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Figure 1. Test Result of our method on NTIRE 2024 Dense and Non-Homogeneous Dehazing Challenge [5]. Our DehazeDCT achieves
the second best performance among 16 solutions and is capable to generate visually compelling outputs with vivid color and enhanced
structure details.

Abstract

Image dehazing, a pivotal task in low-level vision,
aims to restore the visibility and detail from hazy im-
ages. Many deep learning methods with powerful repre-
sentation learning capability demonstrate advanced per-
formance on non-homogeneous dehazing, however, these
methods usually struggle with processing high-resolution
images (e.g., 4000 × 6000) due to their heavy computa-
tional demands. To address these challenges, we intro-
duce an innovative non-homogeneous Dehazing method via
Deformable Convolutional Transformer-like architecture
(DehazeDCT). Specifically, we first design a transformer-
like network based on deformable convolution v4, which

∗ Corresponding author

offers long-range dependency and adaptive spatial ag-
gregation capabilities and demonstrates faster conver-
gence and forward speed. Furthermore, we leverage a
lightweight Retinex-inspired transformer to achieve color
correction and structure refinement. Extensive experi-
ment results and highly competitive performance of our
method in NTIRE 2024 Dense and Non-Homogeneous De-
hazing Challenge, ranking second among all 16 submis-
sions, demonstrate the superior capability of our proposed
method. The code is available: https://github.
com/movingforward100/Dehazing_R.

1. Introduction
Images captured in hazy conditions, whether naturally oc-
curring or artificially synthesized, share similar properties
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of low visibility, decreased contrast, and degraded struc-
tural details. These deteriorative characteristics severely
impair the performance of various vision tasks, such as ob-
ject recognition, tracking, and segmentation systems [12,
16, 32, 44], thereby hindering their application in hazy situ-
ations. This predicament urgently calls for dehazing meth-
ods that are effective across various scenarios.

Initiated upon the foundational principles of the atmo-
spheric scattering model (ASM) [27], early endeavors in
image restoration [19, 20, 46] have been primarily oriented
towards delineating the correlation between hazy images
and their haze-free counterparts. The ASM can be suc-
cinctly articulated as follows:

I(x) = J(x)t(x) +A(1− t(x)), (1)
where I and J signify the hazy image and its clean counter-
part; x and A represents the pixel location and the global at-
mosphere light; t(x) denotes the transmission map , which
is a function of the atmosphere scattering parameter β and
the scene depth, articulated as t(x) = e−βd(x). This formu-
lation posits the image dehazing to the precise estimation
of the transmission map t(x) and the global atmosphere
light A. Notwithstanding, the ASM presupposes an ide-
alized uniform haze distribution, a limitation rendering the
model less effective in addressing non-homogeneous dehaz-
ing challenges.

Recent advancements in image dehazing have been sig-
nificantly influenced by the application of deep learning
techniques [6, 24, 25, 30, 41, 42, 48], a development
prompted by their profound success in areas such as clas-
sification and object detection. Notably, compared to the
previously dominant ASM framework, deep learning-based
methods have demonstrated superior performance on re-
moving the haze from images with complex and spatially
varying haze distributions, emerging as the predominant ap-
proach for tackling non-homogeneous dehazing problems.

Recent research has predominantly focused on exploring
robust and powerful representation learning mechanisms to
delineate the mappings between hazy and haze-free images.
These methods usually learn spatial and frequency repre-
sentations simultaneously, integrate special architectures to
increase the receptive field, or utilize large scale CNN net-
works pre-trained on large datasets to harness transfer learn-
ing benefits. For example, DWT-FFC [51] entails Dis-
crete Wavelet Transform to capture spatial and spectral in-
formation effectively, employs Fast Fourier Convolution
(FFC) [8, 34] to extend the receptive capacity, and harnesses
the pre-trained ConvNext model to facilitate transfer learn-
ing; DehazeFormer [33] introduces a transformer-based ar-
chitecture with a shifted window partitioning scheme based
on reflection padding for dehazing.

Nonetheless, current methods encounter certain chal-
lenges that necessitate further exploration: First, traditional
Convolutional Neural Networks (CNNs) often suffer from

strict inductive bias, and CNN-based models frequently rely
on sizable fixed dense kernels (e.g., 31 × 31) [11, 23] to
facilitate robust representation learning. This strategy not
only incurs significant computational loads but also lacks
the capacity for adaptive spatial aggregation conditioned
by the input. Second, while transformer-based architec-
tures are capable to capture long-range dependencies and
facilitate adaptive spatial aggregation, they are hampered
by computational and memory inefficiencies. The inherent
complexity of the self-attention mechanism, which scales
quadratically with input resolution, precludes their applica-
tion in high-resolution dehazing scenarios, exemplified the
4000× 6000 resolution image in DNH-HAZE dataset [5].

To tackle these challenges, we introduce DehazeDCT, a
novel non-homogeneous Dehazing method via Deformable
Convolutional Transformer architecture. This model is
comprised of two primary components: a dehazing mod-
ule and a refinement module. In the Dehazing module, we
engineer transformer-like dehazing branch that incorporates
multiple DCNFormer blocks. Diverging from traditional
Transformer architecture, our DCNFormer blocks utilize
Deformable Convolution v4 [43] in lieu of the standard self-
attention mechanism, thus ensuring our model benefits from
both long-range dependency and adaptive spatial aggrega-
tion capabilities. Furthermore, by removing the redundant
operation (softmax normalization in spatial aggregation) in
traditional DCN [36], our DCNFormer architecture demon-
strates faster convergence and forward speed. Besides, we
integrate a frequency-aware branch to facilitate the acquisi-
tion of frequency representations. In the Refinement mod-
ule, we enact a lightweight Retinex-inspired transformer for
color correction and structure refinement. With these dedi-
cated designs, our DehazeDCT is capable to achieve color
and detail consistency, essential for visually compelling re-
sults as shown in Fig. 1.

Our mian contributions are as follows:
⋄ We propose an effective non-homogeneous dehazing

method based on deformable convolutional transformer,
followed by a Retinex-based transformer network for color
and detail refinement.

⋄ We design a DCNv4 based transformer-like network
for dehazing, which offers long-range dependency and
adaptive spatial aggregation capabilities and demonstrates
faster convergence and forward speed.

⋄ The effectiveness and generalization of our pro-
posed method are verified by comprehensive experiment re-
sults on several benchmark datasets and the visually com-
pelling performance in the NTIRE 2024 Dense and Non-
Homogeneous Dehazing Challenge.

2. Related Work
Frequency Based Image Restoration. Similar to the spa-
tial domain, the frequency domain encapsulates abundant
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Figure 2. The overall architecture of our proposed model. In the Dehazing module, we introduce a transformer-like dehazing branch based
on deformable convolution (DCNv4 [43]). In each DCNFormer block, DCNv4 is utilized to calculate the offset (∆p) and modulation
scalar (m). Besides, the frequency-aware branch proposed in [51] is also adopted as an auxiliary branch. In the Refinement module, we
leverage a lightweight retinex-inspired transformer network to further reduce the color deviation and enhance texture details.

information of images. In recent years, growing research
attention has been drawn to take advantage of frequency in-
formation for image restoration [9, 18, 35, 45, 47]. Specif-
ically, Yoo et al. [47] estimate the DCT coefficient for each
frequency band for JPEG compression artifact removal.
Yang et al. [45] propose a wavelet U-Net where the down-
sampling and up-sampling are replaced by discrete wavelet
transform and its inverse operation for better reconstruction
of edges and colors. Jiang et al. [18] introduce a novel fo-
cal frequency loss considering both amplitude and phase
information and a dynamic spectrum weighting to adap-
tively guide existing models for frequency domain recon-
struction. Cui et al. [9] design a multi-branch dynamic se-
lective frequency module (MDSF) which dynamically de-
composes features into several frequency bands and uses
channel-wise attention to highlight the useful frequency for
image restoration.
Image Restoration with Deformable Convolution. To
overcome the limitation of traditional CNNs in modeling
large and unknown transformations, deformable convolu-
tion [10] is proposed. By adding offsets to the regular
sampling positions, deformable convolution allows flexi-
ble form of the sampling grid. Deformable convolutional
networks have achieved remarkable performance on var-
ious high-level vision tasks [36, 43, 52]. Recently, sev-
eral works have devoted to apply deformable convolution
for image restoration. Wang et al. [37] design a pyramid,
cascading and deformable (PCD) alignment module, where
deformable convolution is applied for feature-level frame
alignment, for video restoration. Wu et al. [42] deploy
two deformable convolutional layers after the deep layers of
the autoencoder-like network for image dehazing. Wang et
al. [38] propose an angular deformable alignment module
(ADAM) where the deformable convolution is used to align
features by their corresponding offsets.
Transformer Based Image Dehazing. Due to the flexi-
bility of capturing global dependencies, transformers have

succeeded in various computer vision tasks. For instance,
Uformer [40], SwinIR [21] and Restormer [49] achieve re-
markable performance on many image restoration tasks.
Recently, multiple methods have applied transformers to
single image dehazing. Based on Swin Transformer [26],
Song et al. [33] propose DehazeFormer with modified nor-
malization layer, activation function and spatial information
aggregation method. Guo et al. [17] combine transformer
and CNN for image dehazing through transmission-aware
3D position embedding and feature modulation. Qiu et
al. [29] apply Taylor expansion to approximate the conven-
tional softmax attention in transformer, which achieved lin-
ear complexity while retained the flexibility. These works
demonstrate state-of-the-art performance on various dehaz-
ing benchmarks and inspired us to incorporate transformer
into our model.

3. Methods
The key contribution of our work is to design a novel de-
hazing module based on DCNv4 [43] (Deformable Convo-
lution v4) and adopt a lightweight transformer for color and
detail enhancement (Refinement module). The overview of
our framework is provided as Fig. 2, where the training pro-
cess can be divided into two stages. In stage I, we opti-
mize the Dehazing module to achieve preliminary dehazing
(Sec. 3.1, Sec. 3.2). In stage II, the Refinement module is
incorporated into the optimization process for detailed re-
finement. (Sec. 3.3).

3.1. DCNv4 based Transformer for Dehazing

Inspired by impressive ability of capturing long-range de-
pendencies and facilitating adaptive spatial aggregation, we
design a transformer-like branch, together with a frequency-
aware branch similar to [13, 51], for effective dehazing, as
shown in Fig. 2. Specifically, an hazy input I ∈ RW×H×3

is encoded into Fi ∈ R
W

4∗2i
× W

4∗2i
×di by i downsampling

6407



Methods NH-HAZE [1] NH-HAZE2 [3] HD-NH-HAZE [4] HD-NH-HAZE2 [5]
PSNR ↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

FFA [28] 19.50 0.644 20.56 0.811 20.23 0.710 20.14 0.707
TDN [22] 20.73 0.673 20.44 0.801 20.06 0.713 19.88 0.700

AECR-Net [42] 19.88 0.717 20.75 0.831 20.34 0.731 20.26 0.724
DWT-FFC [51] 22.64 0.730 22.82 0.874 22.20 0.746 21.58 0.738

DehazeFormer [33] 20.47 0.731 21.07 0.825 20.89 0.728 20.29 0.718
DehazeDCT (Ours) 22.78 0.734 22.86 0.877 22.36 0.752 21.73 0.743

Table 1. Quantitative comparisons between our proposed DehazeDCT and SOTA methods. Our proposed method achieves superior
performance in terms of PSNR and SSIM across four datasets. These numbers are obtained from their original paper or training with their
released code. [Key: Best, Second Best, ↑ (↓): Larger (smaller) values leads to better performance, HD-NH-HAZE2: Official dataset for
NTIRE 2024 Dense and Non-Homogeneous Dehazing Challenge]

operations, where W , H , and di represent the image width,
image height, the dimension of latent features. After each
downsampling process, several DCNFormer blocks, which
share similar architecture with common transformer blocks,
are adopted for representation learning. However, instead
of the global attention mechanism of transformers, the core
operator of our DCNFormer is the deformable convolution
v4, which is achieved by removing the softmax normaliza-
tion operation in DCNv3 [36].

Given each latent feature Fi and current pixel p0, the
principle of DCNv3 operation is described as:

y(p0) =
G∑

g=1

K∑
k=1

wgmgkxg(p0 + pk +∆pgk), (2)

where K represents the total number of sampling points, k
enumerates the sampling point and G denotes the total num-
ber of aggregation groups. For the g-th group, wg∈Rdi×d′

i

denotes the location-irrelevant projection weights of the
group, where d′i = di/G represents the group dimension.
mgk ∈ R denotes the modulation scalar of the k-th sam-
pling point in the g-th group, normalized by the softmax
function along the dimension K. xg represents the sliced
input feature map. ∆pgk is the offset corresponding to the
grid sampling location pk in the g-the group.

Unlike utilizing softmax operation to normalize the mod-
ulation scalar mgk, we don’t incorporate any normalization
functions in our DCNFormer in order to achieve unbounded
dynamic weights for mgk, which contributes to the sig-
nificantly faster converge and forward speed compared to
DCNV3 [36], common convolutions, and attention blocks
in Transformers. Moreover, the core operator in our DC-
NFormer only adopts a 3 × 3 kernel to learn long-range
dependencies, which is easier to be optimized compared to
large kernels [11, 23]. Please note despite the comparatively
large parameters of our dehazing module, our DCNFormer
blocks allow our model to achieve high-resolution dehaz-
ing efficiently, without the need for special design of high-
resolution images (e.g., 4000× 6000).

3.2. Loss Function

The loss function utilized for optimizing our Dehaizng
module is:

Lloss = L1 + αLSSIM + βLPercep + γLadv, (3)

where L1, LSSIM and LPercep represent L1 loss, MS-
SSIM loss [51], and perceptual loss [31], respectively. In
addition, we adopt the discriminator in [15] to calculate ad-
versarial loss (Ladv). α, β, and γ are hyper-parameters and
are set to 0.4, 0.01, and 0.0005, respectively.

3.3. Transformer based Refinement

Based our Dehazing module, which concentrates on remov-
ing haze from degraded images, we further incorporate a
lightweight transformer similar to [7, 14] for refinement.
Based on Retinex theory, given the input and its mean val-
ues for each pixel along the channel dimension, our Refine-
ment module first predicts the lit-up image and light-up fea-
ture and then restore the color and detail corruption. There-
fore, the our final dehazed image can be obtained by:

Idehazed = ϕ(θ(Ihazy),mean(θ(Ihazy))), (4)

where θ and ϕ represent our Dehazing module and Refine-
ment module, respectively. Notably, our Refinement mod-
ule only has 1.61 M parameters, and we remove the adver-
sarial loss in Eq. 3 to optimize the Refinement module ϕ.

4. Experiments
4.1. Experiment Settings

Datasets. We qualitatively and quantitatively evaluate
our proposed method on four real-world datasets: NH-
HAZE [1], NH-HAZE2 [3], HD-NH-HAZE [4] and DNH-
HAZE2 [5] datasets. NH-HAZE dataset composes of 55
pairs of 1200×1600 hazy and corresponding clean images.
We use the official testing data for evaluation while the re-
maining are utilized for training. NH-HAZE2 dataset con-
sists of 25 training pairs, 5 validation pairs and 5 testing
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Input FFA [28] TDN [22] DehazeFormer [33] DWT-FFC [51] DehazeDCT (Ours) GT

Figure 3. Visual comparisons on NH-HAZE [1] dataset. Compared to other models, our method exhibits higher color fidelity and effective
dehazing, yielding compelling results.

pairs with resolution 1200×1600. As the ground truth for
validation and testing data isn’t publicly accessible, we uti-
lize the first 20 training pairs for training and use the rest as
testing samples. HD-NH-HAZE and DNH-HAZE datasets
compose of 40 training pairs, 5 validation pairs and 5 test-
ing pairs of 4000×6000 images. As we can only access the
ground truth of training pairs, we again evaluate on the last
5 training pairs and use the rest for training.
Implementation Details. We implement the training using
Pytorch 1.11.0 on an NVIDIA RTX 4090 GPU. To augment
the limited training data, images pairs are randomly cropped
into patches of size 384×384, then possibly rotated at 90,
180, or 270 degrees, vertically or horizontally flipped. The
training process of our proposed method composes of two
stages. In stage I, we neglect the Refinement module. The
model and discriminator are updated by Adam optimizer
with decay factors β1 = 0.9 and β2 = 0.999 for a total
of 5,000 epochs. The initial learning rate is set to be 1 ×
10−4 and the learning rate decays by half at 1,500, 3,000,
and 4,000 epochs. In stage II, we train our the Refinement
module for 500 epochs and optimize our whole model for
500 epoch with the fixed the learning rate of 1× 10−5.

4.2. Comparisons with SOTA Methods

Compared Methods and Evaluation Metrics. In this
section, we undertake a comprehensive evaluation of our

method by quantitatively and qualitatively comparing it
with current SOTA methods for dehazing. These bench-
mark models include the winner solution of NTIRE 2020
Non-Homogeneous Dehazing Challenge (TDN [2, 22]), the
champion method in NTIRE 2023 HR Non-Homogeneous
Dehazing Challenge (DWT-FFC [51]), as well as FFA [28],
AECR-Net [42], and the recently proposed transformer-
based dehazing approach (DehazeFormer [33]). Besides,
we utilize two full-reference metrics for quantitative eval-
uation: Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM [39]), which measures the
pixel-level accuracy and the structural similarity of dehazed
results.

Quantitative Comparisons. Tab. 1 presents the perfor-
mance comparisons between our DehazeDCT and other
methods across various datasets. As illustrated in Tab. 1,
our DehazeDCT consistently demonstrates superior perfor-
mance in terms of both PSNR and SSIM across all four
datasets, with 21.73 dB PSNR and 0.743 SSIM on DNH-
HAZE dataset. In particular, DehazeDCT surpasses the sec-
ond best method by an average of 0.13 dB PSNR and 0.005
SSIM, underscoring the impressive capability of our pro-
posed method.

Qualitative Comparisons. The visual comparisons of the
dehazing results from Fig. 3, 4, and 5 demonstrate that our
method achieves superior dehazing effects, capable of pro-
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Input FFA [28] TDN [22] DehazeFormer [33] DWT-FFC [51] DehazeDCT (Ours) GT

Figure 4. Visual experiment results on NH-HAZE [3] dataset. Obviously, our method demonstrates superior performance on color preser-
vation and detail maintaining, further enhancing the overall quality of the output.

Configurations PSNR↑ SSIM↑
w/o Refinement module 21.50 0.736
w/o Dehazing module 20.56 0.728

only main branch 21.44 0.730
only frequency branch 20.07 0.697

Table 2. The ablation result of our method on DNH-HAZE[5]
dataset. Each component of our DehazeDCT contribute positively
to our final dehazing performance.

L1 LPercep LSSIM Ladv PSNR SSIM
✓ ✓ ✓ ✓ 21.50 0.736
✓ ✓ ✓ 21.43 0.733
✓ ✓ 21.21 0.725
✓ 21.17 0.720

Table 3. We conduct experiments to illustrate the rationality of
loss function used for Stage I training (w/o Refinement module).
Our adopted loss function help achieve optimal performance.

ducing colors that are more closely aligned with the ground
truth, manifesting higher clarity, greater color fidelity, and
more distinct details. In contrast, other methods present dis-
tinct shortcomings. For instance, the FFA method appears
to struggle with color retention, resulting in a washed-out
appearance. TDN and DehazeFormer leave the image with
a slightly hazy residue that obscures finer details.

4.3. Ablation Study

To analyze the effectiveness of each component in our pro-
posed method and justify the optimization objective uti-
lized for training, we conduct extensive ablation experi-
ments on DNH-HAZE Dataset. Since our method contains
two separate modules and our dehazing module includes
two branches, we adopt a break-down ablation to study the
effectiveness of each module and each branch for dehazing.
Effectiveness of Refinement Module. To study the im-
portance of refinement module, we remove this module
from our model and Tab. 2 reports the quantitative perfor-
mance of remaining architecture, which still demonstrate
competitive performance compared to the current SOTA in
Tab. 1. However, compared to our DehazeDCT, only uti-
lizing the dehazing module suffers from obvious decrease
in PSNR and SSIM, which vividly underscores the contri-
butions of Refinement module in our proposed method. In
addition, various combinations of loss functions are com-
pared in Tab. 3, showing that the loss function we adopted
in Stage I training is reasonable and effective.
Importance of Dehazing Module. In order to evaluate
the importance of our proposed Dehazing module, based
on our DehazeDCT, we remove the Dehazing module and
directly leverage the transformer based Refinement module
for dehazing and we obtain the result as Tab. 2 row 2. Com-
pared to the result of our complete model reported in Tab. 1,
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Figure 5. Visual Comparisons on HD-NH-HAZE dataset [4]. Our method exhibits superior haze removal, evidenced by more vivid colors
and clearer details, especially in the foliage and background structures.

the significantly lower PSNR and SSIM values indicate that
employing the Refinement module alone is insufficient for
effective dehazing, underscoring the critical importance of
the integration our Dehazing module.

Contributions of DCNFormer blocks and Frequency-
Aware Branch. To further evaluate the effectiveness of
each branch in the Dehaizng module, we separately adopt
each branch without Refinement module to examine their

contributions for dehazing. As shown in Tab. 2 row 3 and
row 4, the inferior results of main branch and frequency-
aware branch, compared to the complete Dehazing mod-
ule, verify the beneficial contributions of each branch for
dehazing and substantiate the rationality of our model’s
architecture. Furthermore, compared to the frequency-
aware branch, our proposed DCNFormer blocks demon-
strate more powerful representation learning and achieve
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Figure 6. Our results on the validation set of NTIRE 2024 Dense and Non-Homogeneous Dehazing Challenge [5], achieving the best
performance in terms of both PSNR and SSIM on the validation leaderboard.

Team PSNR↑ SSIM↑ LPIPS↓ MOS↑ Average Rank Fianl Rank↓
USTC-Dehazers 22.94 0.7294 0.3520 6.315 2.25 1

Dehazing R (Ours) 22.84 0.7253 0.3466 5.96 3.25 2
Team Woof 22.60 0.7269 0.3809 5.79 4.25 3
ITB Dehaze 22.32 0.7149 0.3337 5.705 4.25 4

TTWT 21.93 0.7146 0.3345 5.675 5.25 5
DH-AISP 21.90 0.7144 0.4017 5.81 6 6

BU-Dehaze 21.68 0.7094 0.3267 5.22 6.5 7
RepD 21.78 0.7061 0.3328 4.83 7 8

PSU Team 20.54 0.6328 0.2678 5.31 8.75 9
xsourse 21.66 0.6955 0.4493 5.28 9.75 10

Table 4. Final ranking (top 10 teams) of NTIRE 2024 Dense and Non-Homogeneous Dehazing Challenge [5]. Our team (Dehazing R)
achieves the second best performance among all submitted solutions (16 submissions in total). [Key: Best, Second Best, ↑ (↓): The larger
(smaller) represents the better performance].

more pleasant result.

4.4. Performance of Our Method on NTIRE 2024
Dense and Non-Homogeneous Challenge

The challenge results are evaluated by PSNR, SSIM,
Learned Perceptual Image Patch Similarity (LPIPS) [50]
and Mean Opinion Score (MOS) via a user study [5]. The
quantitative results of the top 10 teams are shown in Tab. 4
and our solution achieves the second best performance in
total. Specifically, apart form the first solution, our method
outperforms other solutions by a margin, which is quanti-
tatively evidenced by an augmentation of 0.24 dB in PSNR
and a notable elevation of 0.17 in MOS. Additionally, we
provide our results of the official test set and validation set
in Fig. 1 and Fig. 6, respectively. Obviously, it can be ob-
served that the results generated by our model exhibit high
fidelity and visual appeal. In dense hazy areas, there are no
residual traces of haze and disjointed feeling with other re-

gions. Additionally, our results feature well-defined details
and vivid color, showing the superiority of our model.

5. Conclusion
In this paper, we introduce an effective non-homogeneous
Dehazing method based on Deformable Convolutional
Transformer (DehazeDCT). Specifically, we design a
transformer-like architecture for effective dehazing with
the core operator of deformable convolution v4, which of-
fers long-range dependency and adaptive spatial aggrega-
tion capabilities and demonstrates faster convergence and
forward speed. Additionally, we use a streamlined trans-
former grounded in Retinex theory to further improve the
color and structure details. Comprehensive experiment re-
sults demonstrate the effectiveness of our proposed method.
Furthermore, our method achieves outstanding performance
in NTIRE 2024 Dense and Non-Homogeneous Dehazing
Challenge (second best performance among 16 solutions).

6412



References
[1] Codruta O. Ancuti, Cosmin Ancuti, and Radu Timo-

fte. Nh-haze: An image dehazing benchmark with non-
homogeneous hazy and haze-free images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPR Workshops), 2020.

[2] Codruta O Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, Radu Timofte, et al. Ntire 2020 challenge on non-
homogeneous dehazing. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPR Workshops), 2020.

[3] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, and Radu Timofte. Ntire 2021 nonhomogeneous
dehazing challenge report. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPR Workshops), 2021.

[4] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, Radu Timofte, et al. Ntire 2023 hr nonhomo-
geneous dehazing challenge report. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPR Workshops), 2023.

[5] Codruta O. Ancuti, Cosmin Ancuti, Florin-Alexandru
Vasluianu, Radu Timofte, et al. Ntire 2024 dense and nonho-
mogeneous dehazing challenge report. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPR Workshops), 2024.

[6] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and
DachengTao. An end-to-end system for single image haze re-
moval. IEEE Transactions on Image Processing (TIP), 2016.

[7] Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Tim-
ofte, and Yulun Zhang. Retinexformer: One-stage retinex-
based transformer for low-light image enhancement. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), 2023.

[8] Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolu-
tion. Advances in Neural Information Processing Systems,
2020.

[9] Yuning Cui, Yi Tao, Zhenshan Bing, Wenqi Ren, Xinwei
Gao, Xiaochun Cao, Kai Huang, and Alois Knoll. Selective
frequency network for image restoration. In The Eleventh In-
ternational Conference on Learning Representations, 2023.

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2017.

[11] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang
Ding. Scaling up your kernels to 31x31: Revisiting large ker-
nel design in cnns. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11963–11975, 2022.

[12] Wei Dong, Han Zhou, and Dong Xu. A new sclera segmen-
tation and vessels extraction method for sclera recognition.
In 2018 10th International Conference on Communication
Software and Networks (ICCSN), 2018.

[13] Wei Dong, Han Zhou, Yuqiong Tian, Jingke Sun, Xiao-
hong Liu, Guangtao Zhai, and Jun Chen. ShadowRefiner:

Towards mask-free shadow removal via fast fourier trans-
former. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPR Work-
shops), 2024.

[14] Kang Fu, Yicong Peng, Zicheng Zhang, Qihang Xu, Xiao-
hong Liu, Jia Wang, and Guangtao Zhai. Attentionlut: Atten-
tion fusion-based canonical polyadic lut for real-time image
enhancement. arXiv preprint arXiv:2401.01569, 2024.

[15] Ian J. Goodfellow, Pouget-Abadie Jean, Mehdi Mirza, Bing
Xu, Warde-Farley David, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Associa-
tion for Computing Machinery, 2020.

[16] Guan Guang, Xingang Wang, Wenqi Wu, Han Zhou, and
Yuanyuan Wu. Real-time lane-vehicle detection and track-
ing system. In Chinese Control and Decision Conference
(CCDC), 2016.

[17] Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong,
Wenqi Ren, and Chongyi Li. Image dehazing transformer
with transmission-aware 3d position embedding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[18] Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy.
Focal frequency loss for image reconstruction and synthe-
sis. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2021.

[19] Mingye Ju, Zhenfei Gu, and Dengyin Zhang. Single image
haze removal based on the improved atmospheric scattering
model. Neurocomputing, 2017.

[20] Yunan Li, Qiguang Miao, Jianfeng Song, Yining Quan, and
Weisheng Li. Single image haze removal based on haze
physical characteristics and adaptive sky region detection.
Neurocomputing, 2016.

[21] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration
using swin transformer. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops (ICCV
Workshops), 2021.

[22] Jing Liu, Haiyan Wu, Yuan Xie, Yanyun Qu, and Lizhuang
Ma. Trident dehazing network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPR Workshops), 2020.

[23] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao
Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu,
and Zhangyang Wang. More convnets in the 2020s: Scaling
up kernels beyond 51x51 using sparsity. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2023.

[24] Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen. Grid-
dehazenet: Attention based multi-scale network for image
dehazing. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[25] Xiaohong Liu, Zhihao Shi, Zijun Wu, Jun Chen, and Guang-
tao Zhai. Griddehazenet+: An enhanced multi-scale network
with intra-task knowledge transfer for single image dehaz-
ing. IEEE Transactions on Intelligent Transportation Sys-
tems, 2022.

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:

6413



Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 2021.

[27] W. E. K. Middleton. Vision through the atmosphere. Univer-
sity of Toronto Press, 1952.

[28] Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and
Huizhu Jia. Ffa-net: Feature fusion attention network for
single image dehazing. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), 2020.

[29] Yuwei Qiu, Kaihao Zhang, Chenxi Wang, Wenhan Luo,
Hongdong Li, and Zhi Jin. Mb-taylorformer: Multi-branch
efficient transformer expanded by taylor formula for image
dehazing. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2023.

[30] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun
Cao, Wei Liu, and Ming-Hsuan Yang. Gated fusion net-
work for single image dehazing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[31] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[32] Vishwanath A. Sindagi, Poojan Oza, Rajeev Yasarla, and
Vishal M. Patel. Prior-based domain adaptive object detec-
tion for hazy and rainy conditions. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

[33] Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision
transformers for single image dehazing. In IEEE Transac-
tions on Image Processing (TIP), 2023.

[34] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[35] Wenyi Wang, Jun Hu, Xiaohong Liu, Jiying Zhao, and Jian-
wen Chen. Single image super-resolution based on multi-
scale structure and nonlocal smoothing. EURASIP Journal
on Image and Video Processing, 2021.

[36] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang,
Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu,
Hongsheng Li, et al. Internimage: Exploring large-scale vi-
sion foundation models with deformable convolutions. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

[37] Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPR Workshops), 2019.

[38] Yingqian Wang, Jungang Yang, Longguang Wang, Xinyi
Ying, Tianhao Wu, Wei An, and Yulan Guo. Light field im-
age super-resolution using deformable convolution. In IEEE
Transactions on Image Processing (TIP), 2021.

[39] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: From error visibil-
ity to structural similarity. In IEEE Transactions on Image
Processing (TIP), 2004.

[40] Zhendong Wang, Xiaodong Cun, Jianmin Bao, and
Jianzhuang Liu. Uformer: A general u-shaped transformer
for image restoration. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022.

[41] Haiyan Wu, Jing Liu, Yuan Xie, Yanyun Qu, and Lizhuang
Ma. Knowledge transfer dehazing network for nonhomoge-
neous dehazing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPR
Workshops), 2020.

[42] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi
Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang Ma. Con-
trastive learning for compact single image dehazing. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[43] Yuwen Xiong, Zhiqi Li, Yuntao Chen, Feng Wang, et al.
Efficient deformable convnets: Rethinking dynamic and
sparse operator for vision applications. arXiv preprint
arXiv:2401.06197, 2024.

[44] Dong Xu, Wei Dong, and Han Zhou. Sclera recognition
based on efficient sclera segmentation and significant vessel
matching. In The Computer Journal, 2022.

[45] Hao-Hsiang Yang and Yanwei Fu. Wavelet u-net and the
chromatic adaptation transform for single image dehazing. In
IEEE International Conference on Image Processing (ICIP),
2019.

[46] Xiangyu Yin, Xiaohong Liu, and Huan Liu. Fmsnet: Un-
derwater image restoration by learning from a synthesized
dataset. In International Conference on Artificial Neural Net-
works (ICANN), 2019.

[47] Jaeyoung Yoo, Sang-ho Lee, and Nojun Kwak. Image
restoration by estimating frequency distribution of local
patches. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[48] Hu Yu, Naishan Zheng, Man Zhou, Jie Huang, Zeyu Xiao,
and Feng Zhao. Frequency and spatial dual guidance for
image dehazing. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022.

[49] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022.

[50] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018.

[51] Han Zhou, Wei Dong, Yangyi Liu, and Jun Chen. Break-
ing through the haze: An advanced non-homogeneous de-
hazing method based on fast fourier convolution and con-
vnext. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPR Work-
shops), 2023.

[52] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

6414


	. Introduction
	. Related Work
	. Methods
	. DCNv4 based Transformer for Dehazing
	. Loss Function
	. Transformer based Refinement

	. Experiments
	. Experiment Settings
	. Comparisons with SOTA Methods
	. Ablation Study
	. Performance of Our Method on NTIRE 2024 Dense and Non-Homogeneous Challenge

	. Conclusion

