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Abstract

The Low Light Image Enhancement (LLIE) task has been
a hotspot in low-level computer vision research. The cam-
era sensor can only capture a small amount of ambient light
signal in low-light condition, resulting in significant noise
black pseudo artifacts in images, which not only degrade
visual quality but also affect the performance of down-
stream visual tasks. However, current methods often pro-
duce overly smoothed and distorted results, or introduce
strong noise artifacts. Moreover, for recent UHD high-
definition low-light images, due to GPU memory limita-
tions, LLIE must be conducted in patches, leading to block
artifacts. Faced with these challenges, we propose a dual-
branch pipeline called DiffLight. Specifically, it consists
of the Denoising Enhancement (DE) branch and the De-
tail Preservation (DP) branch. The DE-branch adopts a
combination of DiffIR and LEDNet to reduce noise and
enhance brightness, while the DP-branch utilizes a novel
Light Full-Former (LFF) method, which comprises 20 Full-
Attention (LFA) modules to preserve full-scale image de-
tails. To tackle block artifacts, we further introduce Pro-
gressive Patch Fusion (PPF) for patch fusion. Experimen-
tal results demonstrate that our approach is high-ranked in
the CVPR2024 NTIRE Low Light Enhancement challenge
and produced state-of-the (SOTA) results on other datasets.

1. Introduction
In low-light conditions, sensors typically capture only a

tiny amount of light signal, leading to a significant amount
of noise in the resulting images, consequently impairing the
performance of downstream visual tasks such as image clas-
sification [25] and automatic driving [22]. The Low-light
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Figure 1. Comparison with recent SOTA methods in LOLv1 [38]
dataset. We choose PSNR/SSIM↑ and LPIPS↓ for the measure
metrics. The circle size represent LPIPS of each method. The
result shows DiffLight have the best performance between SOTAs.

Image Enhancement (LLIE) task is to brighten images, en-
hance contrast, mitigate image degradation, and alleviate
severe image noise caused by low-light conditions, aiming
to restore the original image information and improve per-
ceptual quality [50]. In addition, high-resolution imaging
has experienced significant advancements due to the emer-
gence of sophisticated imaging sensors and displays in re-
cent years. The Ultra High Definition (UHD) LLIE task
becoming a research focus, gradually.

Traditional LLIE methods, like histogram equalization
[1, 3, 4] and gamma correction [14, 30, 37], while capable
of enhancing image brightness and restoring some details,
often lead to significant color artifacts and are unable to re-
cover a pure black area filled with noise or underexposure.

Currently, with the strong generalization capability of
deep learning, a plethora of solutions based on deep con-
volutional neural networks (CNNs) have been proposed to
address some low-light degradation issues. Typically, these
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methods directly learn the mapping function between low-
light degraded images and high-quality normal illumination
images. These approaches can be roughly categorized into
two types: end-to-end networks [38, 43, 48] and image gen-
erative methods based on the Diffusion Model [16, 44].

The latest end-to-end single stage networks are mostly
based on the multi-head attention mechanism of the Vision
Transformer model [8] to capture pixel-level long-range de-
pendencies and non-local self-similarity in images [7, 43].
These methods have indeed addressed the issue of low-light
artifacts, but they still fall short in restoring authentic details
in extremely low-light and highly noisy regions.

To address the end-to-end single stage problems, the dif-
fusion model comes and has consistently demonstrated out-
standing performance in image denoising, repainting, and
other fields [23]. Recent efforts have adapted the Diffusion
model to the domain of LLIE [13, 16, 40, 51], successfully
addressing the restoration of extremely low-light regions.
However, it leads to two new issues: (a) Images restored by
the large models (e.g. diffusion model) often exhibit exces-
sive smoothing and loss of details. (b) The computational
cost of the diffusion model is typically high, especially for
UHD images, potentially causing GPU out-of-memory er-
rors. These challenges bring us to develop a method that
aims to produce low noise without sacrificing details.

At present, high-resolution images are mostly divided
into small patches, which are input into the network sep-
arately, and the brightened images are finally output and
stitched together [21, 34, 39]. This process leads to the
generation of block artifacts within the image, significantly
impacting the visual quality of the image.

To sum up, we propose a novel pipeline, named Dif-
fLight, which consists of two branches. The Denoising En-
hancement (DE) branch employs the diffusion method from
DiffIR [41] to remove noise from low-light images while
mapping them from low-light to normal-light, thereby pre-
liminarily improving image brightness. Subsequently, the
images are input into LEDNet [52] for refinement, enhanc-
ing image details and correcting any existing color devia-
tions. Another branch, the Detail Preservation (DP) branch,
utilizes our designed Light Full-Former (LFF) network.
This network comprises 20 Light Full-Attention (LFA)
modules embedded in a UNet structure. We input a low-
light image into both branches and generate two brightened
images from each branch, which are then weighted fused
to produce the final output. Finally, for high-resolution
images, we employ the Progressive Patch Fusion (PPF)
method in testing, applying progressive weight handling at
the edges to effectively address block artifacts and signifi-
cantly enhance visual quality.

The proposed DiffLight method achived rank #4 in the
CVPR2024 NTIRE Workshop Low Light Enhancement
Challenge [42]. Experimental results conducted in various

challenging scenarios demonstrate that DiffLight approach
has achieved state-of-the-art (SOTA) results in both quanti-
tative and visual evaluations for the LLIE task. The main
contributions of this paper are threefold:
• We propose a dual-branch pipeline called DiffLight. One

branch employs the diffusion model, focusing on image
noise removal, while the other branch utilizes an end-to-
end UNet Transformer for low-light detail restoration.

• We propose a new transformer method Light Full-Former,
which use the novel Light Full-Attention (LFA) module.

• We proposed the Progressive Patch Fusion (PPF) method
that addresses block artifacts and yields favorable visual
perceptual results.

2. Relative Work
2.1. Low-light Image Enhancement

Traditional Methods. Early work primarily relied on
various heuristic algorithms to improve image quality. For
instance, histogram equalization [15], which effectively re-
distributes the brightness of an image to enhance its global
contrast. Methods based on Retinex theory [11, 29] en-
hance low-light images by decomposing the image into re-
flectance and illumination components. LIME [11] esti-
mates the illumination intensity of each pixel and refines
the initial illumination map through structural priors to im-
prove image quality. Although traditional methods typically
do not require training data, they still have limitations in de-
tail preservation and noise control.

Deep Learning Methods. Recently, deep learning-based
methods have garnered attention for their accuracy, robust-
ness, and speed, achieving state-of-the-art performance in
a wide range of image enhancement tasks. Restormer [46]
model achieves high-resolution image restoration through
an effective Transformer architecture, while Zhou et al. [52]
focuses on joint low-light enhancement and deblurring, in-
troducing a large-scale dataset LOL-Blur and demonstrat-
ing effectiveness on both synthetic and real-world datasets.
Additionally, methods based on Retinex theory and deep
learning [2, 24, 38, 49] enhance images by optimizing the
reflectance and illumination components through the net-
work. In recent times, multi-stage networks [32, 45] have
effectively addressed the issues of single-stage models by
processing and refining images in stages, achieving impres-
sive results.

2.2. Diffusion Model

With the advancement of Denoising Diffusion Proba-
bilistic Models (DDPMs) [12], diffusion-based generative
models have achieved remarkable results in the domain of
image generation. Wang et al. [23] have summarized re-
cent diffusion-based image restoration techniques, which
are primarily categorized into two types: (1) Training dif-
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Figure 2. DiffLight pipeline. DiffLight is composed of two branches: (a) Denoising Enhancement (DE) branch and (b) Detail Preservation
(DP) branch. For higher PSNR (only for NTIRE Competition), we opted for non-patch inference in the DE-branch.

fusion models from scratch through supervised learning to
adapt to various image restoration tasks [16, 18, 23, 28, 40,
51]. DiffPIR [53] innovatively integrates traditional plug-
and-play image restoration methods with diffusion model,
achieved the state-of-the-art reconstruction fidelity and per-
ceptual quality, while maintaining a low count of neu-
ral function evaluations. (2) Zero-shot [5, 6, 27], where
pre-trained generative models are considered repositories
of structures and textures constructed from extensive real
datasets, thus leveraging pre-trained diffusion models to ac-
quire structural and textural priors for image restoration.

3. Method
For the Challenge UHD dataset, we combine diffusion

model and transformer-based model that could yield bet-
ter results, which is introduced in Sec. 3.1. As shown in
Fig. 2, DiffLight is separated by Denoising Enhancement
(DE) branch and Detail Preservation (DP) branch. Addi-
tionally, to alleviate the block artifacts for UHD image cut-
patch problem, we furhter proposed the progressive patch
fusion (PPF) method in Sec. 3.4 .

3.1. Overview Pipeline

Given a low-light image I as input, it will be fed into the
two branches separately. In the DE branch (Fig. 2 (a)), the
low-quality image is processed sequentially by DiffIR [41]
and LEDNet [52] to get the enhanced image IDE as

IDE = LEDNet(DiffB(I)), (1)

where DiffB(·) represents the the Backward Process of Dif-
fIR in the inference stage (see Sec. 3.2). The enhanced
image, IDE , has fairly low noise, minimal color deviation,
as well as highly-increased brightness, but there is an ex-
cessive loss of details.

In the DP-branch (Fig. 2 (b)), the Light Full-Former
(LFF) network and the method for high-resolution image

restoration, PPF, are proposed. To better recover the details
from high-resolution images, the image is divided into n
small overlapping patches in the segmentation process, the
patch size is adapted to the input size for training. Each
patch is individually processed through LLF. The image en-
hanced by DP-branch IDP as

IDP = PPF(LLF(Seg(I))), (2)

where Seg represent the segmentation process. The block
artifacts produced by the traditional fusion method is re-
moved by PPF, providing good visual quality and rich de-
tails. Finally, IDE and IDP are multiplied by customized
weights w1 and w2 respectively as

Î = w1IDE + w2IDP , (3)

where Î denotes the final enhanced image, w2 is typically
set to 1− w1.

Modules in two branches are trained during their respec-
tive training stages. Details of branches are described in the
followed two sections.

3.2. Denoising Enhancement Branch

Denoising Stage. The primary task is to train DiffIR1

and input the training set into the trained DiffIR for infer-
ence, resulting in an enhanced training set. The training for
DiffIR consits of two phases. As show in Fig. 3 1) a), The
purpose of the first phase (i.e., Training DiffIRS1) is to ob-
tain the pre-trained IPR Generator, which guides the train-
ing of the second phase (i.e., Training DiffIRS2). IPR Gen-
erator is composed of CPENS1 module, which takes Ground
Truth (GT) IGT and Low Quality (LQ) image ILQ as input
to generate IPR Z:

Z = CPENS1(Unshuffle(Concat(IGT , ILQ))), (4)

1For more details about the modules and terms in DiffIR such as IPR
and CPEN, please refer to [41].
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Figure 3. 1) DiffIR-Training Stage [41]. 2) LEDNet-Training Stage [52]. 3) Our proposed Light Full-Former (LFF), which contains 20
Light Full-Attention (LFA) blocks, where R1,r = 2, R2,3 = 4, and R4 = 8. (Zoom in for the best view.)

where Unshuffle(·) denotes the pixel unshuffle opera-
tion, and Concat(·) denotes the concatenation operation.
This generated IPR is then fed into Image Predictor (i.e.,
DIRFormer), to produce High Quality (HQ) image IHQ:

ĨHQ = DIRFormer(Z, ILQ). (5)

These two modules are jointly trained to fully leverage
CEPNS1 in generating high-quality IPR Z.

As depicted in Fig. 3 1) b), the second phase consists
of the Forward and Backward Process. The Forward Pro-
cess guides Backward Process, which is trained for final in-
ference. The Forward process employs the IPR Generator
trained in the first phase, and the generated IPR Z in Eq.4
is fed into the diffusion module to obtain the noised vector
ZT:

ZT = Diffusion(Z). (6)

In the Backward Process, ZT is fed into Reverse mod-
ule along with the conditional vector D produced by the

CEPNS2 module (structurally identical to CEPNS1), which
takes ILQ as input, to produce the estimated IPR Ẑ. Sub-
sequently, the Image Predictor takes Ẑ and ILQ as input,
yielding the estimated high-quality image ÎHQ. This phase
can be described as follows:

D = CPENS2(Unshuffle(ILQ)),

Ẑ = Reverse(ZT ,D),

ÎHQ = DIRFormer(Ẑ, ILQ).

(7)

During this training phase, CEPNS2, the Reverse module,
and DIRFormer are jointly optimized.

Enhancement Stage. In order to implement LEDNet’s
enhancement of DIffIR output images, the enhanced train-
ing set must first be obtained through DIffIR and used as in-
put to LEDNet. During the inference stage in DiffIR, only
the Backward Process is used (the bottom part of Fig. 3
1) b)). As shown in Fig. 3 2), given a low-quality image
ILQ and a randomly sampled Gaussian noise ZT , the En-
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hanced ILQ can be derived using Eq. 7. Subsequently,The
Enhanced ILQ is fed into LEDNet to obtain IHQ, which can
be succinctly formulated as

IHQ = LEDNet(DiffB(ILQ)), (8)

where DiffB(·) corresponds to its representation in Eq. 1,
and it can be regarded as the formulation of Eq. 7 with the
input ZT omitted, which is implicitly implied in the infer-
ence stage.

3.3. Detail Preservation branch

Inspired by Restormer [46], we have designed a Light
Full-Former (LLF) Transformer architecture UNet on the
DP-branch. As illustrated in Fig. 3 3), this architecture
comprises 20 Light Full-Attention (LFA) modules.

Starting with a low-light image ILQ ∈ RH×W×3, the im-
age undergoes feature extraction using k times 3× 3 depth-
wise convolution layers to generate the F0 ∈ RH×W×C

feature map. The rationale for reusing multiple layers of
small-kernel depth convolutional layers is to reduce param-
eters and computations while enhancing receptive fields and
expanding non-linear fitting capabilities. The F0 is then
fed into a UNet network with full LFA, resulting in a new
brightened feature Fd ∈ RH×W×2C . Subsequently, Fd is
passed through Rr times LFAs for refinement, producing a
new feature Fr ∈ RH×W×2C . Finally, after compressing
the Fr feature map with k times 3 × 3 depth-wise convo-
lution layers, a residual image ∆I ∈ RH×W×3 of low-light
and highlights is generated, which is added back to the orig-
inal low-light image to obtain the ultimate enhanced image
as

IHQ = ILQ +∆I, (9)

where IHQ is the well-enhanced image in DP-branch.
Full Attention. One LFA contains a Full Attention (FA)

and a Full Feed-Forward (FFF). Given a embedded feature
tensor Fk ∈ RĤ×Ŵ×Ĉ for input, FA first generated the
depth feature F′

k ∈ RĤ×Ŵ×3Ĉ by the 1 × 1 and 3 × 3
depth-wise convolution layers. The F′

k feature is divided
into two equal parts based on the number of channels and
then input into two separate MDTA modules that are de-
rived from the modules in Restormer [46]. These two sub-
branch output features further embeds by a 3 × 3 depth-
wise convolution layer. Sub-branches pass through GELU
activation and Tanh activation as outputting feature FG and
FT , respectively. The final output of FA can be measured
as

F̂ = Wd(FG ⊙ FT ), (10)

where ⊙ denotes the element-wise multiplication, Wd rep-
resents the 1 × 1 depth-wise convolution layer, and F̂ rep-
resent the final output feature of FA module.

Full Feed-Forward. Similar to the FA module, the input
features are compressed by two deep-wise convolution lay-
ers and split into two groups of features. However, FFF
module removed MDTA and a 3 × 3 convolution layer,
which directly embeds the FFF output by Eq. 10.

Activations. In the LFA module, we apply the features
through both GELU and Tanh activation functions simul-
taneously, followed by element-wise multiplication. This
approach is chosen to maintain the intrinsic integrity of
features (fully enhancing the original details of image fea-
tures), as well as to benefit from the gating property pro-
vided by the GELU function (constraining noise in the
original image). Additionally, the Tanh activation function
helps restrict feature values to the range of -1 to 1, leading
to faster convergence speed of the model.

Algorithm 1 Progressive Patch Fusion

1: Input: Image I, Patch size p, Stride s, Model model
2: Output: restored image I′

3: I′ ← empty tensor
4: patchrow ← empty tensor
5: for i = 0 to overlap− 1 do
6: wfactor ← i

overlap
7: for j = 0 to p− 1 do
8: weight1[i, j]← 1− wfactor

9: weight2[i, j]← wfactor

10: weight3[j, i]← 1− wfactor

11: weight4[j, i]← wfactor

12: end for
13: end for
14: for each position (hi, wi) in I with step s do
15: patch← I[hi : hi + p, wi : wi + p]
16: patch′ ← model(patch)
17: if wi = 0 then
18: patchrow ← patch′

19: else
20: patchrow ← (patchrow · weight1 + patch′ ·

weight2)
21: end if
22: if hi ̸= 0 then
23: I′[hi : hi + p, :]← (I′[hi : hi + p, :] · weight3 +

patchrow · weight4)
24: else
25: I′[hi : hi + p, :]← patchrow

26: end if
27: end for
28: return I′

3.4. Progressive Patch Fusion

For high-resolution images, we utilize the Progressive
Patch Fusion (PPF) method during testing. This approach
incorporates progressive weight management at the Over-
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lapping areas to effectively mitigate edge and substantially
improve visual fidelity. As represented in Alg. 1, PPF is
performed by these steps as follows:

1. The input image I is segmented into several patches
with patch size p and stride s.

2. Each patch, after model inference, is added to the
restored image I′. The overlapping parts between
patches are processed with four weight matrices
weight1,2,3,4 linearly varying from 0 to 1.

3. Specifically, when patches overlap horizontally,
weight1,2 are used to blend the overlapping edges, en-
suring a smooth and seamless fusion. Similarly, when
patches overlap vertically, weight3,4 are utilized for
blending.

4. By applying these weights row by row and column by
column, a seamless large image I′ is restored.

The PPF method allows for a smooth transition in the
overlapping areas of the image patches, avoiding hard edges
and resulting in a more natural-looking image.

3.5. Training Loss Functions

DE-branch. We follow the loss functions in the original
paper of DiffIR [41] and LEDNet [52].

DP-branch. We trained LFF with the combination losses
L(x̂, x). Given a Ground Truth x and a restored image x̂,
we employ L1 loss L1, edge loss Le [31] and perceptual
loss Lp [17] at sRGB space in DP-branch as

L(x̂, x) = L1(x̂, x) + λe · Le + λp · Lp(x̂, x), (11)

where λe, λp are 50 and 0.01, respectively.

4. Experiment
4.1. Experimental Settings

Dataset. We use the NTIRE2024 Low Light Enhance-
ment Challenge dastest [42] to train and test the proposed
method. It is a UHD dataset containing images with reso-
lutions up to 4K and beyond, which comprises 230 training
scenes, along with 35 validation and 35 testing ones. More-
over, in order to verify the effectiveness of our method on
well-known publicly available datasets, we also conducted
experiments on the LOLv1 dataset [38]. Besides, to illus-
trate the strength of PPM, we randomly sample 50 paired
pictures from UHD-LOL4K dataset [33].

Evaluation Metrics. For all datasets, we adopt the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) [36] as the distortion metrics. To evaluate the
perceptual quality of restored images, we report Learned
Perceptual Image Patch Similarity (LPIPS) [47] by using
AlexNet [20] for references as a perceptual metric.

4.2. Implementation details

Denoising Enhancement. For the DE-branch, we train
DiffIR [41] and LEDNet [52] separately, both are trained on
two V100 GPUs.

DiffIR [41] adopts a four-level encoder-decoder struc-
ture. From level-1 to level-4, the attention heads in
DMTA are 1, 2, 4, 8, the number of channels is setting
to 48, 96, 192, 384, and the number of dynamic transformer
blocks to 3, 5, 6, 6.

In training DiffIR [41], total timesteps T are set to 4,
and βt linearly increase from β1 = 0.9 to βT = 0.99
. DiffIRS1 are trained for 300K iterations with the ini-
tial learning rate 2 × 10−4 gradually reduced with the co-
sine annealing. And For DiffIRS2, we train 300K itera-
tions with initial learning rate 2 × 10−4 and gamma 0.5
with the MultiStepLR scheduler. For both training stage,
we progressively increase patch size and decrease batch
size. Specifically, during iterative training, the patch size
and batch size pair are set to respectively train for (92K),
(80K), (38K), (90K) iterations under the configurations
of (192, 8), (256, 4), (320, 2), (400, 1).

LEDNet [52] model is trained on the inference results on
Train set produced by DiffIR, and the Ground Truth remains
unchanged. We train LEDNet using Adam [19] optimizer
with β1 = 0.9, β2 = 0.99 for a total of 300k iterations.
The initial learning rate is set to 1× 10−4 and updated with
cosine annealing strategy [26]. For NTIRE2024 dataset,
we still adopt a progressive training approach, the patch
size and batch size pair are set to train for (90K), (70K),
(70K), (70K) iterations respectively under the configu-
rations of (256, 8), (512, 4), (1024, 1), (1320, 1). As for
LOLv1 dataset, LEDNet are trained with 400 patch size and
10 batch size for 100K iterations.

Detail Preservation. We implement our the DP-branch
by PyTorch. The model is trained with the Adam [19] op-
timizer (β1 = 0.9 and β2 = 0.999) for at least 300 epochs
by using a single NIVIDA 3090 GPU. The learning rate
is initially set to 1 × 10−4 and then steadily decreased to
1 × 10−7 by the cosine annealing scheme [26] during the
training process. We randomly crop the image to 256 ×
256 on NTIRE2024 dataset and 80 × 80 on LOLv1 dataset
[38] for patch size and set batch size to 8. When testing the
high-resolution images, we use our proposed PPF that set p
as 256 and s as 128.

4.3. Qualitative Evaluations

As illustrated in Fig. 4, we compared our method with
five other state-of-the-art (SOTA) methods on the LOLv1
dataset. Visually, our method exhibits smaller color devi-
ations, significantly reduces noise while preserving detail
accuracy, maintains normal contours, and greatly reduces
artifacts, approaching closer to the Ground Truth. More-
over, we conducted PSNR and SSIM comparisons between
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(a) Input
PSNR↑/SSIM↑

(b) RetinexNet [38]
15.59/0.801

(c) RUAS [24]
11.75/0.733

(d) LLFlow [35]
11.86/0.779

(e) KinD [48]
16.96/0.832

(f) SNR-Aware [43]
15.89/0.865

(g) CIDNet [9]
20.10/0.930

(h) GSAD [13]
22.33/0.938

(i) Ours
27.21/0.947

(j) Ground Truth
∞/1.000

Figure 4. The visual quality comparison results on LOLv1 dataset with various SOTA methods. The quantitative comparisons
PSNR/SSIM↑ is also followed.

Method PSNR↑ SSIM↑ LPIPS↓ FLOPs (G) Type
RetinexNet [38] 16.77 0.419 0.474 584.5 CNN

KinD [48] 17.65 0.775 0.207 35.0 CNN
ZeroDCE [10] 14.86 0.559 0.335 4.8 Zero-shot

RUAS [24] 16.41 0.500 - 0.8 Unsupervised
LLFlow [35] 21.15 0.854 0.119 358.4 Flow

Restormer [46] 22.37 0.816 0.108 144.3 Transformer
LEDNet [52] 20.63 0.823 0.118 35.9 CNN

Retinexformer [2] 25.15 0.846 0.131 15.85 Transformer
GSAD [13] 22.77 0.852 0.102 - Diffusion

Diff-LLE [44] 22.24 0.792 - 56.86 Diffusion
HVI-CIDNet [9] 23.50 0.870 0.086 7.57 Transformer

Ours 25.85 0.876 0.082 168.3 Mixed

Table 1. Quantitative comparisons PSNR/SSIM↑ and LPIPS↓ on
LOLv1 dataset. The highest result is in red color while the second
highest result is in cyan color.

the selected image and its Ground Truth, showing that our
DiffLight method outperforms in both metrics.

4.4. Quantitative Evaluations

To further validate the effectiveness of our method, we
conducted additional performance testing on the standard-
resolution dataset LOLv1 outside the NTIRE competition.
We selected 11 state-of-the-art (SOTA) models, with the
”type” column indicating the network architecture type of
each model. We assessed the performance using three met-
rics: PSNR, SSIM, and LPIPS.

As shown in Tab. 1, our method excels among recent
state-of-the-art (SOTA) methods, achieving the best values

in all three metrics. Specifically, our method outperforms
Retinexformer by 0.70 dB in PSNR, surpasses the latest
CIDNet by 0.06 in SSIM, and surpasses CIDNet by 0.04
in LPIPS. These results further demonstrate that our Dif-
fLight method not only accurately restores the brightness
information of images in low-light conditions but also sig-
nificantly enhances the subjective visual perception of the
images. Despite our relatively high FLOPs, the other three
metrics are all optimal, and achieve the best visual results.

4.5. Ablation Study

PPF Method. To better demonstrate the generalization
ability of the PPF, we employ our PPF with LLFormer on
UHD-LOL4K dataset [33] using pre-trained weights2 . We
randomly sample 50 paired pictures with random-cropped
size [1500, 2000] to evaluate the performance. The visual
result (Fig. 5) and quantitative evaluations (Tab. 2) under
the following three conditions are presented. It is noted that
different patch size and stride for overlapping patches are
evaluated for (b) and (c).

(a) Without patch. It denotes inference on the entire im-
age. Due to GPU memory size limitations, we typically
inference full UHD image on only CPU, which takes
much longer time and limit result compared with GPU
inference.
2The pre-trained weights (with best PSNR) is obtained from https:

//github.com/TaoWangzj/LLFormer
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(a) w/o Patch (b) Patches w/o PPF (c) Patches w PPF

Figure 5. The visual comparisons on UHD-LOL4K dataset. (a)
Full image inferenced directly by CPU. (b) and (c) are both seg-
mented into overlapping patches with patch size 512 and stride
256, but (c) is employed with PPF method. It can be seen that
the block artifacts are eliminated after using the PPF method, with
better visual effects obtained. (Zoom in for the best view.)

Patch size / Stride (px) PPF PSNR↑ SSIM↑ CPU/GPU Time (s)↓
Without Patch / 36.78 0.9886 CPU 467.38

256 / 128
% 36.98 0.9903 GPU 23.39
! 36.90 0.9907 GPU 24.58

384 / 192
% 37.52 0.9902 GPU 12.46
! 37.53 0.9905 GPU 12.48

512 / 256
% 37.69 0.9901 GPU 10.89
! 37.73 0.9903 GPU 10.89

640 / 320
% 37.60 0.9899 GPU 12.96
! 37.67 0.9901 GPU 12.93

Table 2. The quantitative comparisons of PSNR↑ and SSIM↑ on w
or w/o PPF and different patch size/stride. Using CPU/GPU and
inference time↓ per image for reference. The best result is bolded.

(b) Patches without PPF. Overlapping enhanced patches
are reconstructed through only averaging pixel values
within overlapping regions. It improves performance in
terms of PSNR and SSIM on UHD image restoration,
but produce obvious block artifacts, thereby impacting
the visual perception.

(c) Patches with PPF. Overlapping enhanced patches fused
through PPF, which retain higher numerical values
while achieving superior visual effects by moving the
block artifacts in (b).

DiffLight Pipeline. To validate the effectiveness of the
weighted combination of the two branches, we conducted
with different values of w1 and w2 on LOLv1 dataset. The
experimental results are shown in Fig. 6. In the experi-
ments, w1 is varied from 0 to 1 with a step of 0.1, and the
corresponding w2 is set to 1− w1. The results indicate that
the weighted averaging of the two branches improves PSNR
and SSIM, and for the LOLv1 dataset, the best results are
obtained with w1 = 0.4 and w2 = 0.6.

We further conducted ablation experiments on different
modules in DiffLight on LOLv1 dataset. As shown in Tab.
3, the results indicate that: if only the DE-branch is used

Figure 6. The dotted line illustrates the impact of w1 vs. metrics
on the quantitative results of LOLv1 dataset.

Method PSNR↑ SSIM↑ Params (M) FLOPs (G)

Only DiffIR 23.72 0.851 26.0 51.2
Only LEDNet 20.56 0.825 7.1 35.9
Full DE-branch 25.22 0.865 33.1 87.1

w/o LFA 22.21 0.813 3.79 21.6
Full DP-branch 25.69 0.871 18.6 81.2

Full Pipeline 25.85 0.876 51.7 168.3

Table 3. The quantitative comparative analysis of each branch
within DiffLight on LOLv1 dataset. The FLOPs is tested on a
256× 256 image. The best result is bolded.

for output, losing the influence of DiffIR is more significant
than losing LEDNet because using only CNN methods for
end-to-end training may result in inaccurate noise and color
artifacts. If output is solely from the DP-branch, removing
LFA module leads a decrease of 3.48 dB in PSNR and 0.058
in SSIM. The performance metrics of separately outputting
the two branches are lower than the complete DiffLight, fur-
ther demonstrating the superiority of our pipeline.

5. Conclusion

In this paper, we propose a dual-branch pipeline Dif-
fLight for Low Light Image Enhancement task. The pro-
posed method performs better in NTIRE, LOLv1, and
UHD-LOL dataset. Specifically, it consists of the Denois-
ing Enhancement (DE) branch for removing noise and color
bias, and the Detail Preservation (DP) branch to full recover
the normal-light details. Moreover, we design a Light Full-
Former (LFF) that comprises 20 Full-Attention (LFA) mod-
ules in DP-branch to preserve full-scale image details. Fi-
nally, we introduce the Progressive Patch Fusion (PPF) for
better Ultra High Definitio (UHD) image patches fusion.
We compared our method to several state-of-the-art (SOTA)
approaches obtaining a better performance.
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