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Abstract

Blind face restoration (BFR) on images has significantly
progressed over the last several years, while real-world
video face restoration (VFR), which is more challenging for
more complex face motions such as moving gaze directions
and facial orientations involved, remains unsolved. Typ-
ical BFR methods are evaluated on privately synthesized
datasets or self-collected real-world low-quality face im-
ages, which are limited in their coverage of real-world video
frames. In this work, we introduced new real-world datasets
named FOS with a taxonomy of “Full, Occluded, and Side”
faces from mainly video frames to study the applicability
of current methods on videos. Compared with existing test
datasets, FOS datasets cover more diverse degradations
and involve face samples from more complex scenarios,
which helps to revisit current face restoration approaches
more comprehensively. Given the established datasets, we
benchmarked both the state-of-the-art BFR methods and
the video super resolution (VSR) methods to comprehen-
sively study current approaches, identifying their potential
and limitations in VFR tasks. In addition, we studied the
effectiveness of the commonly used image quality assess-
ment (IQA) metrics and face IQA (FIQA) metrics by lever-
aging a subjective user study. With extensive experimental
results and detailed analysis provided, we gained insights
from the successes and failures of both current BFR and
VSR methods. These results also pose challenges to cur-
rent face restoration approaches, which we hope stimulate
future advances in VFR research.

1. Introduction

Blind face restoration (BFR) aims at recovering a realistic
and faithful face image from a corrupted one where the spe-
cific degradation is unknown. It is a challenging problem as
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(a) Restoration results on commonly used real-world image datasets.
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(b) Restoration failures on our proposed FOS datasets.

Figure 1. The face restoration results achieved by CodeFormer
[57] on widely used real-world datasets (a) [46, 57] and our pro-
posed FOS datasets (b). (Zoom in for details)

the real-world scenarios contain complicated degradations
and diverse facial poses as well as expressions. Existing
blind face restoration works [13, 14, 46, 48, 54, 57] have
achieved unprecedented progress by incorporating power-
ful generative models as facial priors, such as generative ad-
versarial network (GAN) [12, 20–22] and vector-quantized
autoencoder [10, 39, 44]. These blind face restoration algo-
rithms [46, 54, 57] have shown a huge impact in the open
source community, as well as its significant commercial po-
tential in image enhancement applications.

Figure 1a shows that state-of-the-art BFR methods can
yield incredible results in both identity preservation and
facial features/texture details regeneration on widely used
real image testing datasets (e.g., WebPhoto-Test [46], LFW-
Test [17], Wider-Test [57], CelebChild [46]). However,
these commonly used test datasets cover limited scenar-
ios. Specifically, WebPhoto-Test and Wider-Test are mainly
about human photography, where (1) most faces are assured
to have no occlusion, (2) diversity of the gaze and head di-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5929



Full Occluded Side

 lq

hq

(a) FOS-syn. The FOS-syn dataset contains a total number of 3, 150 face images derived from widely-used CelebA-HQ [19].
Full Occluded Side

(b) FOS-real. The FOS-real dataset involves a total number of 4, 253 face images extracted from face videos.

(c) FOS-V. The FOS-V dataset consists of 3,316 face clips originating from YouTube videos.

Figure 2. Overview of the proposed FOS datasets.

rections are lacking, and (3) the facial expressions are not
diverse enough. Although these missing features may be
marginal in the image cases, they are commonly found in
video cases. Therefore, when applying video test samples
to existing BFR methods, we find their clear limitations in
handling complex image faces or video motions. Figure 1b
indicates obvious failures of the most recent state-of-the-art
BFR method CodeFormer [57] in restoring side/occluded
faces or maintaining stability in face video frames.

These observations revealed limitations of the existing
image test datasets. Furthermore, real video face test sets re-
main lacking. Therefore, we introduce a new benchmark to
advance future VFR research in this work. Specifically, we
construct three test datasets, FOS-V, FOS-real and FOS-
syn, with three representative face poses/conditions high-
lighted as Full, Occluded, and Side. An overview of our
FOS datasets is presented in Table 1, while visualized sam-
ples are in Figure 2. Compared to the existing test sets, FOS
datasets show larger diversity that involves heterogeneous
scenes (e.g. interviews, sports, concerts, and old movies)
and a wide range of faces with different facial expressions,
poses, and ethnicities.

Given the collected FOS testing datasets, we benchmark
11 representative state-of-the-art BFR methods and 4 VSR
implementations [50] to reveal their potential and limita-

tions for the FVR task. In addition, we empirically discov-
ered that the commonly used metrics are inconsistent with
the human eye. We thus explore the effectiveness of cur-
rent image quality assessment (IQA) metrics and the face
IQA (FIQA) by conducting a subjective user study based
on the benchmarking results. This work aims to stimulate
future advances in video face restoration. The contributions
of this work can be summarized below.

1. We introduce a real-world video face dataset, FOS-V,
filling a gap in the VFR field where real test sets are
missing.

2. By benchmarking the state-of-the-art BFR and VSR
on FOS, we identify future challenges of FVR task.
None of the existing methods can achieve satisfying
intra-frame reconstruction performance while maintain-
ing inter-frame stability.

3. In addition, we leverage a user study to investigate the ef-
fectiveness of IQA and FIQA metrics. The results show
that NIQE [35] and BRISQUE [34] are significantly in-
consistent with subjective scores, while FIQA [15, 38,
43] metrics yield a tremendously strong correlation with
the human eye.

4. A new metric VIDD is introduced to assess inter-frame
stability of videos.
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2. Related Work

Blind face restoration. Recent works exploit multiple fa-
cial priors to help the blind restoration problem. These
prior-based methods can be three mainstreams: 1) Geo-
metric priors. Spatial information such as facial parsing
maps [5], facial landmarks [6, 24], and facial component
heatmaps [55] are used to provide additional information
on face shape and details. 2) Reference priors. Typi-
cally, a reference face or facial component dictionaries ob-
tained from high-quality faces [9, 26, 27, 29] are lever-
aged to guide the face recovery. 3) Generative priors. A
pretrained generative network, e.g. StyleGAN [20, 21] or
VQ-GAN [10], is employed to provide realistic facial infor-
mation [13, 46, 48, 57]. GFP-GAN [46] and GPEN [54]
made the first endeavor to extract fidelity information from
low-quality input face images to balance the realness and
fidelity. In addition, CodeFormer [57], RestoreFormer [48],
and VQFR [13] exploit to fuse high-quality priors from the
learned vector-quantized dictionary and information from
the low-quality inputs to enable the discovery of natural and
realistic faces that well approximate the target faces.
Video restoration Although BFR methods have achieved
great success in single image restoration, video face restora-
tion draws little attention from researchers. A few attempts
have been made in video face super resolution [11, 32, 51],
most of which focus on a fusion of inter-frame spatial and
temporal information, or aural and visual modalities. Re-
cently, [58] made a new attempt to apply the diffusion
model to the VFR task. It is also worth noting that some
modest progress has been made in general video super reso-
lution. For example, EDVR [45] and BasicVSR [3] demon-
strated their appealing performance in both temporal con-
sistency and single-frame restoration by leveraging tempo-
ral alignment, and aggregation.
Datasets CelebA-Test [19] is a widely used synthetic test
set for single-image blind face restoration. The commonly-
used testing datasets in the real-world scenarios, LFW-
Test [17], WIDER-Test [57], WebPhoto-Test [46] and
CelebChild-Test [46] are either collected from the Internet
or originated from other face-related tasks such as face ver-
ification or face detection. The face images of these testing
datasets tend to be photos with a frontal view. However, the
absence of more hard testing samples prevents evaluations
from fully reflecting the models’ performance in the real
world. Furthermore, a standard and real-world video face
testing set is still missing. VFHQ [50] dataset is proposed as
an alternative to VoxCeleb [7, 37] with higher-quality face
images and enables an improvement in VSR methods.

3. Benchmark Settings

In this section, we introduce the established benchmark
dataset and our evaluation settings. To establish the bench-

mark dataset, two real-world datasets (FOS-real and FOS-
V) and a synthesized dataset (FOS-syn) are introduced.
We first elaborate on data collection and categorization of
two collected real-world datasets. Then we present how
the synthetic test set is constructed with the widely-used
CelebA-HQ [19]. Table 1 presents an overview of the FOS
datasets. For evaluation, a user study is first conducted
to study the effectiveness of the commonly used metrics.
Based on these conclusions, the following assessment met-
rics are employed. 1) Traditional IQA metrics, including
PSNR, SSIM [47], LPIPS [56] and FID [16], 2) one new
general IQA metric (MANIQA [53]) and one FIQA metric
(SER-FIQ [43]).

3.1. Dataset

Data collection. Our datasets derive from videos on the In-
ternet. Video data instead of image data is collected since
face cases from video frames are more diverse and gen-
eral. This is also a major difference between our datasets
and the existing real-world datasets [46, 57]. First, we in-
clude YouTube-Faces (YTF) [49] and YouTube-Celebrities
(YTCeleb) [25] datasets as one of our resources. Specif-
ically, the YTF dataset contains 3,425 videos of 1,595 dif-
ferent identities, and the average frame number of one video
clip is 181.3. The YTCeleb dataset contains 1,910 videos of
47 people with an average of 163.0 frames. The frame sizes
of these video clips from them are around [300, 500], and
the proportion of face area is less than 1/8 in most cases.
Each frame is associated with unknown degradations, such
as compression artifacts, blur, and various noises. The
contents of YTF and YTCeleb datasets are mainly about
celebrities talking in show or interview scenes. To increase
the diversity of our test data, we further download 137
videos from YouTube using queries like old movie, aging,
symphony performance, and baseball game etc. The aver-
age duration of these videos are around 10 minutes. Fol-
lowing VFHQ, we pre-process all the collected raw videos
to obtain cropped face video clips. The whole process can
finally generate 3,316 clips which have the following prop-
erties: a) the face area is fully covered and roughly centered;
b) the resolution is fixed to 128 × 128; c) the frame length
of a single clip is within [50, 1500]; d) a clip only contains
one identity. (See more details in supplementary file)
Data categorization. After data collection, we build out
test datasets by specifying the collected face images into
three categories: 1) full: a full face is a front face, and its
major facial features (eyes, cheek, nose, mouth, and jaw)
are not occluded by other objects; 2) occluded: one or more
facial features are occluded or truncated; 3) side: a side
face refers to a face with incomplete facial features (e.g.,
one eye is hidden) due to a change in head pose. Figure
2 presents some examples of three categories. We first use
Hope-Net [40] to estimate the head pose and automatically
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Table 1. Overview of the existing public real-world testing datasets and our FOS datasets.

Dataset # Full # Occluded # Side # Total Real/synthetic Descriptions

CelebChild [46] 325 27 8 360 real childhood and recent photos of celebrities
LFW-Test [46] 1566 113 32 1711 real snapshots of celebrities

WebPhoto-Test [46] 383 19 5 407 real old photos
WIDER-Test [57] 894 58 18 970 real group photos
VFHQ-Test [50] - - - 50 synthetic videos of interviews

FOS-syn (Ours) 1020 1097 1032 3150 synthetic photos of celebrities
FOS-real (Ours) 1633 1136 1484 4253 real images of sports, old movies, interviews, concerts, etc.
FOS-V (Ours) - - - 3316 real videos of sports, old movies, interviews, concerts, etc.

determine a full or side face. The head pose estimation net-
work Hope-Net outputs the orientation degrees of one hu-
man head regarding three egocentric rotation angles: yaw,
pitch and roll [36]. Then, we calculate a head pose score by
assigning weights to each angle to determine a side face. In
this way, a face with a larger head pose movement will be
assigned to a greater score. (See details in the supplemen-
tary file) We manually select the occluded subset according
to occluded eyes, nose, or mouth from a face image.

FOS-syn consists of pairs of a ground truth face image
and the synthesized counterpart. The ground-truth images
originate from the resized 512 × 512 CelebA-HQ dataset.
We first categorize the CelebA-HQ dataset based on the
proposed data categorization approach and obtain 1,021,
1,097, and 1,032 images as full, occluded, and side sub-
sets, respectively. To generate the synthesized low-quality
images, we adopt the commonly used degradation model
[13, 14, 46, 48]: Id = {[(Ih ⊗ kσ) ↓r +nδ]JPEGq} ↑r,
where Id, Ih denote the low-quality image and the high-
quality counterpart, respectively. First, the high-quality im-
age Ih is convolved with Gaussian blur kernel kσ , Then,
resampling with scale factor r is performed. Next, additive
Gaussian noise nδ to the resampled image, and the JPEG
compression with quality factor q is applied. Finally, the
LQ image is resized back to 512 × 512. We follow the
widely-used setting in [13, 46, 48] and randomly sample
σ, r, δ, and q from [1, 10], [0.8, 8], [0, 20], and [60, 100],
respectively. The resampling is based on bilinear interpola-
tion, and the blur kernel size is fixed to 41.

FOS-real is derived from extracted video frames with
a stride of 5 from our collected and pre-processed clips.
Creating image datasets from video resources can capture
more diverse head poses, facial expressions, and gaze di-
rections (see Figure 2). After data categorization, we obtain
1,633 face images assigned to full, 1,136 images assigned
to occluded, and 1,484 images assigned to side. We ex-
clude video frames with severely truncated/occluded faces
or extremely low quality.

FOS-V is a video test dataset with 3,316 processed face
clips from the real world. This dataset involves heteroge-
neous scenes such as interviews, sports, nature, and old
movies, where the faces are of various ethnicities, across
a wide range of ages, and have diverse facial expressions as
well as head motions (see Figure 1 and supplementary file).

3.2. Evaluation

In this section, we unify the evaluation protocol and illus-
trate the subjective evaluation criteria. We also specify the
used IQA metrics and the proposed new metrics.
Evaluation protocol. For image test sets (FOS-syn, FOS-
real), the evaluation is conducted on aligned face images.
Since FOS-syn is already aligned, it can be directly used for
quantitative comparison. For the unaligned FOS-real, we
follow [50] to use RetinaNet [41] for facial landmark detec-
tion and OpenCV’s warpAffine function for face align-
ment. This way, we obtain an aligned version of FOS-real
for both quantitative assessment and subjective comparison.
The video test sets (FOS-V, VFHQ-Test [50]) are based
on a different evaluation protocol. In particular, the full-
reference metrics are calculated upon the original unaligned
video frames, while the no-reference IQA/FIQA metrics are
calculated on the aligned video frames for a more specific
evaluation on face quality. Therefore, an additional oper-
ation – pasting back to the original LQ video frame is re-
quired for full-reference metrics calculation. Following the
impactive works [46, 54, 57], we use ParseNet [31] to pre-
dict the parsing map of each aligned and restored face image
for only pasting the restored face region to the original LQ
video frame. This strategy guarantees that only the face area
is restored, while the background remains unchanged.
Subjective evaluation criteria. For subjective comparison,
we conduct a user study to evaluate results on FOS-real and
FOS-V. For image comparison on FOS-real, we specify
two evaluation dimensions: fidelity and realness. One is for
evaluating the identity preservation of the low-quality face
image while the other is for evaluating face generation qual-
ity without referring to the LQ input. The video compari-
son on FOS-V also has two evaluation dimensions: stabil-
ity (temporal consistency) and reconstruction performance.
For each evaluation dimension, we employ a five-point
grading system: 5–Outstanding; 4–Good; 3–Acceptable; 2–
Insufficient; 1–Fail. Note that one-point (Fail) means the
restoration performance is far from acceptable, such as ex-
aggerated face distortion regarding fidelity and extremely
poor image quality regarding realness; three-point (Accept-
able) indicates the restored result is overall satisfactory but
still needs improvement in terms of fine-grained facial at-
tribute reconstruction/generation (e.g., pupil, teeth, etc.);
five-point (Outstanding) means that the restoration result
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Figure 3. Visual examples of different scores on our five-point
grading system. The number of stars lit corresponds to the score
rated. (Zoom in for details)

maintains the identity perfectly or is of extraordinary face
quality regarding both facial features (e.g., eyes, mouth,
etc.) and texture details (e.g., hair, skin, etc.). Please see
Figure 3 and the supplementary file for visualized illustra-
tions of our five-point grading system.
Evaluation metrics. We first adopt several widely
acknowledged full-/no-reference metrics (PSNR, SSIM,
LPIPS [56], FID) for quantitative measurement. Then,
we investigate the effectiveness of five no-reference image
quality assessment algorithms (NIQE, BRISQUE [34], hy-
perIQA [42], MUSIQ [23], MANIQA [53]) and four face
image quality assessment algorithms (IFQA [18], FaceQnet
[15], SER-FIQ [43], SDD-FIQA [38]) by computing the
correlation coefficients (PLCC and SROCC) with human
opinion scores obtained by user study. It is observed that
MANIQA and SER-FIQ are the most relevant with subjec-
tive scores (see Figure 6a) among these selected IQA and
FIQA algorithms, respectively. Therefore, we use these two
metrics on all test datasets.

Moreover, we propose a new Video IDentity Distance
(VIDD) metric to evaluate the temporal consistency, i.e. the
stability, between consecutive video frames. For an input
clip consisting of N frames {x1, ..., xN}, a facial feature
descriptor F is used to extract the semantic feature of each
input xi. The VIDD score indicates a mean distance of
inter-frame features as

VIDD =
1

N

N−1∑
i=1

||F(xi),F(xi+1)||2. (1)

In particular, we use a pretrained ArcFace [8] model as the
descriptor F to extract discriminative facial features. Re-
ferring to Figure 4, the VIDD score demonstrates its signif-
icant consistency with the subjective scores, which will be
elaborated in detail in section 4.1.

4. Experiments
We evaluate 11 representative state-of-the-art BFR meth-
ods on FOS-syn and FOS-real: GAN prior-based meth-
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Figure 4. SROCC v.s PLCC results of 10 IQA/FIQA algo-
rithms and proposed stability evaluation metric VIDD on FOS-
real(#158) regarding realness and FOS-V(#108) regarding recon-
struction performance and stability.

ods (GFP-GAN [46], GLEAN [2], GPEN [54], PULSE
[33]), VQ-based methods (VQFR [13], CodeFormer [57],
RestoreFormer [48]), reference-based method (DMDNet1

[30]), and other methods (GCFSR [14], PSFRGAN [4], Hi-
FaceGAN [52]). Furthermore, we evaluate 4 VSR mod-
els trained on VFHQ [50](EDVR [45], EDVR-GAN, Ba-
sicVSR [3], BasicVSR-GAN) on our real-world FOS-V
dataset and the synthesized VFHQ-Test [50]. As a compar-
ison, 6 most recent BFR methods (GFP-GAN [46], GPEN
[54], VQFR [13], CodeFormer [57], GCFSR [14], Restore-
Former [48]) are also evaluated on those video datasets in a
single-frame processing manner. 2

4.1. Investigation into The Evaluation Metrics

The motivation of this section is that we empirically found
that the commonly used metrics are inconsistent with
the human eye. To better evaluate face restoration re-
sults, we first investigate several recently proposed state-of-
the-art NR-IQA algorithms (HyperIQA[42], MUSIQ [23],
MANIQA [53]), and two traditional NR-IQA algorithms
(NIQE [35], BRISQUE [34]). In addition, we select four
recently proposed state-of-the-art FIQA algorithms (IFQA
[18], FaceQnet [15], SER-FIQ [43], SDD-FIQA [38]) for
more extensive exploration. Notably, we exclude the com-
monly used FID since this metric needs to be calculated be-
tween data distributions, which may be inaccurate for small-
scale test sets.

We select 158 image samples from FOS-real as FOS-
real (#158), and 108 video samples as FOS-V (#108).
Methods on these two selected datasets are used for user
rating. Based on the obtained subjective scores regard-
ing the realness evaluation dimension, we calculate their
correlation coefficients with the results of these selected

1An extension of DFDNet [28].
2DMDNet is excluded from the comparison since detecting 68 land-

marks often fails under complex conditions.
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IQA/FIQA algorithms. The SROCC v.s PLCC results are
illustrated in Figure 4. Three FIQA algorithms, SER-FIQ,
SDD-FIQA, and FaceQnet exhibit tremendously strong
correlations with human ratings. For IQA algorithms,
MANIQA and MUSIQ show good consistency. However,
the commonly used NIQE presents a negative correlation.
Furthermore, we provide the SROCC v.s. PLCC results
on FOS-V(#108) in terms of reconstruction performance.
SER-FIQ is still fairly aligned with subjective scores, while
SDD-FIQA, MANIQA, and MUSIQ show an obvious per-
formance drop. In addition, although we exclude FID from
the investigation, it yields noticeable relevance with SER-
FIQ scores (see Table 3).

Based on these observations, we adopt the best-
performing FIQA and IQA algorithms, SER-FIQ, and
MANIQA to evaluate all test sets. More importantly, we
highly recommend that readers focus more on SER-FIQ
scores than MANIQA and FID in the paper. To demonstrate
the effectiveness of our proposed VIDD, we also compute
the correlation coefficients concerning the obtained sub-
jective scores on FOS-V(#108) according to stability. In
the bottom Figure 4, the proposed VIDD yields 0.763 on
SROCC and 0.657 on PLCC, which stands out among all
explored metrics.

4.2. Benchmark Results on Image Datasets.

FOS-syn. We first compare the results of 10 blind face
restoration methods3 on the synthesized FOS-syn dataset.
As seen from Table 2, GCFSR, CodeFormer, and GFP-
GAN could achieve more satisfactory results in terms of
all full-reference metrics (PSNR, SSIM, and LPIPS), indi-
cating their great identity preservation and perceptual qual-
ity. Regarding the no-reference metrics, we observe that
PULSE obtains the best results in SER-FIQ, but performs
the worst with regard to PSNR, SSIM, and LPIPS. This
manifests that PULSE generates high-quality face images
without considering maintaining the identity information.
In comparison, CodeFormer, RestoreFormer, VQFR, GFP-
GAN gain good results on both SER-FIQ and LPIPS. In
summary, on the synthesized dataset, GCFSR and DMDNet
[30] show superior restoration performance, while Restore-
Former and CodeFormer exhibit better generation ability. It
is clear that no method can surpass the others on all metrics
and datasets.
FOS-real. We evaluate 11 BFR methods on our real-world
image dataset. The qualitative comparison can be found in
Figure 5 (see more results in supplementary file). Three
no-reference metrics FID, MANIQA [53], and SER-FIQ
[43] are adopted for quantitative comparison. Table 3 re-
ports the performance comparison. By excluding the re-
sults of PULSE, we find that CodeFormer, VQFR, GFP-

3We exclude GLEAN for comparison as its blind version involves train-
ing on CelebA-HQ dataset.

GAN, and RestoreFormer yield superior performance re-
garding the FIQA metric SER-FIQ. Regarding the IQA met-
ric MANIQA, the top 5 methods are GPEN, GFP-GAN,
CodeFormer, VQFR, and GCFSR. By carefully examin-
ing the FID results, we observe that CodeFormer, Restore-
Former, VQFR, and GFP-GAN attain more satisfactory re-
sults than other methods. Notably, all methods perform
worse on both occluded and side subsets, especially regard-
ing FID and SER-FIQ. However, MANIQA shows less sig-
nificant differences among the three subsets since it is a gen-
eral IQA metric.

4.3. Benchmark Results on Video Datasets.

FOS-V. We also conduct a performance comparison among
BFR and VSR methods on our FOS-V dataset (See Table
5). The VSR methods achieve the best performance in
VIDD, showing high stability on the video dataset. For
IQA metrics, the BFR methods achieve superior overall
performance compared to VSR methods. However, they
fall behind in maintaining video restoration stability refer-
ring to VIDD. Among BFR methods, GPEN obtains ex-
cellent performance in both FID and the general metric
MANIQA. CodeFormer demonstrates its superiority in real-
world scenes with a significantly higher SER-FIQ score, but
its stability falls out of the top five. GFP-GAN ranks sec-
ond in the SER-FIQ score and achieves good performance
regarding VIDD, indicating its excellent balance on recon-
struction performance and stability.

We additionally leverage a synthesized video test set,
VFHQ-Test, to our evaluation. We compare 6 state-of-
the-art BFR and 4 VSR (×4) methods on the synthesized
VFHQ-Test in Table 4. BasicVSR obtains the best result in
PSNR and SSIM, while EDVR ranks second. As for LPIPS,
EDVR-GAN and BasicVSR-GAN achieve first and second
place, respectively. This implies that GAN training im-
proves perceptual quality. For inter-frame stability (VIDD),
BasicVSR and EDVR yield significantly better results than
others due to the multi-frame and MSE-oriented training
strategies. Regarding the no-reference IQA/FIQA metrics
(SER-FIQ, MANIQA, and FID), CodeFormer, GPEN, and
RestoreFormer achieve superior results over other methods.

4.4. Subjective Comparison

We next conduct a user study to evaluate the most recent 6
BFR and 4 VSR methods. We select a total of 158 images
from FOS-real: 68 images from full, 45 images from oc-
cluded, and 45 images from side. Our hand-picking ensures
diversity by only keeping one face image for one identity.
Moreover, we carefully adopt images with diverse facial ex-
pressions, poses, and conditions. For video results compar-
ison, we select a total of 108 video clips from FOS-V. The
restored results together with the original LQ images, are
sent to 28 users for grading in each evaluation dimension.
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Table 2. Comparison of 10 state-of-the-art BFR methods on FOS-syn(#3150). Results are reported in PSNR, SSIM, LPIPS, SER-FIQ,
MANIQA, FID. Red and blue indicate the best and second best results. The top five results are marked as gray .

PSNR↑ SSIM↑ LPIPS↓ SER-FIQ↑ MANIQA↑ FID↓

F. O. S. Total F. O. S. Total F. O. S. Total F. O. S. Total F. O. S. Total F. O. S. Total
PULSE [33] 22.01 20.56 21.24 21.25 0.623 0.584 0.643 0.616 0.466 0.518 0.513 0.500 0.734 0.700 0.661 0.698 0.590 0.573 0.554 0.572 88.29 67.86 70.66 75.40

PSFR-GAN [4] 24.30 23.70 25.15 24.37 0.620 0.596 0.669 0.628 0.409 0.444 0.440 0.431 0.515 0.413 0.365 0.430 0.626 0.612 0.582 0.606 68.77 58.86 63.38 63.56
HiFaceGAN [52] 24.75 23.64 24.71 24.35 0.622 0.592 0.644 0.618 0.418 0.456 0.460 0.445 0.766 0.616 0.531 0.637 0.595 0.553 0.530 0.559 71.90 62.59 72.12 68.73

GPEN [54] 24.60 23.41 24.75 24.24 0.664 0.635 0.707 0.668 0.394 0.402 0.388 0.395 0.768 0.629 0.556 0.650 0.695 0.695 0.674 0.688 69.39 63.67 66.95 66.60
GCFSR [14] 26.31 25.11 26.43 25.93 0.699 0.677 0.734 0.703 0.311 0.353 0.354 0.340 0.772 0.654 0.579 0.668 0.656 0.640 0.622 0.639 79.71 64.36 65.31 69.65

DMDNet [30] 25.67 24.48 25.79 25.30 0.681 0.656 0.719 0.685 0.355 0.398 0.389 0.381 0.769 0.637 0.555 0.653 0.622 0.586 0.558 0.588 67.61 60.91 61.91 63.41
GFP-GAN [46] 25.27 23.95 25.13 24.76 0.673 0.642 0.702 0.672 0.331 0.381 0.385 0.366 0.771 0.662 0.589 0.673 0.664 0.660 0.641 0.655 78.06 62.75 63.39 67.92

VQFR [13] 23.95 22.49 23.69 23.36 0.650 0.618 0.685 0.651 0.328 0.373 0.375 0.359 0.765 0.664 0.587 0.672 0.654 0.644 0.624 0.641 75.90 61.68 66.26 67.79
RestoreFormer [48] 24.74 23.41 24.68 24.26 0.636 0.609 0.671 0.638 0.328 0.373 0.381 0.361 0.781 0.656 0.576 0.670 0.648 0.634 0.613 0.631 72.09 56.92 56.81 61.80
CodeFormer [57] 25.29 25.17 25.17 25.21 0.661 0.692 0.692 0.682 0.317 0.358 0.358 0.345 0.783 0.680 0.603 0.688 0.666 0.666 0.645 0.659 80.90 65.02 68.78 71.40

Table 3. Comparison of 11 state-of-the-art BFR methods on FOS-real(#4253). Results are reported in SER-FIQ, MANIQA, and FID. Red
and blue indicate the best and second best performance. The top five results are marked as gray .

SER-FIQ↑ MANIQA↑ FID↓

F. O. S. Total F. O. S. Total F. O. S. Total
PULSE [33] 0.710 0.674 0.638 0.675 0.565 0.549 0.542 0.553 58.90 61.28 61.16 60.32

PSFR-GAN [4] 0.664 0.511 0.379 0.523 0.579 0.550 0.532 0.555 46.47 64.93 75.74 61.61
HiFaceGAN [52] 0.631 0.469 0.313 0.477 0.502 0.463 0.427 0.465 63.46 94.00 117.88 90.61

GLEAN [2] 0.685 0.511 0.387 0.534 0.591 0.567 0.529 0.563 52.07 69.79 79.95 66.53
GPEN [54] 0.679 0.519 0.406 0.541 0.672 0.661 0.641 0.658 57.40 76.37 82.45 71.21

GCFSR [14] 0.675 0.517 0.391 0.534 0.609 0.582 0.560 0.585 46.77 69.79 68.65 60.55
DMDNet [30] 0.673 0.507 0.373 0.524 0.578 0.543 0.509 0.545 41.25 65.76 70.68 58.07

GFP-GAN [46] 0.687 0.532 0.419 0.552 0.638 0.622 0.599 0.620 44.27 65.50 64.44 56.98
VQFR [13] 0.695 0.533 0.425 0.558 0.614 0.593 0.567 0.592 42.99 65.25 65.33 56.73

RestoreFormer [48] 0.683 0.522 0.402 0.542 0.596 0.576 0.541 0.572 39.85 64.98 66.53 55.87
CodeFormer [57] 0.709 0.557 0.444 0.576 0.634 0.621 0.599 0.618 43.98 63.09 63.96 56.05

Table 4. Comparison of 6 BFR and 4 VSR methods on VFHQ-
Test(#50). Red and blue indicate the best and second best results.
Top five results are marked as gray .

PSNR↑ SSIM↑ LPIPS↓ SER-FIQ↑ MANIQA↑ FID↓ VIDD↓

GPEN [54] 26.232 0.766 0.368 0.674 0.580 89.85 0.41
GCFSR [14] 26.747 0.783 0.355 0.662 0.533 98.63 0.42

GFP-GAN [46] 26.547 0.776 0.360 0.670 0.551 95.08 0.42
VQFR [13] 25.645 0.760 0.365 0.677 0.547 91.98 0.58

RestoreFormer [48] 26.094 0.755 0.381 0.649 0.552 87.26 0.46
CodeFormer [57] 26.420 0.771 0.360 0.699 0.552 97.16 0.46

BasicVSR [3] 29.353 0.848 0.319 0.671 0.326 131.45 0.31
EDVR [45] 29.269 0.846 0.322 0.677 0.326 131.02 0.33

EDVR-GAN [45] 26.384 0.766 0.304 0.674 0.555 89.14 0.39
BasicVSR-GAN [3] 25.820 0.759 0.319 0.651 0.550 87.45 0.44

Table 5. Comparison of 6 BFR and 4 VSR methods on FOS-
V(#3316). Red and blue indicate the best and second best perfor-
mance. Top five results are marked as gray .

SER-FIQ↑ MANIQA↑ FID↓ VIDD↓

GPEN [54] 0.596 0.639 79.21 0.51
GCFSR [14] 0.572 0.473 98.53 0.48

GFP-GAN [46] 0.601 0.515 96.50 0.48
VQFR [13] 0.596 0.514 85.60 0.62

RestoreFormer [48] 0.556 0.524 86.82 0.50
CodeFormer [57] 0.616 0.520 98.85 0.50

BasicVSR [3] 0.567 0.300 123.26 0.36
EDVR [45] 0.567 0.302 124.20 0.38

EDVR-GAN [45] 0.562 0.499 84.84 0.44
BasicVSR-GAN [3] 0.520 0.505 83.19 0.52

Table 6. The subjective scores achieved by 4 BFR methods on
FOS-real(#158) for each subset. Point ≥ 3.5 is marked as red ;
point ≥ 3 is marked as blue .

F. O. S.

Real.↑ Fidel.↑ Real.↑ Fidel.↑ Real.↑ Fidel.↑
CodeFormer [57] 3.64 3.64 3.43 3.47 3.29 3.31

RestoreFormer [48] 2.72 2.90 2.57 2.83 2.36 2.63
VQFR [13] 3.42 3.32 2.92 2.89 2.91 2.85

GFP-GAN [46] 3.05 3.22 2.83 3.04 3.00 3.23

The results of the user study are organized in Figure 6a and
Table 6. The results of GPEN, GCFSR, EDVR, and EDVR-
GAN are in the supplementary files due to the space limit.

From Table 6, CodeFormer achieves overall great sub-
jective scores for both realness and fidelity on FOS-
real(#158): > 3.5 points on full subeset; > 3.0 points on
occluded and side subsets. These results indicate that Code-
Former yields superior reconstruction performance for full
subset while showing robustness on other occasions.

While most methods obtain better results in realness than
fidelity, VQFR shows an obvious advantage in realness over
fidelity. Additionally, VQFR mainly performs well (> 3.0)
on full subset but less effective on occluded and side (<
3.0). GFP-GAN exhibits robust performance by obtaining
> 3.0 point in most cases. As shown in Figure 6a, we find
that the subjective score distribution of CodeFormer is more
compact while that of RestoreFormer is rather flat, which
implies their robust and less-than-robust performance on the
test set, respectively. In general, the average score of all
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Figure 5. Qualitative comparison of both state-of-the-art BFR methods and VSR methods on FOS-real. (Zoom in for details)
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(a) Subjective score distributions of 4 BFR methods on FOS-real (#158)
regarding realness (blue) and fidelity (coral).
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(b) Subjective score distributions on 4 BFR methods plus 2 VSR methods
on FOS-V (#108) regarding reconstruction performance (orange) and sta-
bility (green).

Figure 6. The distribution of subjective scores obtained on FOS-
real (#158) and FOS-V (#108). The mean scores are denoted on
the left of each subfigure.

methods is less than 3.5 points in occluded and side cases,
indicating that the robustness of existing BFR methods still
needs to be improved.

From Figure 6b, BasicVSR exhibits the highest stabil-
ity performance (point 3.57) among all methods and shows
a small variance in subjective scores. However, its recon-
struction only achieves less than 3.3 points, indicating a gap
between the restoration performance and stability mainte-
nance. CodeFormer achieves the best reconstruction perfor-
mance (3.58 points) but performs less well than BasicVSR
in stability. Specifically, there exists a huge gap between
the reconstruction and stability performance of VQFR. BFR

methods can generate visually pleasant results but under-
perform in maintaining temporal consistency. This inspires
us to combine the advantages of BFR and VSR methods to
achieve more stable and realistic video face restoration.

5. Conclusion
In this work, we propose new benchmark datasets and
present a comprehensive benchmark study of the state-of-
the-art BFR and VSR methods. The established benchmark
dataset FOS consists of face samples mainly from videos,
which involve more complex scenarios than existing test
datasets. The benchmarking results posed new challenges
and identified the future direction of restoration on face
videos. Based on our evaluation and analysis, we present
the overall conclusions below, which we hope will shed
some light on future FVR advances. 1) The current BFR
methods have difficulty generalizing to cases in complex
scenarios, such as faces with large pose movements or ob-
ject occlusion. This generalization issue makes extending
BFR methods to VFR solutions more challenging. 2) A
more balanced trade-off is expected in future VFR solu-
tions. None existing BFR or VSR methods produce high-
quality faces while maintaining iter-frame stability when
restoring video faces. 3) We narrow the gap between the
current qualitative evaluation and the subjective scores. The
effectiveness of the commonly used evaluation metrics is
revisited and studied by leveraging a user study. The re-
sults show that NIQE and BRISQUE, are inconsistent with
the human eye. Meanwhile, the recently proposed state-of-
the-art IQA/FIQA metrics are potential candidates for face
quality evaluation.

The collected FOS datasets may have some negative
social impacts such as privacy leaking. To mitigate
the influence of privacy, the data are derived from two
public datasets and self-collected internet data which
involves mainly celebrities. Any user acquires the
datasets are required to follow the licence provided by [1].
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