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Abstract

Classification of unknown degraded images is essen-
tial in practical applications since image-degraded mod-
els are usually unknown. Diffusion-based models provide
enhanced performance for image enhancement and image
restoration from degraded images. In this study, we use the
diffusion-based model for the adaptation instead of restora-
tion. Restoration from the degraded image aims to restore
the degrade-free clean image, while adaptation from the
degraded image transforms the degraded image towards a
clean image domain. However, the diffusion models strug-
gle to perform image adaptation in case of specific degra-
dations attributable to the unknown degradation models. To
address the issue of imperfect adapted clean images from
diffusion models for the classification of degraded images,
we propose a novel Diffusion-based Adaptation for Un-
known Degraded images (DiffAUD) method based on robust
classifiers trained on a few known degradations. Our pro-
posed method complements the diffusion models and con-
sistently generalizes well on different types of degradations
with varying severities. DiffAUD improves the performance
from the baseline diffusion model and clean classifier on the
Imagenet-C dataset by 5.5%, 5%, and 5% with ResNet-50,
Swin Transformer (Tiny), and ConvNeXt-Tiny backbones,
respectively. Moreover, we exhibit that training classifiers
using known degradations provides significant performance
gains for classifying degraded images.1

1. Introduction
Computer vision models have transformed human life in
critical ways. Computer vision applications include au-
tonomous driving [1, 13], facial recognition [42], health-
care [10], robotics [19, 30], and agriculture [20]. However,
in all differing computer vision applications, there is scope
for input images/videos to be degraded or corrupted with
diverse types of degradations. A few recurring degrada-
tions include Gaussian noise due to inadequate illumina-

1Our source code will be available here after publication:
https://github.com/dineshdaultani/DiffAUD

(a) Classifier only

(b) DDPM + Classifier

(c) DDPM + Ensemble

Figure 1. Different categories of methods, where Xdeg and Ydeg

represent input degraded image and its associated inferred label. C
represents typical classifiers to predict a given image and DDPM
is denoising diffusion probalisitic model. C1, and C2 represents
two classifiers trained with different dataset.

tion, fog due to weather conditions, blur caused by sudden
camera movement, and low image quality due to lossy com-
pression techniques such as JPEG. Many studies acknowl-
edge [8, 9, 21, 34, 37] that computer vision models grad-
ually decline in performance with increased severity levels
of degradation. In our study, we use the terms degradation
or corruption analogously.

Image restoration methods such as AirNet [25] and
SwinIR [27] are notable for their performance. AirNet
[25] handles noise, haze, and rain degradations well, while
SwinIR [27], based on the Swin Transformer [28], demon-
strates decent performance in super-resolution, denoising,
and JPEG artifacts reduction. On the other hand, diffusion
models have shown remarkable performance on generation
tasks, as shown by Dhariwal and Nichol [7, 32]. In addi-
tion, the diffusion-driven adaptation (DDA) [11] method ap-
plies the denoising diffusion probabilistic model (DDPM)
to adapt any unknown degraded images and then classify
adapted images. However, DDA and DDPM can not cor-
rectly adapt all different types of degraded images back to
the source domain. Especially in the case of blurred images,
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adapted images often need to be more perfectly deblurred.
Hence, the classifier trained on clean images would not nat-
urally perform well on these imperfect images. Our study
tries to resolve this limitation by training separately robust
classifiers using a few known degradations and knowledge
distillation [18]. Since our trained classifiers are more ro-
bust towards a few known degradation images, they perform
remarkably well on diverse types of unknown corruptions
with varying severity levels. Moreover, our proposed clas-
sifiers can complement any DDPM and adaptation process.

Concurrently, several studies [5, 9, 37, 41] use a model
trained on synthetically degraded images to classify de-
graded images. Our study merges the domain of diffusion
models and image degradation research to classify unknown
degraded images. As diffusion models become more ef-
ficient in terms of model parameters and low latency in-
ferencing, it has immense opportunities for practical appli-
cation utilization, such as autonomous driving applications
where extreme diversity in climate and environment condi-
tions can lead to a substantial reduction in the performance
of vision models [12, 16]. In this paper, we focus on the
image classification task. However, our study can bridge
the gap by integrating imperfectly adapted images from dif-
fusion models into different downstream computer vision
tasks such as object detection and semantic segmentation.

Fig. 1 shows three methods considered in our study for
classifying degraded images. First, the “Classifier only”
method is a typical classification method. Next, “DDPM
+ Classifier” combines DDPM and classifier, where we first
adapt the given degraded image and then classify it using a
typical classifier. Next is the “DDPM + Ensemble” method,
where two classifiers are employed to combine the output
with an ensemble. In the case of DDA [11], C1 and C2 share
their model parameters which are pre-trained on clean im-
ages. We base our proposal also on “DDPM + Ensemble”
architecture, where the difference between our proposal and
DDA [11] lies in the classifiers. In our proposal, we use dis-
tilled classifiers trained on adapted and degraded images as
further explained in Section 3.

The primary contributions of our study are summarized
as follows:
1. We propose a diffusion-based classifier training method,

i.e., DiffAUD, based on known degradations and distil-
lation that work complementary with diffusion models
to classify unknown degraded images.

2. We demonstrate that training a classifier with few syn-
thetically degraded images can enhance generalization
and robustness for various types of single and sequential
degradations.

3. We provide comprehensive evidence that our proposed
method consistently outperforms other existing methods
on different datasets, backbones, and single/sequential
degradations with varying levels of severity.

2. Related work

2.1. Classification of Degraded Images

Several works have explored how to train and evaluate mod-
els on single known degradations [5, 9, 37, 41]. Specifically,
Roy et al. [37] proposed a CapsuleNet [39] based architec-
ture that performs better than other commonly known con-
volution architectures on different degradations. Endo et
al. [9] proposed an architecture on restoration and ensem-
ble while employing degradation and degradation levels in-
formation that perform well on different levels of known
degradations. Daultani et al. [5] proposed a knowledge dis-
tillation [18] based network with cutout [6] data augmenta-
tion where they show that increasing the depth of the net-
work architecture is not required but instead applying data
augmentation can improve the robustness of the network.
Recently, Sasaya et al. [41] proposed a distillation-based
architecture without needing paired clean and degraded im-
ages to classify Gaussian noise images. However, in all the
above cases, an individual architecture is utilized to predict
a particular degradation image. Conversely, we handle a
wide variety of unknown degraded images.

Simultaneously, Laugros et al. [24] has studied how aug-
menting the images with known corruptions can improve
the robustness for unknown corruptions. Daultani et al. [4]
has shown that training the classification models on one
known degradation is insufficient for different degradations.
Hence, they provide a framework to utilize several known
degradation images to improve the performance of respec-
tive known degradations. Our work is inspired by Fu-
sionDistill [4] since we incorporate several degradations for
training a classifier that can classify images with different
types of degradations. However, among others, some sig-
nificant differences in our proposed approach are: (1) The
FusionDistill method utilizes paired clean and degraded im-
ages; however, we utilize only unpaired degradation images
in training. (2) FusionDistill focuses only on known sin-
gle degradations; in contrast, we focus on a wide variety of
unknown single and sequential degradations.

2.2. Diffusion Models

Diffusion models have shown tremendous potential in ver-
satile generation tasks [47]. Concretely, among others they
are utilized for tasks such as super resolution [26, 40],
medical image reconstruction [3, 46], text-to-image gener-
ation [35, 36], and text-to-video generation [2]. Especially,
denoising diffusion restoration models (DDRM) [22] have
considerably improved image restoration by using diffusion
models to convert known degradation operator images to
clean images. However, using it requires knowledge about
the degradation operator, which limits its application for un-
known corruptions.

Particularly, Nie et al. [33] establish how diffusion mod-
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Figure 2. Architecture diagram of the proposed method, where the top figure shows the overall inferencing process and the bottom block
represents the training process of DC using knowledge distillation from pre-trained teacher networks. Symbol © represents concatenation
of inputs XJPEG, XGBlur , and XAWGN . Grey/blue and orange/blue blocks represent pre-trained teacher and student networks.

els can improve the robustness of pre-trained classifiers
against unseen adversarial attacks. Similarly, Gao et al. [11]
has shown that diffusion models can classify diverse cor-
rupted images with high severity without training by adapt-
ing the corrupted images back to the source or clean im-
age domain with a classifier trained on clean images. How-
ever, the performance could be higher since their approach
DDA [11] assumes that the adapted images from the diffu-
sion models perfectly match the source domain. However,
due to an unknown degradation model, adapting the images
perfectly to the source domain is challenging. Our proposed
method improves the robustness of the classifier, presuming
that the adapted images will undergo imperfect adaptation
from the diffusion model.

3. Method
3.1. Notations and Preliminaries

We categorize three types of training images, i.e., clean, de-
graded, and adapted, denoted as Xclean, Xdeg , and Xadapt,
respectively. Clean images are natural images without
degradation; degraded images undergo synthesis using a
specific degradation model, and the adapted images are
sampled by applying DDPM on degraded images. Further-
more, there are two types of classifier in our study, i.e., sim-
ple classifier and distilled classifier, denoted as C and DC.
C and DC are trained using image and label pairs {Xk, Y },
where k ∈ {clean, deg, adapt} represents clean, degraded,

and adapted images respectively. We represent classifiers
trained with clean, adapted, and degraded images as Cclean,
Cadapt, and Cdeg , respectively. Likewise, distilled classi-
fiers trained using Xclean, Xadapt, and Xdeg images are
represented as DCclean, DCadapt, and DCdeg respectively.
Besides, there are two other symbols utilized in our study,
i.e., ∆ describes the DDPM process for adaptation such as
the one described in DDA [11] and E denotes the ensemble,
which comprises a set of distinct classifiers defined as E(, ).

3.2. Background and Motivation

The performance of typical classifiers significantly drops
due to unknown degradation. Hence, we employ DDPM
to adjust degraded images towards the domain of clean im-
ages. We inherently assume that the adapted images do-
main is better than directly using unknown degraded images
for classification. Indeed, previous studies like DDA [11]
have shown that DDPM helps improve the performance of
classifying unknown degraded images. The DDA method
applies an ensemble of classifiers trained on clean images
to the input of degraded and adapted images to resolve
imperfect adapted images’ limitations. Contrastingly, we
train two separate classifiers on adapted and degraded im-
ages that substantially improve classification performance
for both adapted and degraded images. In particular, a
classifier trained on adapted images with a limited set of
known degradations anticipates imperfections in the im-
age, thereby contributing to the robustness of our proposed
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method. Similarly, a classifier trained on degraded images
of a few dissimilar known degradations helps our proposed
method handle the degraded images directly. Moreover,
our ensemble of specialized classifiers trained on adapted
and degraded images is more natural than the ensemble of
Cclean in the case of DDA [11].

3.3. Known Degradations Selection

Our choice of degradations for training, i.e., additive white
Gaussian noise (AWGN), Gaussian blur (GBlur), and JPEG
compression (JPEG), boosts classifier robustness given
their prevalence in typical image or camera processing
pipelines. All three degradations are disparate from each
other, i.e., JPEG compression is a type of digital compres-
sion, while AWGN and GBlur are dissimilar types of noise
and blurring mechanisms. Furthermore, diversifying the
range of possible degradations for training assists classi-
fiers in learning diverse characteristics. While we aim for
the model to generalize across various unknown degrada-
tions, training on a limited set is a pragmatic choice due to
numerous potential degradations.

3.4. Proposed Method: DiffAUD

We propose DiffAUD, i.e., diffusion-based adaptation for
unknown degraded images as described in Figure 2, where
the top block shows the overall process for the classifica-
tion of degraded images, which constitutes applying a diffu-
sion model and an ensemble of distilled classifiers DCadapt

and DCdeg to get the final classification prediction. Fur-
thermore, to apply ensemble, we take the sum of logits
from the two classifiers before the softmax function and
apply argmax to predict the input image class similar to
DDA [11]. Our proposed method is invariant to any DDPM;
we currently show a rough reverse diffusion process from
DDA [11] since we apply their DDPM adaptation process.

To summarize, the following steps outline the process
flow of our proposed method:
1. Apply DDPM on the degraded images Xdeg to yield

adapted images Xadapt.
2. Feed adapted images Xadapt to a distilled classifier

trained on adapted images from known degradations,
i.e., DCadapt and in parallel, we input degraded images
Xdeg directly to a distilled classifier trained on known
degradation images, i.e., DCdeg .

3. Apply ensemble on the outputs of two distilled classifiers
to output Ydeg .

3.5. Distilled Classifier Training

The bottom block in Figure 2 shows the detailed training
process of distilled classifier DC where the training process
is the same irrespective of adapted or degraded images. Our
distillation process takes inspiration from FusionDistill [4].

The loss function of FusionDistill can be expressed as

L = LCE + αLCON , (1)

where LCE , LCON , and α represent the cross-entropy loss,
the consistency loss for the knowledge distillation, and the
loss weight, respectively. Here we use three types of syn-
thetically prepared degraded or corresponding adapted im-
ages shown as XJPEG, XGBlur, and XAWGN for each rel-
evant degradation. We also pre-trained three teacher net-
works with those three different datasets: TJPEG, TGBlur,
and TAWGN. Then, the consistency loss LCON is defined
by

LCON =
∑
i

COS(ϕTi
, ϕS) ,

i ∈ {JPEG,GBlur,AWGN} , (2)

where ϕTi represents the feature vector of the teacher net-
work Ti, ϕS represents the feature vector of the student
network S, and COS represents the function of cosine
similarity. We evaluate the consistency loss LCON be-
tween teacher and student networks intermediate features.
Specifically, intermediate features are compared before the
feed-forward layers of the respective same-depth/backbone
networks using the consistency loss function. Moreover,
we utilize cross-entropy loss LCE for supervision between
ground truth labels and prediction Ypred. Eq. (1) shows
the total loss equation, which incorporates supervision and
consistency loss. We primarily have only one hyperpa-
rameter for distilled classifier tuning, i.e., α, the weight
of the LCON loss, which shows the easy applicability of
our distilled classifier method. Furthermore, we perform
fine-tuning using the ResNet-50 backbone to find optimal α
values for degraded and adapted images. In Section 4.1.1,
we provide more detailed explanations about the training
images, and supplementary material includes information
about hyperparameter α tuning.

4. Experiments
4.1. Dataset Preparation

4.1.1 Training Dataset: Known Degradations

We synthetically apply three known degradations on clean
images, i.e., JPEG, AWGN, and GBlur resulting in de-
graded images. Explicitly, each degradation is uniformly
sampled over a wide range of degradation levels so that the
classifier can learn a wide distribution of severities for each
known degradation. Notably, for JPEG compression, qual-
ity factors range ∈ [1, 101] where 101 represents clean im-
ages; for AWGN, the standard deviation of Gaussian ker-
nel ∈ [0, 50]; and for GBlur standard deviation of Gaussian
kernel ∈ [0, 5]. We apply all three degradations on CIFAR-
10 [23] and Imagenet-1k [38] datasets to evaluate respective
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Table 1. Details for sequential degradations evaluation dataset
where degradation sequence order is GBlur → AWGN → JPEG.
GBlur, AWGN, and JPEG magnitudes represent the standard devi-
ation of the Gaussian kernel with respect to the percentage of the
image size, the standard deviation of the Gaussian kernel, and the
quality factor for JPEG compression, respectively. Quality metrics
show degradation quality in comparison to the clean images.

Severity
levels

Degradations Quality
Imagenet CIFAR-10

GBlur AWGN JPEG PSNR SSIM PSNR SSIM
Weak 2 10 80 28.44 0.78 28.54 0.94

Medium 4 20 60 23.27 0.52 24.61 0.85
Strong 8 30 40 20.81 0.35 22.13 0.76

Figure 3. Sample images for sequential evaluation dataset with
three severity levels corresponding to the Table 1.

datasets. It results in 150k images for training and 30k for
validation for the CIFAR-10 dataset. However, due to the
limited computational capacity, we use 60k images from
Imagenet-1k for each known degradation, resulting in 150k
images for training and 30k images for validation.

4.1.2 Evaluation dataset: Unknown Degradations

To assess the effectiveness of our proposed method, we con-
duct an extensive evaluation on two types of datasets, i.e.,
single degradation and sequence of degradations datasets.
First, we utilize widely used corruption datasets from
Hendrycks et al. [17], i.e., CIFAR-10-C, and Imagenet-C
to measure the robustness of image classification models
for single degradation. Specifically, we utilize the whole
dataset for the CIFAR-10-C dataset. Due to the limited
computational capacity, we utilize a randomly subsampled
version of the Imagenet-C dataset containing five images
for each class, in total, 5k per corruption per severity. All
15 corruptions and five severities were part of the evalua-

tion from both CIFAR-10-C and Imagenet-C datasets, total-
ing 75 distinct corruptions. Moreover, to further strengthen
our contributions, we prepare a dataset with a sequence
of degradations denoted as SEQ-C similar to Moriyasu et
al. [31]. Specifically, we introduce three levels of severity,
i.e., weak, medium, and strong, as described in Table 1 and
sample images are shown in Figure 3. We derive the degra-
dation sequence from a typical image processing pipeline
while capturing an image in a camera, where blur can oc-
cur first due to a shifting camera. Next, noise can arise due
to sensor-related components such as high ISO or environ-
mental factors such as low light. Lastly, the image is stored
using compression techniques such as JPEG.

4.2. Experiment Settings

4.2.1 Diffusion Models and Backbones

We utilize pre-trained unconditional diffusion models pro-
vided by OpenAI [7] trained on CIFAR-10 and Imagenet-
1k dataset (256× 256 resolution) to evaluate respective de-
graded images. Diffusion model hyperparameters to gen-
erate adapted images are the same as DDA [11] for both
datasets, i.e., diffusion ranges N = 50, scaling factor
D = 4, and refinement range w = 6. Since the sam-
pling process for image adaptation is computationally ex-
pensive and DDA is the closest work to our study, we use
only the DDA method from a diffusion model perspective
as a baseline method. However, to show the effectiveness
of our proposed approach, we thoroughly perform experi-
ments on several combinations of classifiers with disparate
backbones and comprehensive evaluation on two datasets
with a wide variety of degradations and severities.

We utilize frequently used ResNet-50 [14] for CIFAR-
10 dataset evaluation. For Imagenet dataset evaluation,
we follow the identical backbones as DDA, i.e., ResNet-
50 [14], ConvNeXt-Tiny [29], and Swin Transformer
(Swin-Tiny) [28]. Furthermore, all the clean image clas-
sifiers are pre-trained.

4.2.2 Methods Comparison

Experiments are split into three categories in the experimen-
tal results shown in Table 2 and earlier visualized in Fig-
ure 1. The first category refers to “classifier only” methods,
where there are three combinations, i.e., Cclean, and Cdeg ,
and DCdeg represent classifier trained on clean images, a
classifier trained on degraded images, and distilled classi-
fier trained on degraded images. Next, the “∆ + classifier”
category refers to diffusion models with a classifier where
the output adapted image from the diffusion model is in-
put to the classifier. We compare three variations; the first
is ∆ + Cclean method, i.e., DDA without ensemble [11],
next ∆ + Cadapt method where we apply the same diffu-
sion process as DDA [11] and input the adapted images

5986



Table 2. All methods comparison discussed in our work from dif-
ferent parameters perspective. ∆ represents the DDPM process for
adaptation, and the “Training images” column represents images
utilized to train the respective classifiers. Next, “Distill” shows
whether we utilize knowledge distillation [4] for training the net-
work, and “Ensemble E” shows whether we utilize an ensemble
of classifiers.

Method DDPM
∆

Training
images Distill Ensemble

E

(classifier only)
Cclean clean
Cdeg deg
DCdeg deg ✓
(∆ + classifier)
∆+ Cclean† ✓ clean
∆+ Cadapt ✓ adapt
∆+DCadapt ✓ adapt ✓
(∆ + ensemble)
∆+ E(Cclean, Cclean)‡ ✓ clean ✓
∆+ E(Cadapt, Cdeg) ✓ adapt,deg ✓
∆+ E(DCadapt, DCdeg)§ ✓ adapt,deg ✓ ✓

†, ‡, and § represents DDA without ensemble [11], DDA [11], and our
proposed method DiffAUD respectively.

to Cadapt classifier. Only difference between ∆ + Cadapt

and ∆ + DCadapt is that ∆ + DCadapt contains dis-
tilled classifier DCadapt instead of typical classifier. Af-
terwards, ∆ + ensemble category where the first method
∆ + E(Cclean, Cclean) is our baseline method DDA [11],
next is ∆+E(Cadapt, Cdeg) method where adapted images
from ∆ are input to the Cadapt and original degraded im-
ages are input to Cdeg . At last, ∆+E(DCadapt, DCdeg) is
our proposed method DiffAUD as described in Sec. 3.

4.3. Experimental Results

4.3.1 Single Degradation

For single degradation, first, we conduct the experiments on
the CIFAR-10-C dataset with ResNet-50 backbone to evalu-
ate the effectiveness of our proposed method in comparison
with various combinations of classifiers and ∆ as shown in

Table 3. Subsequently, we carry out existing methods com-
parison on the Imagenet-C dataset with ResNet-50, Swin-
Tiny, and ConvNeXt-Tiny backbones as shown in Tables 4a
to 4c.

In Table 3, Cclean method attains good performance on a
few natural degradations like brightness, contrast, fog, and
snow. Nevertheless, it lags drastically on other degrada-
tions. Next, models trained on adapted images work well
with degradations like Gaussian noise, glass blur, impulse
noise, pixelate, shot noise, and zoom blur compared to those
trained solely on clean images. Similarly, models trained on
degraded images perform well with other degradation types.
Combining the strengths of both adapted and degraded im-
age models through ensemble technique enhances DiffAUD
performance. While adaptation alone may not yield per-
fect results, ensemble integration boosts the overall effec-
tiveness of our proposed method with an overall accuracy
of 87.74%. On the other hand, DiffAUD and other meth-
ods trained based on known degradations include Gaussian
blur for training; we hypothesize that this leads to improve-
ment in the performance of four types of blur degradations
included in the corruption dataset, i.e., defocus blur, glass
blur, motion blur, and zoom blur especially compared to the
baseline Cclean method.

In Table 4a, on average, our proposed method performs
5.5% better than the baseline DDA [11] method. Addition-
ally, our prepared method utilizing distillation and known
degradations, i.e., DCdeg , perform significantly better than
baseline, i.e., Cclean on ResNet-50. Next, In Table 4b and
Table 4c, DCdeg achieves around 3%-4% improvement as
compared to Cclean for both backbones, which is lower than
ResNet-50 backbone performance improvement of 7.76%
since Swin-Tiny and ConvNeXt-Tiny pre-trained clean im-
age classifiers are comparatively more robust towards cor-
ruptions such as contrast, frost, and snow. While the dis-
tilled classifier (DCdeg) excels on a few degradations, such
as brightness, contrast, and fog, our proposed method falls
slightly short in these aspects. It highlights an opportunity

Table 3. Classification accuracy for CIFAR-10-C dataset with different corruptions averaged over all severities on ResNet-50 backbone
where ∆ represents DDPM and E represents the ensemble of particular classifiers. Italicized corruption columns represent corruptions
utilized during classifier training.

Method bright contrast defocus elastic fog frost gauss glass impulse jpeg motion pixel shot snow zoom mean
(classifier only)
Cclean 93.89 80.22 81.55 84.41 88.19 78.40 46.45 54.40 56.83 81.34 76.92 74.01 59.15 83.39 76.21 74.36
Cdeg 91.87 82.21 90.95 86.74 87.56 87.79 88.65 78.39 86.71 89.13 85.63 87.00 90.03 86.13 89.91 87.25
DCdeg 92.06 81.85 91.68 86.86 87.93 87.51 88.70 76.52 86.68 88.93 85.91 85.62 90.12 86.32 90.44 87.14
(∆ + classifier)
∆+ Cclean† 78.06 49.68 79.43 76.37 53.81 71.30 80.59 78.15 79.49 79.88 77.27 80.29 80.74 74.78 78.85 74.58
∆+ Cadapt 78.34 54.45 79.96 77.03 56.94 72.16 80.49 78.63 79.83 79.99 78.05 80.38 80.89 75.05 79.30 75.43
∆+DCadapt 77.97 53.50 79.58 76.73 56.36 71.62 80.20 78.29 79.58 79.76 77.67 80.05 80.58 74.78 79.01 75.04
(∆ + ensemble)
∆+ E(Cclean, Cclean)‡ 89.23 68.56 85.79 84.01 76.43 79.74 80.44 78.47 81.09 84.41 82.44 84.17 82.51 82.66 83.35 81.55
∆+ E(Cadapt, Cdeg) 90.87 80.42 90.49 87.48 85.87 86.77 89.04 83.53 87.73 89.29 86.87 88.78 90.11 86.15 89.60 87.53
∆+ E(DCadapt, DCdeg)§ 91.20 80.18 91.27 87.84 86.61 86.89 89.31 82.74 87.95 89.32 87.30 88.31 90.30 86.54 90.34 87.74

†, ‡, and § represents DDA without ensemble [11], DDA [11], and our proposed method DiffAUD respectively.
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Table 4. Classification accuracy for Imagenet-C dataset with different corruptions averaged over all severities on several backbones.
Italicized corruption columns represent corruptions utilized during classifier training. We compute the average of all training experiments
using three different random seeds.

(a) ResNet-50

Method bright contrast defocus elastic fog frost gauss glass impulse jpeg motion pixel shot snow zoom mean
Cclean 65.94 35.73 35.30 43.72 41.94 37.24 33.92 26.34 29.37 56.71 35.67 51.76 32.12 31.36 35.55 39.51
Cdeg 66.96 38.04 50.22 45.90 45.16 38.02 56.99 28.34 50.85 64.44 38.88 58.91 55.75 31.06 37.89 47.16
DCdeg 67.25 37.98 50.13 46.29 45.51 38.89 56.57 28.93 49.00 63.81 40.26 58.35 54.96 32.02 39.14 47.27
DDA [11] 63.19 32.54 34.46 50.26 37.57 42.61 57.80 37.12 56.47 59.66 36.47 59.24 57.64 36.17 37.16 46.56
Ours 66.54 35.11 50.79 54.61 41.53 45.01 62.16 46.42 60.90 65.65 43.97 66.40 62.02 36.24 44.20 52.10

(b) Swin-Tiny

Method bright contrast defocus elastic fog frost gauss glass impulse jpeg motion pixel shot snow zoom mean
Cclean 73.43 61.26 44.70 51.90 61.27 57.47 55.56 32.30 52.38 62.52 49.73 56.12 53.07 50.44 42.30 53.63
Cdeg 74.46 57.02 58.11 54.17 61.47 51.08 61.01 33.25 59.77 70.67 50.40 65.89 59.16 47.74 43.90 56.54
DCdeg 74.53 57.98 57.56 54.42 61.81 51.68 61.48 33.80 59.99 70.16 51.39 64.85 59.74 48.83 44.15 56.82
DDA [11] 70.75 57.18 43.50 56.87 55.44 57.04 63.54 43.25 62.02 63.41 48.18 62.77 62.85 49.86 43.27 56.00
Ours 73.72 56.36 58.27 61.68 58.71 56.76 67.10 52.64 66.84 70.85 54.29 71.08 67.05 49.83 49.70 60.99

(c) ConvNeXt-Tiny

Method bright contrast defocus elastic fog frost gauss glass impulse jpeg motion pixel shot snow zoom mean
Cclean 75.24 66.19 48.62 54.20 62.42 59.23 60.32 35.10 58.14 66.96 55.32 61.13 57.97 54.84 46.63 57.49
Cdeg 76.83 66.23 58.59 55.05 66.87 57.40 67.36 34.89 65.54 73.03 54.92 67.07 66.44 53.57 46.86 60.71
DCdeg 77.32 67.13 58.78 55.72 67.59 58.57 67.61 35.66 66.35 72.80 55.89 67.56 66.85 54.77 46.98 61.31
DDA [11] 72.85 61.01 47.09 59.12 53.24 59.84 67.04 47.70 66.20 67.56 53.75 66.79 66.51 53.94 47.83 59.36
Ours 75.99 63.82 60.67 62.72 64.44 60.82 70.22 54.89 69.84 73.02 58.12 73.32 69.84 54.47 52.78 64.33

to enhance our ensemble approach and potentially prevent
deterioration across various types of degradation. Neverthe-
less, while training distilled classifiers on known degrada-
tions, color-based augmentations can potentially resolve the
low performance of brightness and contrast degradations.
On the other hand, our proposed method can still outper-
form DDA [11] on both backbones with about the same
performance gap of 5%.

To provide an in-depth view of the Imagenet-C dataset,
we show accuracy over different severity levels averaged
over all respective corruptions in Figure 4 with different
backbones. With an increase in severity levels from 1 to

5, naturally, performance drops for all methods. On the
ResNet-50 backbone, the performance of the DDA method
becomes closer to the Cclean method towards low severity
levels. Similarly, on Swin-Tiny and ConvNeXt-Tiny back-
bones, we can see similar patterns where Cclean performs
almost similarly or, in fact, better on lower degradation lev-
els than DDA. While DDA performs decently compared to
Cclean on higher severity levels, severity levels are often
unknown in real-world images, making the DDA method
much more prone to performance reduction on lower sever-
ity levels. Next, performance of Cdeg and DCdeg is very
close to each other as previously shown in Tables 3 and 4a

(a) ResNet-50 (b) Swin-Tiny (c) ConvNeXt-Tiny

Figure 4. Performance with several backbones on Imagenet-C dataset with different severity levels averaged over all corruptions.
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Table 5. Classification accuracy for Imagenet-SEQ-C sequential degradation dataset with different severity levels on ResNet-50, Swin-
Tiny, and ConvNeXt-Tiny backbones. We compute the average of all training experiments using three different random seeds.

Method ResNet-50 Swin-Tiny ConvNeXt-Tiny
weak medium strong mean weak medium strong mean weak medium strong mean

Cclean 46.61 19.28 68.09 44.66 53.51 31.84 69.91 51.75 61.28 41.10 75.33 59.24
Cdeg 53.83 25.85 70.81 50.16 58.22 40.11 73.79 57.37 67.54 49.90 77.74 65.06
DCdeg 54.22 26.53 71.15 50.63 58.77 40.91 74.02 57.90 67.05 48.34 77.93 64.44
DDA [11] 58.78 45.26 68.51 57.52 60.33 49.08 69.97 59.79 66.46 55.70 74.80 65.65
Ours 65.50 57.37 72.10 64.99 69.03 62.42 75.16 68.87 72.09 64.93 78.10 71.70

to 4c; however, DCdeg performing slightly better on Swin-
Tiny and ConvNeXt-Tiny backbones; showing the effec-
tiveness of our distillation strategy for training classifiers.

On the other hand, our proposed method DiffAUD con-
sistently performs drastically better on all severity levels as
compared to Cclean as well as DDA methods, which shows
that DiffAUD is invariant of lower adaptation quality from
the diffusion models following the same diffusion process
as DDA. It makes our work more significant toward achiev-
ing higher robustness and generalization, which can work
with different diffusion models and adaptation processes.

4.3.2 Sequential Degradations

We evaluate the performance of sequential degradation
images on ResNet-50, Swin-Tiny, and ConvNeXt-Tiny
with the prepared sequential degradation dataset (Imagenet-
SEQ-C) as shown in Table 5. In the classifier-only cat-
egory of existing methods, similar to corruption datasets
such as CIFAR-10-C and Imagenet-C, the performance of
methods trained on known degradations is consistently bet-
ter than clean images trained classifiers. It’s worth noting
that the distilled classifier method, i.e., DCdeg , performs
quite comparable to Cdeg , suggesting that in sequences of
degradations, the distillation method closely matches its
non-distillation counterpart. However, that was not the case
with single degradations, where distillation-based methods
were slightly better than the non-distillation methods. We
hypothesize that the resulting distribution from a sequence
of degradations is discretely different from single degrada-
tions and that lead features learned from single degradations
during distillation might not be greatly helpful in the case of
sequential degradations.

Another critical insight to observe here is that DDA per-
forms better than classifier-only methods on an average in
the case of all backbones, specifically on ResNet-50 by a
large gap and in the case of Swin-Tiny and ConvNeXt-
Tiny backbone by a small gap given the Swin-Tiny and
ConvNeXt-Tiny backbones are more robust towards cor-
rupted images. It proves the effectiveness of the diffusion-
based process introduced by DDA, which improves the
performance in more realistic sequential degradations than
classifier-only methods. On the other hand, that was not

distinctly apparent in the case of a single corruption dataset
such as Imagenet-C in the Table 4. Besides, our proposed
method performs consistently well on all backbones com-
pared to the other methods demonstrating the sturdy robust-
ness of DiffAUD against sequential degradations with dif-
ferent severities.

5. Limitations

In our experiments, baseline classifiers use specific back-
bones, whereas our proposed method combines diffusion
models with these backbones. Therefore, baseline classifier
methods are much smaller in model complexity and param-
eters, as diffusion models typically have high latency and
additional parameters. While our approach achieves bet-
ter robustness compared to the other methods, it comes at
the expense of increased model complexity. Nonetheless,
recent works to enhance the efficiency of diffusion mod-
els [15, 43–45] suggest that a lighter diffusion model, com-
bined with our proposed approach, could achieve improved
performance without significant complexity overhead.

6. Conclusion

In this work, we propose DiffAUD, a novel diffusion-based
adaptation for unknown degraded images using known
degradations and distillation that complements diffusion
models to classify unknown degraded images. We sys-
tematically perform comprehensive experiments on single
degradation datasets such as Imagenet-C and CIFAR-10-C,
and our own synthetically prepared sequential degradations
dataset Imagenet-SEQ-C with various levels of severities,
which shows that DiffAUD performs consistently well over
existing methods. Moreover, we demonstrate that our pro-
posed method based on known degradations and distillation
drastically improves the performance for the classification
of unknown degraded images.

Given the imperfections of diffusion-based adaptation in
our proposed method, there is an opportunity to explore
how image restoration techniques for unknown degrada-
tions complement our proposed approach in future research.
Additionally, further exploration is needed to determine the
most effective degradation methods utilized for training.
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