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Abstract

In smartphones and mobile camera devices, the Image
Signal Processor(ISP) is applied to reconstruct the RAW im-
age into a sRGB image for human reading by a series of sig-
nal modules. Due to the non-linear ISP transformation, it is
complicated to model the degradation in the sRGB domain.
Most existing super-resolution methods directly handle the
sRGB image processed by the ISP, introducing more difficult
degradation patterns. To address this challenge, we pro-
pose an enhanced transformer network named RBSFormer.
Unlike other methods that operate on sRGB images, RBS-
Former takes RAW images as input, thus avoiding the com-
plex degradation introduced by ISP processing. We de-
sign two enhanced core components, i.e., Enhanced Cross-
Covairance Attention(EXCA) and Enhanced Gated Feed-
forward Network(EGFN), in the RBSFormer, and we fur-
ther introduce data augmentation in the RAW domain and
hybrid ensemble strategies to enhance our results. Exper-
imental results demonstrate superior performance against
the majority of methods both qualitatively and quantita-
tively. Our RBSFormer achieves 3rd place in terms of all
the evaluation metrics both on the official validation and
testing set with fewer parameters in the NTIRE 2024 chal-
lenge on Raw Image Super Resolution.

1. Introduction

In recent years, there have been significant advancements
in the field of image restoration and enhancement, driven
by the rapid development of deep learning and computer
vision technologies. It is a hot field that focuses on im-
proving the quality of images by restoring degraded or cor-
rupted parts and enhancing their overall appearance. It en-
compasses a wide range of techniques and algorithms aimed
at addressing various issues such as noise reduction, image
denoising[1, 4, 27], deblurring [24], color balance [19], and
super-resolution [10, 30]. Super-resolution[10, 30] is a key
field in image processing and computer vision aimed at en-
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(a) Bicubic (b) RBSFormer

Figure 1. Visual Results of Raw Image Super-Resolution by the
(a)Bicubic and (b)RBSFormer.

hancing the resolution of images beyond their original reso-
lution. It encompasses various techniques, including Single
Image Super-Resolution (SISR[49]), which enhances the
resolution of a single image, Multi-Frame Super-Resolution
(MFSR[50]), which utilizes multiple low-resolution images
of the same scene, and Generative Adversarial Networks
(GANs[21]), which generate high-quality images with en-
hanced details and textures. These techniques play a crucial
role in applications such as medical imaging, surveillance,
satellite imaging, and digital photography by improving im-
age quality and visual clarity.

In the realm of smartphone and mobile camera technol-
ogy, the Image Signal Processor (ISP) plays a crucial role
in converting RAW images into sRGB images, which are
easily interpretable by humans. However, the non-linear
transformations applied by ISPs make it challenging to ac-
curately model the degradation that occurs in the sRGB do-
main. Many existing super-resolution methods directly pro-
cess the sRGB images, which introduces further complexi-
ties in handling the degradation patterns.

To tackle this challenge, in this work, we primarily de-
note the Single Image Super-Resolution problem in the
RAW domain. The majority of cutting-edge Single Im-
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age Super-Resolution (SISR) techniques operate on RGB
imgaes[11] due to the greater abundance and accessibil-
ity of general-purpose sRGB images. However, theoreti-
cally, RAW format images are more suitable for handling
super-resolution problems compared to RGB format images
due to the following three advantages[11]: (i)Greater data
range: RAW images carry a wider range of data compared
to RGB images. (ii)the pixel values in RAW images directly
represent the amount of light captured by the camera sensor,
without any nonlinear transformations or color space con-
versions. (iii)During the process of converting RAW format
to RGB through Image Signal Processing (ISP), non-linear
transformations and information loss may occur.

The classical single-image super-resolution model
(SISR)[16] is formulated as:

y = (x⊗ k) ↓s +n (1)

Assuming the low-resolution (LR) image y, observed
or captured, is derived from an underlying high-resolution
(HR) image x by applying a degradation kernel (PSF) k
[15], followed by downsampling operation ↓s with scale
factor s (e.g., Bicubic [34]) and the addition of noise n.

In this work, we focus on the RAW image super-
resolution challenge, aiming to up-sample a 4-channel
RAW image, which may contain blur and/or noise. Con-
sidering the non-linearity of Image Signal Processing
(ISP) transformations, we choose to model the degra-
dation directly in the RAW domain rather than in the
sRGB domain. Inspired by XCiT[3], Restormer[55] and
InceptionNeXT[51], we design an enhanced transformer
network to construct a realistic RAW degradation pipeline.
The main contributions of this paper are:
1. We present an enhanced transformer network named

RBSFormer for raw image blind super-resolution while
restoring images with various types of degradation.

2. We devise Enhanced Cross-Covairance Atten-
tion(EXCA) and Enhanced Gated Feed-forward
Network(EGFN) by introducing the cross-covariance
attention module and applying Inception Depth-wise
convolution for better context representing learning.

3. Experimental results show that the proposed method sig-
nificantly outperforms other solutions. In the NTIRE-
challenge 2024 Raw Image Super Resolution track, our
RBSFormer achieves 3rd place on the official validation
and testing set.

2. Related work
Vision Transformers. The Transformer model, initially de-
veloped for sequence processing in natural language tasks
[36], has found widespread adoption in various vision tasks,
including image recognition [35, 53], segmentation [38],
and object detection [6, 26]. Vision Transformers [13, 35]

decompose images into sequences of patches and learn their
interrelationships, exhibiting strong capabilities in captur-
ing long-range dependencies within image patch sequences
[22].

This adaptability has extended to low-level vision tasks
such as super-resolution [25, 37, 44, 48], image coloriza-
tion [23], denoising [7, 42, 44], and deraining [42, 44].
However, the self-attention mechanism in Transformers can
become computationally prohibitive for high-resolution im-
ages due to its quadratic complexity with the number of im-
age patches.

Cross-covariance attention[3] has linear complexity in
the number of tokens. Recent methods[37, 55] in low-level
image processing employ this strategy to mitigate this com-
plexity.

One approach is to utilize self-attention within local im-
age regions [25, 42] using the Swin Transformer design
[25]. However, this approach restricts context aggregation
to local neighborhoods [55], which might not be optimal for
image restoration tasks, as it undermines the primary moti-
vation for using self-attention over convolutions.

Raw Image Super-Resolution. Existing super-
resolution methods primarily focus on upscaling sRGB im-
ages, but the complexities of modeling degradation in this
domain hinder their effectiveness. Zhang et al.[58] demon-
strate the advantages of utilizing real RAW sensor data
for machine learning-based digital zoom, highlighting the
limitations of existing methods that operate on processed
sRGB images. Xu et al.[46] implement Eq.1 and propose
a pipeline for generating realistic training data, which re-
sults in their model’s superior performance for real-world
scenarios. Conde et al. [11] introduce a novel degrada-
tion pipeline and a corresponding BSRAW model, and ad-
dress blind image super-resolution directly in the RAW do-
main. In this work, we introduce the degradation pipeline
proposed in previous work into our data augmentation, and
aim to identify efficient Transformer mechanisms that are
genuinely suitable for processing data in the RAW domain.

3. Method

3.1. Overall Pipeline

As shown in Fig 2, RBSFormer consists of three parts, i.e.,
shallow feature extraction, deep feature extraction and raw
reconstruction. Firstly, given a raw low-resolution image
with degradation ILR ∈ RH×W×4. We apply shallow fea-
ture filter to obtain feature encoding Fs ∈ RH×W×C as:

Fs = Conv3×3(ILR) (2)

where Conv3×3(·) is 3 × 3 convolution. Then we use
K transformer blocks and one 3 × 3 convolution layer in a
cascade manner to extract deep features. Such a process can
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Figure 2. The architecture of the proposed RBSFormer for RAW image super-resolution. Our RBSFormer consists of enhanced transformer
blocks. The core modules are Enhanced Cross-Covairance Attention(EXCA) and Enhanced Gated Feed-forward Network(EGFN).
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Figure 3. The architecture of Project Layer with Inception Depth-
wise convolution.

be expressed as:

Fi = Htbi(Fi−1), i = 1, 2, . . . ,K (3)

Fd = Conv3×3(FK) (4)

where Htbi denotes the i-th transformer block and {Fi|i =
1, 2, . . . ,K} represent intermediate features. In many stud-
ies [25], a 3× 3 convolution layer is additionally employed
at the end of deep feature extraction to enhance feature ag-
gregation. Sections 3.2 and 3.3 will provide a detailed ex-
planation of the specific components comprising the trans-
former block.

Finally, PixelShuffle[33] is applied to upsample the deep
feature, then RBSFormer reconstructs the HR image IHR

by aggregating initial input and deep features as

IHR = Hrec(ILR, Fd)

= Up(Fs + Fd) (5)

where Hrec is the reconstruction module and Up(·) de-
notes the PixelShuffle operation. With a long residual
connection, shallow features which mostly contain low-
frequency information can be directly applied to recon-
struct the HR image. It can help the deep feature mod-
ule focus on its specific ability to extract high-frequency
information[25].

3.2. Enhanced Cross-Covariance Attention

The computational cost of the self-attention layer accounts
for most of the Transformers. In traditional self-attention
[14, 36], it can be regarded as a specific spatial attention that
calculates attention via the key-query dot-product across
the spatial dimension, i.e., for an image with a resolution
of H × W , its computational cost is O(H2W 2). Some
studies[29, 43] have proved spatial self-attention is ben-
eficial for SR tasks in the sRGB domain. However, the
spatial discontinuity inherent in the RAW domain under-
mines the efficacy of employing spatial self-attention mech-
anisms on raw data, resulting in diminished performance
compared to their application on the sRGB images. Addi-
tionally, as discussed above, the introduction of such mech-
anisms incurs substantial memory and computational over-
heads. Hence, it is not a suitable method for the RAW image
super-resolution task.

Inspired by [3, 55], we introduce an enhanced cross-
covariance attention named EXCA across channel dimen-
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sion, as shown in Fig 2. In EXCA, the computational com-
plexity of the image is linearly related to the spatial res-
olution. Specifically, to emphasize local contextual infor-
mation, we introduce depth-wise convolutional operations
which are widely applied in transformer blocks. Subse-
quently, it computes the cross-covariance across channels
to generate implicit attention feature maps about global con-
text, thereby achieving simultaneous channel re-weighting
and information transmission. Different from [55], we in-
troduce Inception Depth-wise convolution(I-DWConv)[51]
to project the spatial context, enhancing local feature repre-
sentation. I-DWConv decomposes large-kernel depth-wise
convolution into four parallel branches along channel di-
mension, i.e., small square kernels, two orthogonal band
kernels, and an identity mapping, as shown in Fig 3. It can
maintain a similar throughput to a 3 × 3 depth-wise con-
volution but achieves better competitive performance due
to its ability to capture richer contextual information within
larger local receptive fields.

Given an input feature map Fin ∈ RH×W×C , EXCA
utilizes 1×1 point-wise convolutions for aggregating cross-
channel context at the pixel level, followed by I-DWConv to
encode spatial context on a channel-wise basis. The projec-
tion layer can be expressed as:

Hproj(·) = IDWConv(Conv1×1(·)) (6)

Next, we obtain query (Q), key (K) and value (V) pro-
jections, where Q,K,V ∈ RH×W×C . Next, by reshaping
the Q and K values, we obtain Qr,Kr ∈ RHW×C . Then,
the dot product of Qr and Kr yields a channel-wise cross-
covariance attention map of size RC×C , differing in size
from traditional self-attention map of size RHW×HW .The
whole EXCA process is formulated as follows:

Q = HQ
proj(LN(Fin))

K = HK
proj(LN(Fin))

V = HV
proj(LN(Fin))

Q̂ = R(Q),Kr = R(K), V r = R(V ),

Mt = A(Qr,Kr, V r) = V r · SoftMax(Kr ·QrT /α)

Fout = Conv1×1(R)

(7)

where Fout is the output feature map, LN represents
layer normalization, and R(·) denotes the reshape opera-
tion. Overall, EXCA facilitates the aggregation of both lo-
cal and non-local related pixels, enabling efficient process-
ing of high-resolution images.

3.3. Enhanced Gated Feed-Forward Network

Feed-Forward Network(FFN) is widely applied in the de-
sign of transformer block[14, 36], which facilitates the

model’s ability to capture and process information from lo-
cal contexts within the input sequence. It usually consists
of two 1×1 convolutional layers. Specifically, the first con-
volutional layer is utilized to increase the feature dimen-
sion to a higher dimension, while the second convolutional
layer is employed to reduce it back to the original dimen-
sion. Non-linear activation functions are typically applied
between these layers. In some studies [55], the gating mech-
anism proved effective due to its better ability in representa-
tion learning. It performs controlled feature transformation,
which suppresses less informative features, allowing only
useful information to propagate further through the network
hierarchy.

Specifically, the gating mechanism is designed as the
element-wise product of projection layers’ outputs, one of
which is activated by the GELU[18] non-linear activation
function. It can be approximately written as:

GELU(x) ≈ 0.5x(1 + tanh[
√
2/π(x+ γx3)]) (8)

Similar to EXCA, EGFN also employs inception depth-
wise convolution operations. This operation enables the en-
coding of information from neighboring pixels in the spa-
tial domain, aiding in the learning of local image structures.
The EGFN could be formulated as:

Fout = Conv1×1(Gating(Fin)) + Fin (9)
Gating(·) = ϕ(Hproj(LN(·))⊙Hproj(LN(·)) (10)

where Fin is the input feature map, ⊙ represents element-
wise multiplication, ϕ represents the GELU non-linearity,
and LN(·) is the layer normalization. In general, EGFN
controls the information flow through EXCA layers in the
network, enabling layers within the network to focus on
finer image attributes, thereby producing high-quality out-
puts.

3.4. Loss Functions

In our work, we use the Charbonnier loss [39] to optimize
our network. This loss function is particularly effective for
handling outliers and robust to noise. Its formulation is as
follows:”

Lcontent =

√∥∥∥ÎHR − IHR

∥∥∥
2
+ ϵ2, (11)

where ÎHR is the predicted HR raw image, IHR is the
ground truth, and ϵ is set to 0.0001 as default.

In addition to the content loss, we leverage frequency do-
main information to introduce auxiliary loss to our network,
which is defined as follows:

Lfrequency =
∥∥∥F (

ÎHR

)
−F (IHR)

∥∥∥
1
, (12)
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Table 1. PSNR/SSIM results of NTIRE 2024 RAW Image Super Resolution Challenge on the validation set (40 images), the complete
testing set (200 images), and the testing set at full-resolution (12MP) RAW images [12]. “NA” indicates the results are not available for
the method.

Rank Team Method Validation 1MP Test 1MP Test 12MP # Params. (M)

1 Samsung 2-Stage w/ FPL 43.40/0.99(1) 43.443/0.986(1) 43.858/0.988(1) 53.7(6)

2 XiaomiMMAI EffectiveSR 43.38/0.99(2) 43.249/0.986(2) NA 20.9(5)

3 USTCX(Ours) RBSFormer 43.21/0.99(3) 42.493/0.984(3) 43.649/0.987(2) 3.19(3)

4 McMaster SwinFSR Raw 42.48/0.98(4) 42.366/0.984(4) NA 6.64(4)

5 - BSRAW [11] 42.25/0.98(5) 42.106/0.984(5) 42.853/0.986(3) 1.50(2)

6 NUDT RSR SAFMN FFT 41.81/0.98(6) 41.621/0.982(6) NA 0.27(1)

7 - Interpolation [11] 35.95/0.95(7) 36.038/0.952(7) 36.926/0.956(4) -

where F(·) indicates the Fast Fourier Transform (FFT).
Finally, the total loss could be defined as:

Ltotal = Lcontent + λLfrequency (13)

where λ denotes the balanced weight, and we empiri-
cally set λ to 0.5 as default.

4. Experiment
4.1. Dataset

We conduct the experiments strictly following the setting of
the NTIRE-Challenge 2024 Raw Image Super Resolution
track[12]. The training data contains about 1000 RAW im-
ages from DSLR cameras. The images have been filtered,
normalized, white-black level corrected, and in 4-channel
format (RGGB). The training data only provides clear RAW
images. The input format is a “.npz” file including keys
“raw” and “max val”, indicating the raw image array and
the max value of the raw image, respectively. The valida-
tion and testing sets consist of 40 and 200 low-quality(1MP)
RAW images each. Besides, the 12MP testing set consists
of 200 full-resolution images. Each set contains RAW im-
ages of unknown degradation.

4.2. Data Augmentation

Since the competition’s official dataset doesn’t provide LR-
HR pairs, it is challenging to synthesize realistic degraded
RAW images. Inspired by [11], we introduce its degra-
dation pipeline on RAW images. Firstly, the input in the
test/validation split contains degradation. To enhance the
robustness and generalization of the model, we need to in-
troduce degradation to the original HR images. In this pa-
per, we refer to [11] and introduce noise and blur degrada-
tion.

Noise. We utilize a more pragmatic shot-read noise
model[4, 59]. In Equation 14, the intensity y is depicted as

a sample from a Gaussian distribution with the input signal
x as its mean and variance determined by the parameters
λs (shot) and λr (read) [4]. This model is derived from a
Poisson-Gaussian noise model [40] and can be formulated
as:

y ∼ N
(
µ = x, σ2 = λr + λsx

)
(14)

Blur. It is a prevalent degradation observed during im-
age acquisition, such as camera shake in mobile photogra-
phy, motion blur, and defocus blur [2, 20, 52]. Obtaining
aligned blurry-clean pairs in real-world scenarios is chal-
lenging, leading to the preference for synthetic datasets in
deblurring tasks. Many existing methods employ a uniform
blur by convolving images with iso/anisotropic Gaussian
kernels [57]. For instance, some studies[46, 47] utilized a
disk kernel for defocus blur and introduced modest motion
blur [32]. In our work, followed by [11], we model blur
degradation by convolving images with a diverse range of
kernels, including classical isotropic and anisotropic Gaus-
sian blur kernels [57], as well as real estimated motion blur
kernels [28, 31]and PSFs (point-spread-functions) from real
data [45, 56].

Finally, for SR tasks in the RAW domain, we follow [11,
46, 57] to synthesize LR RAW images from the assumed
HR real captures. We downsample the high-quality RAW
images to obtain the low-resolution raw images so that each
pixel could have its ground truth red, green and blue values.

4.3. Implementation Details

We implement our proposed approach via the PyTorch 1.8
platform. Adam optimizer with parameters β1 = 0.9 and
β2 = 0.99 is adopted to optimize our network.The initial
learning rate is 3× 10−4 and changes with Cosine Anneal-
ing scheme to 1× 10−7, including 120K iterations in total.
We start training with patch size 156×156 and batch size 8.
For data augmentation, we use the data augmentation tech-
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Table 2. Quantitative comparisons of methods on the Validation Set at NTIRE 2024 RAW Image Super Resolution Challenge. The MACs
is computed using a 224× 224 image as input. The best and the second results are boldfaced and underlined, respectively.

Models Basic Block # Param.(M) MACs(G)
Metrics

PSNR↑ SSIM↑
Model-A Dual Attention Block(Simple SA&CA)[54] 3.22 183.5 42.30 0.98

Model-B-S Simple Gate&Simplified CA[8] 0.98 41.9 40.79 0.98

Model-B-L(default) Simple Gate&Simplified CA[8] 4.31 184.3 42.16 0.98

Model-C MDTA&GDFA[55] 3.31 166.2 42.49 0.99

Ours EXCA&EGFA 3.19 158.4 42.67 0.99

Table 3. Ablation study of loss functions. The best and the second
results are boldfaced and underlined, respectively.

Losses Metrics
L1 Charbonnier L1 Frequency PSNR↑ SSIM↑
✓ 42.46 0.98

✓ 42.52 0.98

✓ ✓ 42.61 0.98

✓ ✓ 42.67 0.99

Table 4. Ablation study of ensemble strategies. The best and the
second results are boldfaced and underlined, respectively.

Ensemble Strategies Metrics
Multi-Scale Multi-Config PSNR↑ SSIM↑

42.66 0.99

✓ 42.92 0.99

✓ 42.96 0.99

✓ ✓ 43.21 0.99

nology mentioned above. Our training is performed on the
NVIDIA 4090 device.

4.4. Evaluation Metrics

In this work, we utilize two established reference-based
metrics, widely employed in similar tasks[11, 46, 47, 55],
namely Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) [41], to evaluate the effectiveness of our
approach in raw image restoration. Higher PSNR and SSIM
values indicate superior performance in raw image super-
resolution tasks.

4.5. Comparisons

Table 1 presents a comprehensive comparison of various
solutions for the NTIRE 2024 RAW Image Super Reso-

lution Challenge. The proposed RBSFormer achieves 3rd
place in terms of all the evaluation metrics both on the of-
ficial validation and testing set. In terms of performance
on full-resolution predictions at 12 megapixels, RBSFormer
achieves 2nd place with significantly fewer parameters.
Note that the top-ranking team exceeded our parameter
count by a factor of 16. However, it’s worth highlighting
that despite this considerable difference, the proposed ap-
proach is only 0.21dB lower than the first-place team in
terms of PSNR. Evidently, our method surpasses the fourth-
ranked team 0.73dB and 0.172dB in terms of PSNR on the
validation set and testing set, respectively.

Besides, in Table 2, we demonstrate comparable per-
formance methods on the official validation datasets when
compared to some ISP methods and general image restora-
tion methods. Note that due to the methods that can directly
apply for raw image super-resolution are rare, we recon-
struct these models using their basic block, i.e., Simple Gate
and Simplified CA in NAFNet[8, 9], Dual Attention Block
in CycleISP[54] and DWConv-based Transformer Block in
Restormer[55]. Our method consistently demonstrates out-
standing performance. Compared to the methods Model-C
and Model-A, we obtain 0.18dB and 0.37dB gain in PSNR.
Besides, in Fig. 4, to more intuitively show our excellent
performance, we compare the visual quality between our
predicted output and other models. The comparison clearly
demonstrates that our technology produces superior visual
results and outperforms others in terms of visual quality,
demonstrating its efficiency in image restoration.

4.6. Ensemble Strategies

Ensemble learning is a potent and adaptable technique ca-
pable of enhancing the performance and dependability of
predictive models across various applications. As discussed
above, the proposed approach demonstrates promising per-
formance. With the aim of producing more robust and di-
verse predicted results, we introduce ensemble learning.

Motivated by [5, 17], we adopt two different ensemble
strategies. Our approach consists of two main ensemble
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Figure 4. Visual Results of Bicubic, Model A, Model B, Model C and the proposed RBSFormer.

strategies. First, we utilize a multi-scale ensemble, which
involves training the same configuration of the model with

different patch sizes and then averaging the outputs to en-
hance the restoration quality.
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Secondly, we implement a top-k multi-configuration en-
semble approach, where we vary the number of modules
and channel configurations within the same model archi-
tecture and then aggregate their outputs. These ensemble
techniques offer several benefits. The multi-configuration
ensemble allows for improved robustness by integrating di-
verse configurations, leveraging their strengths. Moreover,
the top-k multi-model ensemble enhances model diversity
and generalizability by combining different configurations
and providing a more comprehensive representation of un-
derlying data patterns.

4.7. Ablation Studies

We conduct extensive experiments to verify the effects of
each component of our method, e.g., modules, strategies
and losses.

Impact of Loss Functions. The network performance
with different losses is reported in Table 3. We observe
that the combination of Charbonnier L1 loss and frequency
loss yields the best performance. Compared to the second-
best combination of L1 loss and Frequency loss, there is an
increase of 0.06dB in PSNR, along with an improvement
in SSIM. Experimental results also indicate that integrating
Frequency loss indeed enhances the network’s performance.

Impact of Ensemble Strategies. From Table 4, we can
see that employing the Multi-Scale strategy alone leads to
a PSNR increase of 0.27dB, while using the Multi-Config
strategy alone results in a PSNR increase of 0.31dB. When
we simultaneously utilize both the Multi-Scale and Multi-
Config strategies, a gain of 0.6dB in PSNR was achieved.
Additionally, we also observe that these ensemble strategies
impact the SSIM metric values.

5. Conclusion
In this paper, we present RBSFormer, an effective trans-
former network for RAW image super-resolution. We
developed the Enhanced Cross-Covariance Attention
(EXCA) and Enhanced Gated Feed-forward Network
(EGFN) by introducing the cross-covariance attention
module and applying Inception Depth-wise convolution
to improve context representation learning. Additionally,
the adoption of data augmentation strategies and ensemble
strategies further improves the model’s robustness and
effectiveness. Finally, RBSFormer achieves 3rd place in
terms of all the evaluation metrics both on the official
validation and testing set with fewer parameters in the
NTIRE 2024 challenge on Raw Image Super Resolution.
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