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Abstract

Employing specific networks to address different types
of degradation often proved to be complex and time-
consuming in practical applications. The Bracket Image
Restoration and Enhancement (BIRE) aimed to address
various image restoration tasks in a unified manner by
restoring clear single-frame images from multiple-frame
shots, including denoising, deblurring, enhancing high dy-
namic range (HDR), and achieving super-resolution under
various degradation conditions. In this paper, we propose
LGSTANet, an efficient aggregation restoration network for
BIRE. Specifically, inspired by video restoration methods,
we adopt an efficient architecture comprising alignment,
aggregation, and reconstruction. Additionally, we introduce
a Learnable Global Spatio-Temporal Adaptive (LGSTA)
aggregation module to effectively aggregate inter-frame
complementary information. Furthermore, we propose an
adaptive restoration modulator to address specific degra-
dation disturbances of various types, thereby achieving
high-quality restoration outcomes. Extensive experiments
demonstrate the effectiveness of our method. LGSTANet
outperforms other state-of-the-art methods in Bracket Im-
age Restoration and Enhancement and achieves competitive
results in the NTIRE2024 BIRE challenge.

1. Introduction
Smartphone and camera manufacturers have always strived
to capture clear photos under low-light conditions. While
long exposures could enhance brightness in photography,
they might also result in motion blur or overexposure due
to camera shake or subject motion. Conversely, short expo-
sures may result in the camera capturing a limited amount of
photons, causing noise in the images and rendering dark ar-
eas invisible. Moreover, the use of lower-quality photogra-
phy equipment often results in issues such as low resolution
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Figure 1. (a) indicated the utilization of a dedicated network to
process a single image with a specific type of degradation. (b) in-
dicated the usage of an aggregation restoration network to restore
and enhance multiple degraded multi-frame shots.

and loss of detail. To enhance photography quality, there is
a desire to obtain high dynamic range (HDR) images. De-
spite extensive research on single-image restoration meth-
ods, such as deblurring [18, 35], denoising [53, 54], super-
resolution [9, 39], and HDR reconstruction [24, 46] for
the aforementioned issues, these methods are limited when
faced with the simultaneous existence of multiple degrada-
tion types in real-world scenarios, as illustrated in Fig. 1(a).

Recently, there has been significant attention on restor-
ing and enhancing multi-frame images [1, 2, 10, 11, 23,
29, 36, 46]. By using images of the same scene cap-
tured with varying exposure times, denoising and super-
resolution were conducted, or the complementary benefits
of long and short exposures were combined to improve de-
blurring effects. Additionally, HDR reconstruction typi-
cally necessitates multiple exposure support. Inspired by
these processing paradigms, the task of restoring and en-
hancing bracket images was proposed, aiming to address
practical issues such as motion blur, noise, low resolution,
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Figure 2. An example of a multi-frame burst image and the re-
stored image. In the multiple frames, corresponding regions con-
tained complementary information to aid in the restoration and en-
hancement of the reference frame.

and low dynamic range (LDR) simultaneously in a uni-
fied manner. High-quality images were restored by elimi-
nating various types of degradation from multiple frames.
Compared to the previous task, this one was more closely
aligned with real-world applications, but it was also more
challenging due to the requirement to handle multiple types
of degradation. Fortunately, having more input frames pro-
vided a wealth of information for restoration. As shown
in Fig. 2, we observed complementary information among
the input multiple frames. For example, images captured
with short exposure were clear, assisting in restoring blurry
regions in long-exposure images. Moreover, the content
in long-exposure shots was clearer compared to the darker
areas in short-exposure images. Additionally, combining
multiple exposure images facilitated HDR reconstruction,
enabling better preservation of details compared to single-
image processing. Therefore, the key to the BIRE task lies
in effectively and efficiently utilizing the complementary
information present in these inter-frame corresponding re-
gions to achieve high-quality image restoration.

To tackle the aforementioned issues, we introduced
LGSTANet. Inspired by tasks like video super-
resolution [4, 5] and video deblurring [57], which aim to
utilize inter-frame information for video restoration and
enhancement. Our method adopted a similar architec-
ture, incorporating alignment, aggregation, and reconstruc-
tion. Regarding alignment, considering the varying expo-
sure levels across multiple frames resulting in variations in
color and brightness, we initially performed color align-
ment. Acknowledging potential motion misalignment be-
tween frames, especially in long exposures, we also con-
ducted alignment in the feature space, using a flow-guided
deformable convolution paradigm. Regarding aggregation,
through a recurrent structure, we propagated information
from the current frame to the next for fusion, achieving im-
plicit feature aggregation. In this recurrent structure, we
utilized both weight-sharing and non-weight-sharing resid-
ual blocks to mitigate degradation across multiple types of
frames.

Considering the BIRE task entails multiple-frame inputs
and single-frame outputs, effectively aggregating multiple
frames is crucial. Notably, not all regions in non-reference
frames contribute to the reference frame, and merely

concatenating them may introduce additional degradation
noise. Hence, we introduced a trainable global spatio-
temporal adaptive aggregation module, utilizing global
pooling and nonlinear activation functions to prioritize valu-
able regions for reference frame aggregation. Moreover,
considering the diverse degradation types present in input
frames (blur, noise, low light, overexposure), and the fact
that different degradation types entail different degradation
disturbances [42] that affect the quality of recovery. There-
fore, following each layer’s aggregation with the reference
frame, we introduce a non-weight-shared learnable tensor
to adapt to these variations, thereby achieving more detailed
texture restoration.

Based on the above design, our method utilized a pure
CNN architecture. Compared to methods [11, 36] utiliz-
ing complex structures or self-attention and cross-attention
mechanisms for spatio-temporal interaction, our approach
exhibited greater model efficiency. This makes our method
more suitable for deployment on edge devices in real-world
scenarios.
The main contributions of this work are summarized below:

• We proposed LGSTANet, an aggregated restoration net-
work for aggregating inter-frame complementary infor-
mation, which proved to be efficient and effective.

• We introduced a Learnable Global Spatio-Temporal
Adaptive (LGSTA) aggregation module, utilized to ef-
ficiently extract inter-frame complementary regions and
aggregate them.

• We proposed an ultra-lightweight adaptive restoration
modulator capable of adapting to various types of degra-
dation disturbances, significantly enhancing the recovery
quality with its straightforward design.

• Extensive experiments demonstrated the effectiveness of
LGSTANet. Our algorithm ranked 5th and 3rd in the
NTIRE 2024 Bracket Image Restoration and Enhance-
ment Challenge’s two tracks, respectively. In track 2, our
model’s inference speed reached the SOTA level.

2. Related Work
2.1. Single Image Restoration and Enhancement

Image restoration and enhancement are among the clas-
sical tasks in computer vision, aimed at recovering clear
images from degraded ones, such as denoise [53, 54], de-
blur [18, 35], derain [15, 52], dehaze [12, 33], desnow [7,
22], and super-resolution [9, 39]. Traditional methods typ-
ically depended on hand-crafted features, assumptions, or
statistical priors to constrain the solution space [14]. How-
ever, while these methods excelled on specific datasets,
they demonstrated limited generalization and generalizabil-
ity. In recent years, the rapid development of deep learn-
ing has led to the emergence of numerous convolutional
neural network-based methods for single-image restoration
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and enhancement. These methods have comprehensively
outperformed traditional algorithms [6, 50] across multi-
ple tasks, achieving remarkable results. Additionally, the
utilization of Transformer models for global modeling in
low-level vision tasks [27, 34] demonstrates impressive ca-
pabilities, leveraging the self-attention mechanism to attain
global dependencies, thereby outperforming convolutional
neural network-based approaches. To solve the quadratic
computational complexity problem of self-attention, some
methods optimized the computation of self-attention and
improved the computational efficiency [19, 42, 51]. How-
ever, relying solely on information from a single image may
not fully harness the potential of restoration methods.

2.2. Multi-Frame Image Reconstruction

Unlike single-image processing, multi-frame image restora-
tion and enhancement require consideration of misalign-
ment and motion blur caused by camera and object move-
ment, as well as noise introduced by differences in device
parameter settings. The advantage was that inter-frame
information could be utilized to achieve better restora-
tion than single-image processing. MFSR [40] pioneered
the processing of burst frames in the frequency domain,
which produced significant artifacts despite its computa-
tional efficiency. DBSR [1] addressed the MFSR prob-
lem by employing attention-centered explicit feature align-
ment. Some methods achieved better restoration by ex-
ploring the complementary information of short exposure
noise and long exposure blur. AHDRNet [47] proposed an
attention-guided end-to-end deep neural network, to pro-
duce high-quality ghost-free HDR images. Kalantari et
al. [16] explored frame alignment and merging of images
with optical flow. Wu et al. [44] proposed free optical flow
HDR image reconstruction of large motion scenes. HDR-
Transformer [24] and SCTNet [37] utilized self-attention
and cross-attention for context and inter-frame interaction.
Besides, a few methods [1, 10, 13, 28, 49] take noise into
account. Although the above method achieved decent re-
sults, it only considered one or two types of degradation,
and employing self-attention mechanisms often imposed in-
appropriate computational burdens for practical application
scenarios.

2.3. Video Image Restoration and Enhancement

The video restoration and enhancement task was also about
dealing with multi-frame degraded image inputs, with the
key being to effectively utilize inter-frame information to
recover a clear image. Deep learning-based video restora-
tion methods mainly included time-sliding window-based
and recurrent-based methods [3, 20, 21, 32, 41]. In the tem-
poral sliding window method, given an LR video sequence,
reference frames and neighboring frames were aligned to
estimate a single HR output. The alignment module played

a key role in this process. Previous methods [8, 38, 41] used
deformable convolution and optical flow for alignment,
while more recent methods [45] proposed implicit align-
ment modules to perform alignment in high-dimensional
feature space. Some methods [48, 58] also address image
alignment by designing complex network structures. On the
other hand, methods based on recurrent structures propa-
gated features from the current frame to the next, achieving
the effect of implicit aggregation. BasicVSR [4] and Ba-
sicVSR++ [5] proposed a VSR method that combined bi-
directional propagation of past and future frames into the
features of the current frame, achieving a significant im-
provement. ESTRNN [57] combined a dense residual block
with a recurrent structure and efficiently fused past and fu-
ture frames to achieve an efficient video deblurring method.
The aforementioned methods for video restoration and en-
hancement have inspired the BIRE task, which also involves
processing multiple frames of images.

3. Method
In this section, we detailed our method. We will first pro-
vide an overview of our method in Sec. 3.1. Then, we will
introduce the processing method for alignment in Sec. 3.2,
and our proposed learnable global spatio-temporal adaptive
(LGSTA) aggregation module in Sec. 3.3. The main idea
of this paper is to effectively aggregate burst frames with
complementary information to achieve high-quality bracket
image restoration and enhancement.

3.1. Overall Framework

We proposed LGSTANet, depicted in Fig. 3, primarily com-
prising alignment, aggregation, and reconstruction compo-
nents. The alignment part included color alignment and
feature space alignment. The aggregation part consisted
of a recurrent network and a learnable aggregation mod-
ule. In track 2, the reconstruction part involved 4× super-
resolution. Initially, given multiple degraded frames Fi ∈
RH×W×4, F0, F1, F2, F3, and F4 underwent color align-
ment to obtain normalized features F̃ci ∈ RH×W×8. Sub-
sequently, shallow features were extracted using shared-
weight 3 × 3 convolutions, followed by alignment in fea-
ture space to obtain aligned features F̃1, F̃2, F̃3, F̃4 rel-
ative to Fb. Subsequently, F̃i ∈ RH×W×C was fused
with Fb and fed into the recurrent network, which produced
outputs FT0, FT1, FT2, FT3, FT4 at each temporal layer.
These outputs were then fused into FR using the learn-
able aggregation module. Finally, they enter the reconstruc-
tion module stacked with residual blocks, where the output
Fo ∈ RH×W×C is added to Fb connected via skip connec-
tions. Subsequently, channel reduction is achieved using a
1× 1 convolution, followed by upsampling, and then added
to the result of the same upsampling operation on F0. For
track 1, the reconstruction module maintained the resolu-
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Figure 3. Architecture of LGSTANet for Bracketing Image Restoration and Enhancement. Our LGSTANet consists of an alignment
module, an implicitly aggregated part based on recurrent structures, an explicitly aggregated part with a Learnable Global Spatio-Temporal
Adaptive (LGSTA) aggregation module, and a restoration and super-resolution reconstruction part.

tion FSR ∈ RH×W×4, whereas for track 2, it employs Pix-
elShuffle for 4× super-resolution reconstruction, resulting
in FSR ∈ R4H×4W×4.

3.2. Alignment Module

Effective alignment is crucial for aggregating multiple
frames effectively. Various alignment methods have been
widely used in video restoration [5, 20, 41]. Consider-
ing the brightness and contrast changes caused by differ-
ent exposure times, the potential color variations between
frames might affect the subsequent aggregation and restora-
tion results. Therefore, color alignment was conducted as
the initial step. Specifically, we reshape the input ten-
sor Fi into a four-dimensional tensor Fci, with a shape of
(n × t, 2c, h, w). Then, we create a zero tensor F̃ci with
the same data type as Fci, with a shape of (n× t, 2c, h, w).
Next, we fill the even channel positions of F̃ci with the cor-
responding channel values from Fci:

F̃ci [:, 0 :: 2, :, :] = Fci. (1)

Finally, we perform clamp and gamma correction on Fci,
and fill the results into the odd channel positions of F̃ci:

F̃ci [:, 1 :: 2, :, :] = (clamp (Fci,min = 0))
1/γ

, (2)

where γ represents the gamma correction parameter and is
generally set to 2.2. Thus, we have completed the transfor-
mation from the input tensor Fi ∈ RH×W×4 to the output
tensor F̃ci ∈ RH×W×8.

The feature extraction module, composed of stacked
residual blocks with shared weights, mapped the image
to the feature space. Further inspired by the classic
video super-resolution algorithm BasicVSR++ [5], we also
adopted the approach of feature space alignment through
flow-guided deformable convolutions. Specifically, by us-
ing SPyNet [31] to compute the optical flow si between
the reference frame F0 and the frames to be aligned
[Fs1, Fs2, Fs3, Fs4], we warp si with the frames to be
aligned:

F̃Pi = W (Fsi, si) , (3)

where W denotes the spatial warping operation. We com-
pute the residue to the optical flow. The pre-aligned fea-
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Table 1. Quantitative comparison with state-of-the-art methods on the synthetic of BracketIRE and BracketIRE+ tasks, respectively.

Method
BracketIRE BracketIRE+

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Burst
Processing
Networks

DBSR [1] 34.05 0.9026 0.187 28.22 0.8359 0.336
MFIR [2] 33.92 0.9026 0.196 28.33 0.8381 0.330
BIPNet [10] 35.97 0.9314 0.145 28.44 0.8453 0.311
Burstormer [11] 37.01 0.9454 0.127 28.59 0.8516 0.292
RBSR [43] 37.88 0.9453 0.119 28.70 0.8549 0.279

HDR
Reconstruction

Networks

AHDRNet [46] 36.32 0.9273 0.154 28.17 0.8422 0.309
HDRGAN [29] 35.07 0.9157 0.177 27.80 0.8359 0.342
HDR-Tran. [23] 36.54 0.9341 0.127 28.18 0.8483 0.282
SCTNet [36] 36.90 0.9437 0.120 28.28 0.8461 0.282
Kim et al. [17] 37.93 0.9452 0.115 28.33 0.8494 0.270

TMRNet [55] 38.19 0.9488 0.112 28.91 0.8572 0.273
Ours LGSTANet 38.46 0.9527 0.105 29.82 0.8537 0.282

tures F̃Pi are then used to compute the DCN [8] offsets oi
and modulation masks mi. A DCN is then applied to the
unwarped feature F̃i:

F̃i = D (Fsi ; oi,mi) , (4)

where D denotes a deformable convolution. It is worth not-
ing that, unlike BasicVSR++ [5], we aligned only the resid-
ual frames with the reference frame, without performing
inter-frame alignment, thereby improving computational ef-
ficiency.

3.3. Aggregatiton Structure

Following multiple-frame alignment, the recurrent aggrega-
tion method [4, 5, 57] has been extensively utilized in video
restoration. This method recursively propagated features
extracted from the current frame to the next frame, thereby
achieving implicit feature fusion. We adopted a similar re-
current structure for aggregation and continued the design
approach from previous work [55]. We alternately stacked
weight-shared and non-weight-shared residual blocks into
the recurrent architecture to address multiple-frame degra-
dation of the same type and different types of degradation:

Fls = As

(
concat

(
F0, F̃i

)
, FTi

)
,

FTi = Ai

(
concat

(
F0, F̃i

)
, Fls

)
,

(5)

where As denotes weight-shared, Ai denotes non-weight-
shared. Fls represents the features processed by convolu-
tions with shared weights, while FTi

represents the features
processed by convolutions with unshared weights. For the
first FT0

, we set it to zero.
In previous work [4, 5], only the final output of the re-

current structure was used for reconstruction. Due to the
presence of various degradation types in multi-frame im-

ages, and not all regions containing complementary infor-
mation—sometimes even noise, directly aggregating may
result in performance degradation. Therefore, we proposed
a Learnable Global Spatio-Temporal Adaptive (LGSTA) ag-
gregation module, which aims to explicitly aggregate com-
plementary information from adjacent frames to fully lever-
age it for high-quality bracket image restoration and en-
hancement. Specifically, before propagating features to the
next frame in the recurrent structure, we stored the current
feature in the aggregate list awaiting processing. After the
recurrent structure propagation was completed, each frame
in the aggregate list underwent effective alignment and pre-
liminary restoration. Take the first frame in the list as the
reference frame, and then aggregate the other four frames
as supplementary frames with the reference frame. First,
use the concat operation to fuse the reference frame with
each supplementary frame separately. On one hand, extract
features from the fusion of the two using convolution. On
the other hand, utilize global average pooling and activation
functions to filter out hierarchical features from comple-
mentary regions. Then, multiply the two to obtain efficient
aggregated features from effective complementary regions:

Fci = concat (FT0 , FTi) , (6)

F̃ci = L (GAP (Fci))⊗ Conv (Fci) , (7)

where L denotes a series of linear transformations with ac-
tivation function and Sigmoid function for channel weight
generation. After the above processing, four frames have
been effectively aggregated.

Due to the different types of degradation present in the
input frames (such as blur, noise, low light, etc.), each type
of image degradation has its distinctive perturbation pat-
tern [42] that needs to be addressed or restored. To further
enhance the ability of our method to handle various distur-
bances, we proposed a lightweight restoration modulator to
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Figure 4. Visual comparison on the synthetic dataset of BracketIRE task. Please zoom in for more details.
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Figure 5. Compared the input and output results of our method, as well as the ground truth. Please zoom in for more details.

adaptively process the previously obtained frames:

FAi = MTi ⊕ F̃ci , (8)

where MTi
denotes learnable tensor. By adapting to dif-

ferent degradation disturbances, we aim to restore more de-
tails. We deployed four modulators for these four frames
with minimal additional parameters. The results show that
our adaptive restoration modulator indeed contributes to re-
covering details with minimal computational cost.

4. Experiments
4.1. Datasets

We used the dataset provided by the NTIRE 2024 Brack-
eting Image Restoration and Enhancement Challenge orga-
nizers: BracketIRE [55] and BracketIRE+ [55]. The dataset
includes 1,335 data pairs in 35 scenes. 1,045 pairs from 31
scenes were used for training, and the remaining 290 pairs
from the other 4 scenes were used for testing. Setting the
exposure time ratio S to 4 and the frame number T to 5 cov-
ers most of the dynamic range with fewer images. For Track
1, both LR and GT have a resolution of 1920 × 1080. For

Track 2, which includes ×2 and ×4 super-resolution tasks,
LR resolutions are 960 × 540 and 480 × 270 respectively,
while GT resolutions remain at 1920× 1080. The proposed
BracketIRE involves denoising, deblurring, and HDR re-
construction, while BracketIRE+ adds support for SR task.

4.2. Implemental Details

We randomly crop patches and augment them with flips and
rotations. The batch size is set to 8. We adopt AdamW [26]
optimizer with β1 = 0.9 and β1 = 0.999. The initial learn-
ing rate was set to 1e-4. Cosine annealing strategy [25] is
employed to decrease the learning rates to 1e-6. All exper-
iments are conducted with PyTorch [30] on a single Nvidia
RTX 3090 GPU.

Track 1, we used the progressive training strategy [51]
to increase patch size and reduce batch size. The patch size
of the training includes [128, 160, 192, 256, 320, 384], and
a total of 800 epochs were trained, and only L1 loss was
used for supervision and optimization in the whole training
process.

Track 2, We used the best weights from Track1 and the
2× resolution data provided in BracketIRE+ for training 2×
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Table 2. Results on track 1 of on Bracketing Image Restoration and Enhancement Challenge [56].

Rank Team
Full Images

PSNR ↑ / SSIM↑ / LPIPS↓
Cropped Images

PSNR ↑ / SSIM↑ / LPIPS↓
#Params

(M)
#FLOPs

(T)
Time

(s)
Memory

(GB)

1 SRC-B 40.54 / 0.9637 / 0.077 41.77 / 0.9633 / 0.076 94.34 48.238 3.102 20
2 MegIRE 39.78 / 0.9556 / 0.102 39.82 / 0.9550 / 0.105 19.75 30.751 2.383(3) 16(3)

3 UPN1 39.03 / 0.9500 / 0.117 39.02 / 0.9493 / 0.120 13.32(2) 10.409(1) 1.090(1) 6(1)

4 CVG 38.78 / 0.9543 / 0.102 39.89 / 0.9557 / 0.104 13.29(1) 21.340(2) 7.518 11(2)

5 Ours 38.46 / 0.9527 / 0.105 39.61 / 0.9540 / 0.107 14.04(3) 22.283(3) 1.829(2) 16(3)

Table 3. Results on track 2 of on Bracketing Image Restoration and Enhancement Challenge [56].

Rank Team
Full Images

PSNR ↑ / SSIM↑ / LPIPS↓
Cropped Images

PSNR ↑ / SSIM↑ / LPIPS↓
#Params

(M)
#FLOPs

(T)
Time

(s)
Memory

(GB)

1 SRC-B 34.26 / 0.8913 / 0.206 34.80 / 0.8913 / 0.208 95.00 5.285 0.813 5(3)

2 NWPU 30.59 / 0.8728 / 0.268 29.93 / 0.8633 / 0.274 13.37(1) 1.426(1) 0.887 3(1)

3 Ours 29.82 / 0.8537 / 0.282 31.35 / 0.8660 / 0.277 14.34(2) 1.500(2) 0.493(1) 3(1)

4 CYD 29.66 / 0.8598 / 0.284 30.27 / 0.8632 / 0.285 17.60(3) 1.560(3) 0.751(3) 4(2)

5 CVG 29.25 / 0.8521 / 0.278 30.63 / 0.8645 / 0.275 71.82 6.898 0.679(2) 4(2)

super-resolution. We trained for 400 epochs and a crop size
of 64×64. The pre-trained weights were further used for 4×
super-resolution. For Track2, we trained for a total of 801
epochs and only used L1 loss for supervision and optimiza-
tion throughout the training process. Progressive training
strategies and any ensemble operations were not used.

4.3. Result

Evaluation metrics. We utilize PSNR, SSIM and LPIPS to
quantitatively evaluate the BIRE performance.

Quantitative Results. Tab. 1 shows the quantita-
tive results of our method and other methods, which in-
clude Burst Processing methods DBSR [1], MFIR [2], BIP-
Net [10], Burstotmer [11] and RBSR [43], HDR Recon-
struction methods AHDRNet [46], HDRGAN [29], HDR-
Tran. [23], SCTNet [36] and Kim et al. [17], BracketIRE
method TMRNet [55]. As shown in Tab. 1, our proposed
LGSTANet achieves SOTA results in terms of PSNR on
the BracketIRE and BracketIRE+ datasets. Notably, on
the BracketIRE+ dataset (4× super-resolution), our method
improves PSNR by 0.91dB compared to the suboptimal
method. On the BracketIRE dataset, our method com-
prehensively surpasses previous state-of-the-art methods in
PSNR, SSIM, and LPIPS metrics.

Visual Comparison. Fig. 4 shows that our model has
better visual image quality than the other different methods,
including the AHDRNet [46], HDRformer [23] and SCT-
Net [36]. The method we proposed achieves better results
in deblurring and denoising. In the third group of images,
our results outperform other methods in fine texture restora-
tion. This validates the superiority and effectiveness of our
proposed LGSTANet method. Fig. 5 shows the output of
our model compared to the input of multi-frame burst im-
ages, achieving significant improvements in denoising and

debluring, as well as enhancing low-light regions. It can be
observed that our results closely approximated the ground
truth, further validating the effectiveness of our method.

4.4. NTIRE 2024 Bracketing Image Restoration and
Enhancement Challenge

The top 5 results of the NTIRE 2024 Bracketing Image
Restoration and Enhancement Challenge Track1 and Track
2 selected by the NTIRE 2024 committee [56] are presented
in Tab. 2 and Tab. 3.

Our method participated in two tracks and ranked 5th
and 3rd under the PSNR evaluation metric. We didn’t use
any ensemble operations during the testing period. Our
method achieved competitive results in both tracks. Al-
though the final scores are ranked only according to the
PSNR metrics, Tab. 2 and Tab. 3 show more metrics on
model efficiency, including Params, Inference time, Mem-
ory usage, and FLOPs, in which these metrics are com-
monly meaningful for real-world applications. For track 1,
our approach achieves the top three results in each of the
metrics for evaluating model efficiency. For track 2, with a
more competitive PSNR, our method achieves even better
results in terms of model efficiency compared to track 1. In
particular, we take the state-of-the-art performance in terms
of inference speed. This demonstrates the better applicabil-
ity of our method in edge devices.

4.5. Ablation Study

To validate the effectiveness of our LGSTANet, we con-
ducted a series of experiments. To enhance training effi-
ciency, we performed ablation experiments using a crop size
of 64 × 64 and trained for 400 epochs on the BracketIRE
dataset.
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Table 4. Ablation studies of different components in LGSTANet.

Method PSNR↑ SSIM↑ LPIPS↓ Params

w/o Color Alignment 36.44 0.9337 0.136 14.041M
w/o Feature Alignment 37.75 0.9452 0.120 12.322M
w/o Recurrent Network 36.47 0.9334 0.146 3.332M
w/o LGSTA 37.71 0.9455 0.118 13.286M
Ours 37.95 0.9469 0.117 14.041M

Effectiveness of LGSTANet. To further validate the
effectiveness of the architecture proposed, we conducted
a series of ablation experiments, the results of which are
shown in Tab. 4. We conducted ablation studies on fea-
ture alignment and recurrent aggregation components, re-
spectively. The results revealed that when feature align-
ment or recurrent aggregation was abandoned, the PSNR
decreased by 0.2dB and 1.48dB, respectively. This indi-
cates that the recurrent architecture in the video restoration
domain was equally significant in the BIRE task. In terms of
alignment, the alignment approaches from the perspectives
of color space alignment and feature space alignment laid
a solid foundation for subsequent aggregation. When we
introduced the learnable global spatiotemporal aggregation
module after recurrent aggregation, the PSNR increased by
0.24dB. Overall, these experiments demonstrated that each
component proposed in our LGSTANet played a significant
role. Our approach proved effective in restoring and en-
hancing bracket images.

Effectiveness of LGSTA Module. To show the advan-
tages of the proposed LGSTA module. We conducted ab-
lation experiments on different variants of it. As shown
in the Tab. 5, instead of utilizing the Global Average
Pooling (GAP) and activation function processing method,
only concatenation aggregation of base and complemen-
tary frames was employed, resulting in a decrease in PSNR
due to the failure to effectively extract beneficial informa-
tion from the complementary frames. To further thoroughly
validate the effectiveness of the design. We replaced GAP
with Global Max Pooling (GMP) to demonstrate that us-
ing GAP can achieve higher performance. Simultaneously,
we observe that w/ modulator can bring a performance im-
provement of 0.16 dB, which reveals the effectiveness of
the modulator. We designed a non-weight-sharing mod-
ulator to cope with different types of degradation distur-
bances. When we replaced the non-weight-sharing adap-
tive modulator with a weight-sharing adaptive modulator,
we observed a decrease in PSNR of 1.24 dB. Our analysis
indicated that this was because using only one modulator
couldn’t adapt to multiple degradations, and it could intro-
duce noise, leading to a performance decline. To thoroughly
validate the effectiveness of the design, we conducted an ab-
lation study on the impact of different activation functions
on performance, as shown in Tab. 6.

Only Concat Share Modulator w/o Modulator

GAP→GMP Ours GT

Figure 6. Visual comparison of different variants of LGSTA.

Table 5. Ablation studies of different variants of LGSTA.

Method PSNR↑ SSIM↑ LPIPS↓ Params

Only concat 37.57 0.9430 0.117 13.315M
GAP→GMP 37.77 0.9470 0.115 14.041M
w/o Modulator 37.79 0.9456 0.121 14.041M
Share Modulator 36.71 0.9402 0.128 14.041M
Ours 37.95 0.9469 0.117 14.041M

Table 6. Ablation studies activation function effects.

Method PSNR↑ Method PSNR↑ Method PSNR↑

celu 37.89 prelu 37.66 selu 37.84
elu 37.89 relu 37.89 tanh 37.90

lrelu 37.79 relu6 37.89 gelu 37.95

5. Conclusion
In this paper, we proposed LGSTANet, an aggregated
restoration network designed for the restoration and en-
hancement of bracket images. Utilizing multi-frame brack-
eted images as input, we achieved efficient restoration and
enhancement of various degradation types such as noise,
blur, low dynamic range (LDR), and low resolution. We
employed an architecture consisting of alignment, recurrent
aggregation, and reconstruction, and introduced a learnable
global spatio-temporal adaptive aggregation module to ag-
gregate complementary information from different frames.
Additionally, we proposed an ultra-lightweight adaptive
restoration modulator to adapt to various degradation per-
turbations, thereby achieving the restoration of details and
textures. Our method surpassed other state-of-the-art meth-
ods and achieved highly competitive results in both tracks
of the NTIRE2024 BIRE Challenge. Moreover, our method
ranked first in inference speed and memory usage in Track
2, demonstrating its practical applicability in real-world
scenarios.
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