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Abstract

In recent years, there has been significant progress in ef-
ficient and lightweight image super-resolution, due in part
to the design of several powerful and lightweight atten-
tion mechanisms that enhance model representation ability.
However, the attention maps of most methods are obtained
directly from the spatial domain, limiting their upper bound
due to the locality of spatial convolutions and limited re-
ceptive fields. In this paper, we shift focus to the frequency
domain, since the natural global properties of the frequency
domain can address this issue. To explore attention maps
from the frequency domain perspective, we investigate and
correct some misconceptions in existing frequency domain
feature processing methods and propose a new frequency
domain attention mechanism called frequency-enhanced
pixel attention (FPA). Additionally, we use large kernel con-
volutions and partial convolutions to improve the ability
to extract deep features while maintaining a lightweight
design. On the basis of these improvements, we propose
a large kernel frequency-enhanced network (LKFN) with
smaller model size and higher computational efficiency. It
can effectively capture long-range dependencies between
pixels in a whole image and achieve state-of-the-art per-
formance in existing efficient super-resolution methods.

1. Introduction

As a low-level computer vision task, single-image super-

resolution (SISR) aims to reconstruct a high resolution (HR)

image from its low resolution (LR) counterpart. Since SR-

CNN [9] introduced deep learning to super-resolution for

the first time, there has been a significant surge in the devel-

opment of deep-learning-based SR models. By leveraging

large amounts of data and powerful computing resources,

deep learning has enabled researchers to develop increas-

ingly sophisticated SR models that can generate high qual-

ity image from low-resolution inputs. Despite their impres-

Figure 1. Comparison of model performance and complexity on

Urban100 with SR(×4).

sive results, due to their high complexity and computational

cost, traditional super-resolution networks are often diffi-

cult to use in practical applications. In this context, efficient

super-resolution (ESR) networks with greatly reduced pa-

rameters and less computational complexity are gradually

being introduced and developed.

Among these ESR methods, a class of methods based on

information distillation paradigm have been verified effec-

tive, which consist of three parts: feature distillation, fea-

ture condensation and feature enhancement. For the fea-

ture distillation part, IMDN [18] first introduced a progres-

sive refinement module to reduce computational cost and

achieve multi-level feature map fusion by splitting chan-

nels. RFDN [26] further introduced shallow residual block

(SRB) and applied channel compression to greatly reduce

the number of model parameters. By rethinking the design

of SRB, BSRN [25] introduced the blueprint separable con-

volution (BSConv) to replace the vanilla 3× 3 convolution

and the GELU [16] activation function was used instead

of ReLU, which achieved remarkable results. LKDN [43]

used the technique of reparameterization [6, 49] to fur-
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Figure 2. The architecture of Large Kernel Frequency-enhanced Network (LKFN)

ther improve the representation capability of BSConv with

zero additional inference overhead. In the part of feature

enhancement, all the aforementioned methods used some

form of attention mechanism, from spatial attention, chan-

nel attention, pixel attention, to their combinations, such as

IMDN, RFDN’s contrast-aware channel attention (CCA),

BSRN’s enhanced spatial attention (ESA) [27] plus CCA,

LKDN’s large kernel attention (LKA), and MDRN’s multi-

level dispersion spatial attention (MDSA) plus enhanced

contrast-aware channel attention (ECCA) [31]. These atten-

tion mechanisms have shown remarkable effects in preserv-

ing model accuracy while keeping the model lightweight.

In this paper, we further explore the potential of the fea-

ture distillation and feature enhancement parts as well as

how to make them work better together to adapt to the

super-resolution task. Keeping the information distillation

framework unchanged, we propose a new spatial feature

extraction block with a larger convolution kernel to re-

place BSConv, and a novel attention mechanism based on

frequency domain image processing to realize feature en-

hancement. We refer to this new ESR method as the large

kernel frequency-enhanced network (LKFN). Extensive ex-

periments demonstrate that our LKFN better balances the

accuracy and complexity of the model, and achieves the

state-of-the-art performance among existing ESR methods

(See Fig. 1). The contributions of this paper can be summa-

rized as follows:

• We introduce larger kernel convolution to the basic fea-

ture extraction block, which provides a larger receptive

field while maintaining lightweight.

• We propose a brand new attention mechanism that is com-

pletely based on frequency domain processing, which can

truly achieve a global view of the whole image and is

more flexible for different scales.

• The proposed LKFN achieves better super-resolution per-

formance in a more concise and efficient manner.

2. Related Works

2.1. Exploration of Efficient Super-Resolution

Numerous approaches have been explored and achieved

effective results in reducing the computational complexity

of deep-learning-based super-resolution methods in vari-

ous aspects. FSRCNN [10] proposed a network paradigm

that places the upsampling step in the last stage, replacing

the enormous computational cost incurred by SRCNN [9]

which processes the upscaled input image from interpo-

lation. The sub-pixel convolutional upsampling method

proposed by ESPCN [37] has been widely adopted as an

upsampling module due to its exceptional performance.

DRCN [19] proposed a deep recursive convolutional net-

work to increase the depth of the network, ensuring ef-

fectiveness while reducing the burden of too many param-

eters. CARN [2] used group convolutions and a cascad-

ing mechanism on residual networks to improve efficiency.

ASSLN [50] proposed an aligned structured sparsity learn-

ing strategy, which successfully introduced the filter prun-

ing technique in the SR models. DIPNet [46] integrated

reparameterization, filter pruning, and knowledge distilla-

tion techniques, and won the championship in inference

speed in the NTIRE 2023 efficient super-resolution chal-

lenge [24].

2.2. The Renaissance of Large Kernel Convolution

In the early days of CNN models, large convolution ker-

nels were commonly used (e.g. AlexNet [21], SRCNN).

This changed with the VGG model [38], which popular-

ized the stacking of small convolution kernels (3 × 3) and

became the standard for CNN architecture design. How-

ever, following the emergence of transformer-based vision

models [11, 29] that emphasized the importance of global

receptive field, many researchers found that using larger

convolution kernels in traditional CNNs [7, 8, 15, 28, 30]

can achieve comparable or even better performance than

transformer-based models by reducing network depth and

improving feature extraction efficiency. This trend has also

influenced the design of SR models. Nevertheless, simply

using large convolution kernels will lead to higher com-

putational costs. Inspired by large kernel attention (LKA)

in VAN [15], convolution kernel decomposition technique

have been widely adopted to address this issue, which de-

composes a large convolution kernel into three parts equiv-

alently: a depth-wise convolution, a depth-wise dilation

convolution, and a 1 × 1 convolution. LKASR [13] imi-

tates the framework structure of the Transformer [41] and

achieves good performance by replacing the self-attention
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module with LKA. VAPSR [52] uses a concise structure

mainly composed of the LKA module with its attention

channels amplified, it achieves excellent results with fewer

parameters, proving the superiority of the LKA module.

MAN [42] improves the LKA module by proposing a multi-

scale large kernel attention (MLKA) that combines multiple

scales in parallel and integrates it with a gated spatial atten-

tion. LKDN [43] applies the LKA to the effective infor-

mation distillation framework and achieves SOTA perfor-

mance. These methods all incorporate large kernel convo-

lution into attention mechanisms to enhance feature repre-

sentation. However, our proposed LKFN finds that using

large kernel convolution directly in the feature extraction

process can achieve significant improvement as well.

2.3. Frequency Domain Methods in CV

The Fourier transform has long been an essential tool

in digital image processing. In deep learning-based vision

tasks, a variety of works have attempted to incorporate it

in their model design because according to the convolution

theorem, point-wise update in the frequency domain glob-

ally affects all input features involved in Fourier transform.

This property has a natural global attribute. FFC [5] re-

places the convolution in CNNs with a local Fourier unit

and performs convolutions in the frequency domain, which

can complementarily address different scales. GFNet [35]

proposes a global filter network that performs element-

wise multiplication between frequency domain features and

learnable global filters. SpectFormer [34] combines spec-

tral and multi-headed self-attention in the original ViT [11]

architecture to obtain a better representation ability. For im-

age super-resolution, FNNSR [22] proposes a neural net-

work design that operates entirely in the frequency domain.

It takes a bicubic-upsampled image as input, transforms

it into the frequency domain, and then performs element-

wise multiplication using weight matrices of the same size,

to achieve the effect of non-linear activation, they utilize

the frequency-domain convolution. IFNNSR [45] improves

FNNSR by dividing its weight matrices into four quadrants

and sharing parameters, which reduces the number of pa-

rameters and improves the speed. These two methods are

entirely based on the frequency domain and are too radi-

cal. Their actual performance is far behind all spatial do-

main methods and is only slightly better than the interpo-

lation methods. Inspired by FFC [5], SwinFIR [48] inte-

grates frequency-domain fast Fourier convolution with spa-

tial domain convolution into a complementary dual-branch

structure module, and embeds it into the SwinIR [29] frame-

work, achieving impressive results. Other methods like

ShuffleMixer [39] and SAFMN [40], different from directly

adding frequency-domain processing modules in the model

structure, they instead add frequency-domain constraints to

the loss function. Our LKFN explores the combination of

Figure 3. The super-resolved image with the operation in FFC [5].
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Figure 4. Improve the operations in the frequency domain.

frequency-domain methods and attention mechanisms, pro-

poses a frequency-enhanced pixel attention, and explains

why some traditional frequency-domain operations are not

suitable for super-resolution tasks.

3. Method

3.1. Rethinking Frequency-domain Operations

As we know, convolution operations in the spatial do-

main are equivalent to element-wise multiplication in the

frequency domain. To enjoy the advantages of global view

in the frequency domain, it is reasonable to use a learnable

parameter matrix as a global filter in GFNet [35]. However,

this method is not suitable for SR for two reasons. First, the

learnable weight matrix size is fixed, that is, C ×H ×W ,

the same size as the input feature, which means it is only

applicable to networks with fixed input size like image clas-

sification, object detection or semantic segmentation mod-

els while SR networks receive inputs of arbitrary resolution.

Second, even if the input size can be fixed in some way, the
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Figure 5. Architecture of frequency-enhanced pixel attention

(FPA).

number of parameters in the weight matrix is large enough,

greatly increasing the model size.

SwinFIR [48] explored directly replacing the vanilla

convolution with the Fourier unit in the FFC [5]. However,

the results did not improve the SR performance as expected,

and decreased instead, which seems to contradict the the-

oretical advantages brought by the global view in the fre-

quency domain. So they added spatial residual blocks to

form a dual-branch structure, which improved the perfor-

mance. However, it is difficult to determine how much of

the effect is due to the frequency-domain processing in this

design.

We studied the specific operation of the Fourier unit and

found the problem. When the Fourier transform is applied

to real numbers, each element of the frequency-domain fea-

ture map is a binary tuple consisting of real and imaginary

parts. Since mainstream deep learning frameworks do not

support direct operations on complex numbers, the Fourier

unit uses a method of stacking real and imaginary parts in

the channel direction and then using a 1× 1 convolution to

process across the doubled channels (the left part in Fig.4 ).

Here lies the problem. This processing method causes data

exchange between real and imaginary parts, which greatly

destroys the phase angle, fundamentally disrupting the spa-

tial structure and feature localization of the image. Super-

resolved images obtained in this way have obvious louver-

board-like artifacts, as shown in Fig.3. Considering that the

FFC is designed for image classification, this method would

cause a severe decrease in performance when directly ap-

plied to SR. So, we made an improvement, which is to iso-

late the data communication between the real and imaginary

parts, see Fig.4. We use the same convolution to process the

real and imaginary parts separately, which also avoids the

increase in parameters caused by doubling the number of

channels. The super-resolved images immediately returned

to normal, and the artifacts disappeared.

3.2. Frequency-enhanced Pixel Attention

Through rethinking and improving the frequency-

domain operations in SR, we can further explore the ad-

vantages brought by frequency-domain methods. There-

fore, we combined frequency-domain processing with the

attention mechanism and proposed the Frequency-enhanced

Pixel Attention (FPA). Normally, attention maps are ex-

tracted from feature maps in the spatial domain. Due to the

locality of the convolution operator, learning the correlation

between pixel locations in the spatial domain can only cover

a small range, which greatly reduces the effectiveness of

attention mechanisms. Although using larger convolution

kernels can alleviate this problem to some extent, it can not

truly achieve the global attention like self-attention, while

bringing larger computational costs and larger model sizes.

In our FPA, see Fig.5, we first use the fast Fourier trans-

form fft(·) to convert the spatial domain feature map with

shape C ×H ×W into the frequency domain, obtaining a

frequency-domain feature map of shape C×H×�W/2�+1.

Since the Fourier transform of a 2D real signal is a Hermi-

tian matrix which is conjugate symmetric, so half of the in-

formation is redundant. The frequency domain feature map

is then processed by a three-layer 1 × 1 convolution, fol-

lowed by two LeakyReLUs, and a residual connection is

added with the initial frequency domain feature map. Then

the pixel attention map is obtained by inverse fast Fourier

transform ifft(·) back to the spatial domain, and multi-

plied by the initial input F . This process can be expressed

as follows:

Fattention = ifft(fft(F ) + fe(fft(F ))) (1)

Fenhanced = Fattention ⊗ F (2)

where fe(·) denotes the module of frequency-domain en-

hancement with the three-layer 1×1 convolution, Fattention

denotes the pixel attention map, ⊗ denotes element-wise

product operation.

3.3. Large Kernel Frequency-enhanced Block

The specific architecture is shown in Fig.6. Inspired by

LKDB in LKDN [43], we design a large kernel frequency-

enhanced block (LKFB), which incorporates our powerful

FPA module. On the other hand, inspired by large kernel

convolutions and PConv [4], we propose the Partial Large

Kernel Block (PLKB) to replace the RBSB in LKDB. In

order to extract more hierarchically rich feature maps and

cope with the increased parameters and computation caused

by the larger convolution kernel, we further use partial con-

volution to reduce the channels. The finer-grained feature

maps obtained in this way, combined with the global atten-

tion brought by FPA, enable the proposed LKFB to achieve

comparable or even better performance in a lightweight

manner. For the input Fin, feature distillation is performed

first, the process can be expressed as

Fd1
, Fr1 = D1(Fin), PLKB1(Fin),

Fd2
, Fr2 = D2(Fr1), PLKB2(Fr1),

Fd3
, Fr3 = D3(Fr2), PLKB3(Fr2),

Fr4 = BSConv(Fr3),

(3)
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Figure 6. The architecture of Large Kernel Frequency-enhanced Block (LKFB).

PLKBi(F ) = Conv1×1(ConvDW (Fsplit1), Fsplit2),
(4)

where Di, PLKBi denotes the ith distillation(1 × 1 conv)

and ith refinement layer using the proposed PLKB, respec-

tively. Fdi , Fri represents the ith distilled feature and ith
refined feature, respectively. BSConv[25] is used as the

last refinement layer. In the PLKBs, ConvDW denotes a

5 × 5 depth-wise convolution. Fsplit1,2 represent the split

two parts of the input feature. (·, ·) means concatenating

two parts in the channel dimension. Subsequently, the dis-

tilled features from the distillation layers and the final re-

finement output are concatenated and fused with a 1 × 1
convolution:

Ffused = Conv1×1(Concat(Fd1
, Fd2

, Fd3
, Fr4)), (5)

Next, the fused feature map undergoes image enhancement

through FPA module, followed by a layer of 1 × 1 con-

volution, and finally normalized through Pixel Normaliza-

tion [52]:

Fenhanced = PixelNorm(Conv1×1(FPA(Ffused))),
(6)

Finally, a residual connection within the block is connected

with the input to enhance the learning ability of the deep

model:

Fout = Fenhanced + Fin. (7)

3.4. Network Architecture

Follow LKDN, our approach copy the original input im-

age ILR n times and stack them along the channel direction

to obtain InLR, then map it to the feature space through a

3× 3 BSConv to obtain F0:

F0 = BSConv(InLR), (8)

Then we feed F0 into m stacks of LKFBs to extract deep

features. The output of each module in the middle is stacked

together and undergoes channel compression through a 1×1
convolution and then through a GELU activation layer and

a 3 × 3 BSConv. After that, a skip connection is used to

enhance global residual learning and fuse F0 and Fm. This

process can be formulated as:

Fk = fk
LKFB(· · · f1

LKFB(F0), · · · ), 1 ≤ k ≤ m,

Ffusion = BSConv((GELU(Concat(F1, · · · , Fm))),

Fdf = Ffusion + F0,
(9)

where fk
LKFB(·) denotes the kth LKFB, m is the number

of used LKFBs, Fk and Fdf represent the output feature of

the kth module and the final deep feature respectively. In

the final image reconstruction stage, deep feature is trans-

formed by a vanilla 3 × 3 convolution to a specific number

of channels, and then the super-resolved image is obtained

through pixel-shuffle operation [37]:

ISR = PixelShuffle(Conv3×3(Fdf )). (10)

4. Experiments
4.1. Datasets and Metrics

The training dataset consists of 800 images from

DIV2K [1] and first 10K images from LSDIR [23]. Our

evaluation of the models is performed on commonly used

benchmark datasets, including Set5 [3], Set14 [47],

B100 [32], Urban100 [17], and Manga109 [33]. The train-

ing data was augmented with random horizontal flips and

90-degree rotations. The evaluation metrics used are the av-
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Table 1. Ablation study on frequency-enhanced pixel attention.

Method Params[k] Set5 Set14 B100 Urban100 Manga109

baseline 259 37.84 / 0.9601 33.61 / 0.9178 32.14 / 0.8994 32.09 / 0.9280 38.28 / 0.9767

baseline+LKA 308 37.95 / 0.9605 33.75 / 0.9187 32.22 / 0.9003 32.41 / 0.9311 38.76 / 0.9775

baseline+MDSA+ECCA 449 37.99 / 0.9606 37.80 / 0.9193 32.22 / 0.9004 32.52 / 0.9316 38.74 / 0.9775

baseline+FPA (LKFN) 291 37.88 / 0.9603 33.78 / 0.9189 32.21 / 0.9003 32.49 / 0.9315 38.72 / 0.9772

erage peak-signal-to-noise ratio (PSNR) and the structural

similarity (SSIM) on the luminance (Y) channel.

4.2. Implementation Details

LKFN consists of 8 LKFBs with the feature channel

number set to 56. The mini-batch size and input patch size

for each LR input are set to 64 and 64 × 64, respectively.

We train the model using the common L1 loss function and

the Adan optimizer [44] with default settings. The initial

learning rate is set to 5 × 10−3. The learning rate decay

is following cosine annealing with Tmax = total iterations,

ηmin = 1× 10−7. The total number of iterations is 1000K.

A mini version of our LKFN, called LKFN-S, was de-

signed for the NTIRE 2024 Efficient SR Challenge [36]. It

consists of 8 LKFBs and the feature channel is set to 28. We

set the dilation ratio of the 5×5 depth-wise convolution to 3

in the third PLKB in LKFBs. The training process includes

2 stages: (1)Training with a input patch size of 64× 64 and

a mini-batch size of 64 from scratch by minimizing the L1

loss. The learning rate schedule is the same as the standard

LKFN and the total number of iterations is 1000K. (2)Fine-

tuning with a input patch size of 120×120 and a mini-batch

size of 64 by minimizing the MSE loss. The learning rate

is set to 2 × 10−5 during this stage. The total number of

iterations is 150K.

We implement all our models using PyTorch 2.0.1 and a

NVIDIA GeForce RTX 4090 GPU.

4.3. Ablation Study

Effectiveness of the FPA module. To verify the effec-

tiveness of our FPA module and compare it with other atten-

tion modules, we use LKFN without the FPA module as the

baseline, and compared with the attention mechanisms of

LKA and MDSA+ECCA in two SOTA models LKDN and

MDRN respectively. The results are shown in Tab 1. Obvi-

ously, the performance on each benchmark of the baseline

is far behind the models with attention modules. Except for

Set5, the improvement brought by our FPA module is sig-

nificant. We think the local features play a more important

role in Set5. On the other 4 benchmarks, comparing with

the MDSA+ESA method, we achieved comparable perfor-

mance with only 65% parameters. With slightly fewer

parameters, we exceed the performance of LKA method,

demonstrating the benefits of the frequency-domain global

view. The local attribution maps (LAMs) [14] and diffu-

sion indices (DIs) [14] results are shown in Fig.8. The first
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Figure 7. (a) non-attention (add) (b) spatial-enhancement (c) non-

attention.

DI 14.16 23.82 27.30 32.89

model name LKDN MDRN BSRN LKFN

Figure 8. Comparison of LAM and DI results between LKFN and

other efficient SR models. The LAM results denote the importance

of each pixel in the input LR image when super-resolving the patch

marked with a red box. The DI value reflects the range of involved

pixels. A larger DI value means a wider range of attention.

three models are based on obtaining attention maps in the

spatial domain, which rely more on the surrounding pixels

of the target. In the LAM of LKFN, besides the red-boxed

region, the pixels of the entire image have almost the same

contribution with a slight red color tone. This validates that

the attention map obtained from the frequency domain has

a global view.

Study of design in FPA. During the development of the

FPA module, we tried other possibilities. Fig. 7(c) does

not use an attention mechanism at all. Fig.7(a) does not use

an attention mechanism but instead adds the feature maps.

Fig.7(b) completely abandons frequency-domain process-
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Table 2. Ablation study on different FPA design.

Method Set5 Set14 B100 Urban100 Manga109

non-attention 37.86 / 0.9602 33.66 / 0.9180 32.16 / 0.8996 32.25 / 0.9292 38.60 / 0.9771

non-attention (add) 37.88 / 0.9603 33.74 / 0.9187 32.17 / 0.8998 32.33 / 0.9299 38.66 / 0.9773

spatial-enhancement 37.89 / 0.9603 33.73 / 0.9185 32.18 / 0.8998 32.21 / 0.9291 38.42 / 0.9769

standard FPA 37.88 / 0.9603 33.78 / 0.9189 32.21 / 0.9003 32.49 / 0.9315 38.72 / 0.9772

Table 3. Ablation study on PLKB.

Method Params[k] Set5 Set14 B100 Urban100 Manga109

BSRB 305 32.24 / 0.8960 28.67 / 0.7832 27.61 / 0.7375 26.22 / 0.7897 30.69 / 0.9106

RBSB 305 32.29 / 0.8963 28.70 / 0.7837 27.63 / 0.7377 26.27 / 0.7908 30.76 / 0.9113

PLKB 309 32.34 / 0.8963 28.71 / 0.7836 27.65 / 0.7385 26.35 / 0.7930 30.80 / 0.9119

ing and instead processes in the spatial domain. Their ex-

perimental results are shown in Tab.2. Among the three

frequency-domain designs, the final FPA performs the best,

followed by replacing dot product with residual connections

(non-attention (add)), and the worst is the non-attention de-

sign. Each improvement in the three methods results in

significant improvement, especially on Urban100. How-

ever, it’s worth noting that there is almost no improve-

ment on the Set5 dataset. On the other hand, abandoning

the use of frequency-domain processing and using spatial

convolution with a 1 × 1 kernel to obtain attention maps

performs worse than the frequency-domain methods, espe-

cially on Urban100 where there are many repeated patterns

(e.g. glass curtain buildings, tiled surfaces with the same

pattern), and the pixel details lost due to downsampling

have a high probability of being preserved in distant po-

sitions in the image. Therefore, for our frequency-domain

method based on global attention, we can effectively cap-

ture such long-range dependencies. Whereas in Set5, which

contains three face images and two natural images, repair-

ing such images relies more on local details, and the small

receptive nature of spatial convolutions becomes an advan-

tage.

Effectiveness of the PLKB. To verify the advantages of

using a large convolution kernel in deep feature extraction,

we replace the PLKB in LKFN with the BSRB in BSRN and

the RBSB in LKDN. The results are shown in Tab 3. BSRB

only adds a residual connection to BSConv, and RBSB uses

reparameterization to further improve deep feature extrac-

tion. In contrast, our PLKB fully utilizes the advantages

of large kernel convolution while controlling the increase

in parameters to only about 1%. This method improves the

performance on Urban100 by 0.08dB.

4.4. Comparison with State-of-the-art Methods

We compare our LKFN with several state-of-the-art effi-

cient super-resolution models on 2×, 3×, and 4× scales,

and the quantitative results are shown in Tab 4. As we

just analyzed, our method stands out on Urban100. We

also made some interesting findings when considering the

results across different scale factors. As scale factor de-

creases, our method’s leading advantage on Urban100 grad-

ually increases. We believe that obtaining attention maps

from the spatial domain always involves defining the ker-

nel size, stride, dilation rate of the convolution kernels and

pooling layer size (if exist) in the attention module in ad-

vance. For convenience, we usually optimize and decide the

structural hyperparameters of the model only on one scale

(commonly 4×) during the model development stage and

then apply them directly to other scales. This leads to the

optimal structure at one scale factor not necessarily being

optimal at other scale factors. In contrast, our method uses

a 1 × 1 convolution uniformly after Fourier transform pro-

cessing, making it more adaptable and flexible in handling

different scale factors. Qualitative comparisons on visual

results can be found in Fig. 9, where it can be clearly ob-

served that our method exhibits the best performance for

this type of repeated pattern structure.

4.5. NTIRE 2024 Efficient SR Challenge

The aim of this challenge [36] is to devise a network

that reduces one or several metrics such as runtime, parame-

ters, and FLOPs of the baseline RLFN [20], while maintain-

ing PSNR of around 26.90 dB on the DIV2K LSDIR valid

dataset, and 26.99 dB on the DIV2K LSDIR test dataset.

Our solution, LKFN-S, for the NTIRE 2024 Efficient SR

Challenge has proven to be both efficient and effective for

super-resolution tasks, achieving competitive performance

with just 90K parameters and 5.81G FLOPs for SR ×4. We

won the 3rd place and 4th place in the Parameters sub-track

and FLOPs sub-track, respectively.

5. Conclusion
In this paper, we propose the large kernel frequency-

enhanced network (LKFN) that adopts the framework de-

sign of LKDN. We directly introduce large kernel convolu-

tion into the deep feature extraction module and combine

it with partial convolution to better preserve information

brought by large receptive fields from different levels, while

effectively controlling model complexity. We also propose

a frequency-domain-based pixel attention mechanism. It
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Table 4. Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods, and multiply-accumulate operations is evaluated

on a 1280 × 720 HQ image. The best and second-best performance are in red and blue colors, respectively.

Method Scale Params[K] Multi-Adds[G] Set5 Set14 B100 Urban100 Manga109

IMDN

×2

694 158.8 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774

PAN [51] 261 70.5 38.00 / 0.9605 33.59 / 0.9181 32.18 / 0.8997 32.01 / 0.9273 38.70 / 0.9773

RLFN [20] 527 115.4 38.07 / 0.9607 33.72 / 0.9187 32.22 / 0.9000 32.33 / 0.9299 -

FMEN [12] 748 172.0 38.10 / 0.9609 33.75 / 0.9192 32.26 / 0.9007 32.41 / 0.9311 38.95 / 0.9778

BSRN [25] 332 73.0 38.10 / 0.9610 33.74 / 0.9193 32.24 / 0.9006 32.34 / 0.9303 39.14 / 0.9782

VAPSR [52] 329 74.0 38.08 / 0.9612 33.77 / 0.9195 32.27 / 0.9011 32.45 / 0.9316 -

SAFMN [40] 228 52.0 38.00 / 0.9605 33.54 / 0.9177 32.16 / 0.8995 31.84 / 0.9256 38.71 / 0.9771

LKDN [43] 304 69.1 38.12 / 0.9611 33.90 / 0.9202 32.27 / 0.9010 32.53 / 0.9322 39.19 / 0.9784

MDRN [31] 304 65.0 38.11 / 0.9610 33.84 / 0.9205 32.32 / 0.9016 32.84 / 0.9350 39.14 / 0.9782

LKFN(ours) 291 66.6 38.06 / 0.9609 34.00 / 0.9207 32.28 / 0.9011 32.92 / 0.9350 39.12 / 0.9779

IMDN

×3

703 71.5 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445

PAN 261 39.0 34.40 / 0.9271 30.36 / 0.8423 29.11 / 0.8050 28.11 / 0.8511 33.61 / 0.9448

RFDN[26] 541 42.2 34.41 / 0.9273 30.34 / 0.8420 29.09 / 0.8050 28.21 / 0.8525 33.67 / 0.9449

FMEN 757 77.2 34.45 / 0.9275 30.40 / 0.8435 29.17 / 0.8063 28.33 / 0.8562 33.86 / 0.9462

BSRN 340 33.3 34.46 / 0.9277 30.47 / 0.8449 29.18 / 0.8068 28.39 / 0.8567 34.05 / 0.9471

VAPSR 337 33.6 34.52 / 0.9284 30.53 / 0.8452 29.19 / 0.8077 28.43 / 0.8583 -

SAFMN 233 23.0 34.34 / 0.9267 30.33 / 0.8418 29.08 / 0.8048 27.95 / 0.8474 33.52 / 0.9437

LKDN 311 31.4 34.54 / 0.9285 30.52 / 0.8455 29.21 / 0.8078 28.50 / 0.8601 34.08 / 0.9475

MDRN 311 29.6 34.58 / 0.9286 30.51 / 0.8453 29.21 / 0.8081 28.70 / 0.8627 34.07 / 0.9476

LKFN(ours) 299 30.3 34.54 / 0.9284 30.54 / 0.8452 29.19 / 0.8079 28.74 / 0.8629 34.09 / 0.9476

IMDN

×4

715 40.9 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075

PAN 272 28.2 32.13 / 0.8948 28.61 / 0.7822 27.59 / 0.7363 26.11 / 0.7854 30.51 / 0.9095

RLFN 543 29.8 32.24 / 0.8952 28.62 / 0.7813 27.60 / 0.7364 26.17 / 0.7877 -

FMEN 769 44.2 32.24 / 0.8952 28.70 / 0.7839 27.63 / 0.7379 26.28 / 0.7908 30.70 / 0.9107

BSRN 352 19.4 32.35 / 0.8966 28.73 / 0.7847 27.65 / 0.7387 26.27 / 0.7908 30.84 / 0.9123

VAPSR 342 19.5 32.38 / 0.8978 28.77 / 0.7852 27.68 / 0.7398 26.35 / 0.7941 30.89 / 0.9132

SAFMN 240 14.0 32.18 / 0.8948 28.60 / 0.7813 27.58 / 0.7359 25.97 / 0.7809 30.43 / 0.9063

LKDN 322 18.3 32.39 / 0.8979 28.79 / 0.7859 27.69 / 0.7402 26.42 / 0.7965 30.97 / 0.9140

MDRN 322 17.3 32.35 / 0.8970 28.80 / 0.7861 27.69 / 0.7404 26.60 / 0.8005 31.02 / 0.9146

LKFN(ours) 309 17.7 32.35 / 0.8971 28.80 / 0.7862 27.67 / 0.7400 26.60 / 0.8001 30.99 / 0.9140

HR PAN BSRN VAPSR HR PAN BSRN VAPSR

PSNR/SSIM 10.15/0.2624 11.83/0.4201 9.56/0.1967 PSNR/SSIM 16.13/0.7476 19.20/0.8776 19.80/0.8924

Urban100: img 062 SAFMN LKDN MDRN LKFN(ours) Urban100: img 096 SAFMN LKDN MDRN LKFN(ours)

SR×4 10.67/0.2781 12.23/0.4834 11.73/0.4347 13.21/0.6136 SR×4 15.95/0.6937 18.09/0.8357 19.56/0.8879 20.30/0.9053

HR PAN BSRN VAPSR HR PAN BSRN VAPSR

PSNR/SSIM 13.80/0.3993 16.86/0.4817 16.75/0.7266 PSNR/SSIM 20.02/0.8211 21.79/0.8633 21.17/0.8482

Urban100: img 093 SAFMN LKDN MDRN LKFN(ours) Urban100: img 100 SAFMN LKDN MDRN LKFN(ours)

SR×4 13.75/0.3661 16.61/0.7019 20.92/0.8852 21.39/0.8915 SR×4 19.02/0.7846 21.83/0.8516 22.10/0.8621 22.54/0.8759

Figure 9. Visual comparisons for ×4 SR on the Urban100 dataset. The patches for comparison are marked with red boxes in the original

images. PSNR/SSIM is calculated based on the patches to better reflect the performance difference, the best and second best are in red and

blue respectively.

not only has a simple and compact structure but can truly

achieve a global receptive field, improving the quality of

attention maps. Through comparisons with other methods

and rigorous analysis, our LKFN achieves SOTA in terms

of parameters, Multi-Adds operations, and model perfor-

mance, while achieving a balance between performance and

complexity. In addition, a variant of our LKFN, LKFN-S,

participated in the NTIRE 2024 efficient super-resolution

challenge and won the third place in the FLOPs sub-track.
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