method, we initially
remove all the modules proposed for testing and then per-
formed different combination tests on the three modules in
the Flickr1024 dataset [30]. As demonstrated by the results
in Table 4.

Multi-directional Cross-view Aggregation Module.
The model performance greatly correlates with the num-
ber of MCAMs. When we set the number of MCAMs to
32 in the small model, compared with the original baseline,
the performance of MCAM is improved by 0.39 dB, which
effectively proves the performance of MCAM.

Channel-Spatial Aggregation Module. To evaluate the
effectiveness of the CSAM module, we found that the im-
provement was 0.12 dB compared with the baseline. CSAM
can effectively capture long-range dependence and obtain
the channel-space global information of intra-view to re-
construct high-quality images.

Large kernel Gated Feed-forward Network. We in-
troduce large kernel convolution into the feed-forward net-
work (FFN) to aggregate more effective spatial information.
Compared with FFN baseline, our method improves 0.08
dB on the Flickr1024 test set.
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Figure 6. Visual comparisons for ×4 SR by different methods on the Flickr1024 and KITTI2015 datasets.

Figure 7. Compare the parameters, PSNR and MACs for 4× stereo
image SR on Flickr1024 [30] test set

Method MCAM CSAM LGFN PSNR ∆PSNR

Baseline without PAM

# # # 23.56 -
# ! # 23.68 0.12
# # ! 23.64 0.08
# ! ! 23.73 0.17

Baseline + PAM
# # # 23.88 -
! # # 23.95 0.07
! ! ! 23.99 0.11

Table 4. Ablation Studies by CANSSR-S in ×4 stereo image
super-resolution task on Flickr1024 test set.

Runtime Efficiency. We conduct tests on 320×180 im-
ages to evaluate the relationship between the computational

efficiency and performance of the model. As shown in Fig-
ure 7 our method reduces the number of parameters and im-
proves the accuracy compared with the previous NAFSSR
[6] method.

4.5. NTIRE Stereo Image SR Challenge

We submitted the results obtained from our proposed ap-
proach to the NTIRE 2024 [29] Stereo Image Super-
Resolution Challenge. To maximize the performance of
our method, we stacked the 16-layer CANet twice and uti-
lized weight sharing to construct a model with a depth of
32, while setting the model width to 64. During the test-
ing phase, we adopted the TLSN [5] strategy. The num-
ber of parameters in our model is 0.9221M and MACs is
178.29. As a result, our last submission achieved a PSNR
of 23.5725 dB on the test set. We won 6-th in track 1 for
Fidelity&Bicubic.

5. Conclution
In this paper, we propose an efficient stereo image super-
resolution model, named CANSSR. In particular, we design
a multi-directional cross-view aggregation module to ef-
fectively capture multi-directional stereo correspondence
and mine cross-view similarity features. Furthermore, we
propose channel-spatial aggregation module to enhance
global-local information extraction, and large kernel gated
feed-forward network to enhance capture spatial depen-
dencies and fine high-frequency information. Extensive
experiments demonstrate that CANSSR outperforms
current models and achieves state-of-the-art performance.
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